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Abstract—With the gaining popularity of the Non-Volatile
Memory (NVM) technology, NVM express (NVMe) is now
becoming the de facto interface for high-end block devices. NVMe
generally enables the applications to exploit the massive internal
parallelism of new-generation solid-state drives (SSDs) by issuing
simultaneous I/O requests. However, existing B+ Trees are unable
to maximize the utilization of NVMe hardware performance
because of their synchronous execution paradigm which is incom-
patible with the interface of NVMe. To tackle this problem, we
propose PA-Tree, an NVMe-friendly B+ Tree with a novel, polled-
mode, asynchronous execution paradigm to process multiple
index operations in an interleaved and asynchronous manner.
Such an execution paradigm allows PA-Tree to saturate NVMe
hardware with sufficient asynchronous I/O operations, while
avoiding the potential overhead of excessive multi-threading. To
further unleash the power of the new paradigm, we devise a new
workload-aware scheduling algorithm to optimize the access to
the NVMe interface based on the unique characteristic of NVMe,
which enhances throughput while minimizing processing latency
as well as CPU consumption. Extensive experiments on both
synthetic and real workloads demonstrate that PA-Tree achieves
up to 5× improvement on throughput and 30% reduction on
latency against state-of-the-art solutions.

Index Terms—NVM, NVMe, B+ Tree, Index

I. INTRODUCTION

The last decade witnesses the rapid development of novel
Non-Volatile Memory (NVM), starting with flash memory
[21] and phase change memory (PCM) [36], to the new-
generation 3D XPoint-based memory [17]. These technologies
are pushing the storage devices to a new level of performance
on larger input/output operations per second (IOPS), shorter
access latency, larger capacity and/or lower price. Nowadays,
NVMs are commonly available to both commodity and enter-
prise consumers, who are looking for storage solution for their
performance-critical and data-intensive applications.

While the manufacturing technology of NVM is evolving
over time, the advance host controller interface (AHCI) [16],
originally designed for slow magnetic disks, renders unac-
ceptable high interface latency and CPU consumption in data
access and fails to fully exploit the massive internal parallelism
of new NVM [13] devices. As a result, a new interface named
Non-Volatile Memory Express (NVMe) has been proposed
in recent years [13]. NVMe offers higher throughput, lower
latency and lower CPU consumption, which is now becoming
the de facto standard for high-end NVM devices, e.g., Intel’s
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Fig. 1. Comparison between the synchronous execution paradigm (left) and
pull-mode asynchronous execution paradigm (right) under NVMe interface.

Optane SSD. When AHCI has only one command queue with
the maximal queue depth of 32, NVMe supports up to 64K
command queues, each with the maximal queue depth of 64K
[20]. Such design allows the high-level applications to have a
large number of concurrent I/O commands submitted to the
NVMs at the same time, and consequently maximizes the
usage of internal parallelism of NVM and achieves extremely
high IOPS. Moreover, NVMe is lock-free and efficient in
command submission, due to the support of multiple lock-
free queues and the avoidance of register reads when issuing a
command [20]. Those features further enhance the throughput
and the responsiveness of applications using NVMe as the
underlying storage interface.

In this paper, we investigate how NVMe affects the design
of database index and explore the potential optimization oppor-
tunities. We focus on the B+ Tree [12], which is undoubtedly
the most important and common data structure for many
data-related scenarios, such as relational databases [18], [35],
stream processing systems [8], [34], [39], and key-value stores
[6]. It is unfortunate that, despite the promising performance
of NVMe, existing B+ tree index structures do not demonstrate
expected performance gain with NVMe, mainly because these
index structures are designed without taking account of the
characteristics of NVMe. To the best of our knowledge, every
B+ Tree index follows a synchronous execution paradigm such
that a working thread is blocked when submitting an I/O com-
mand through NVMe and desperately waits for the completion
of the submitted I/O command. As shown in Figure 1(a), to
exploit the internal parallelism of the NVM, we have to spawn
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a large number of concurrent working threads, much more
than physical CPU cores, so that enough I/O commands can be
submitted. However, concurrent execution of these threads not
only introduces expensive synchronization overhead in guaran-
teeing the consistency of the index structure [3], but also leads
to expensive context switch cost and scheduling overhead with
the operating system [35]. Therefore, the internal parallelism
of NVM is achieved at the expense of significant overhead and
CPU consumption, consequently leading to low throughput of
index operations.

To address these issues, we propose PA-Tree, a simple
yet efficient B+ Tree variant tailored for NVMe. Instead of
optimizing the internal data structures of the index based
on the unique characteristics of a particular type of NVM,
PA-Tree is designed for any fast storage media under the
NVMe interface. The core idea in our PA-Tree is to employ
a novel polled-model, asynchronous (PA) execution paradigm,
in which a working thread processes multiple index operations
in an interleaved manner. Such a polled-mode, asynchronous
execution paradigm is able to fully exploit the internal par-
allelism of NVM but naturally avoids huge inter-thread syn-
chronization and context switch cost resulted from excessively
multi-threading. In addition, since the working thread is fully
aware of the workload of the index operations, the index can
better utilize through NVMe and CPU controls by choosing the
timing to interact with the NVMe interface and to interleave
the execution of the concurrent index operations.

Extensive experiments on both synthetic and real workloads
demonstrate that PA-Tree achieves up to 5× improvement on
throughput and 30% reduction on latency against state-of-the-
art solutions.

II. PRELIMINARIES

NVM and NVMe: In the last decade, a wide range of NVM
devices, such as NAND [21], PCM [31] and the latest 3D
XPoint memory [17], have emerged to offer higher perfor-
mance with lower price. NVM is now playing an increasingly
important role in aiding application with strong data persis-
tency requirements as well as performance-critical constraints
on throughput and latency.

AHCI [16] interface, which was originally designed for the
slow magnet disks, works well with the last-generation (slow)
NVMs. With the constant performance improvment of new-
generation NVMs, AHCI gradually becomes the performance
bottleneck in data access on high-end NVMs. AHCI supports
only one command queue with the maximal queue depth of
32. This prevents AHCI from exploiting the massive internal

parallelism of high-end NVMs. In addition, AHCI involves
9 accesses to un-cacheable register per queue command and
requires synchronization lock to issue commands [20], which
generates significant access delay and overhead of contention
and synchronization.

To fully exploit the performance benefits of the NVM, NVM
Express (NVMe) [13] is proposed to overcome the overhead
associated with AHCI. NVMe is an efficient and scalable
host controller interface that is tailored for PCI Express-based,
high-performing NVM devices. In contrast to AHCI, NVMe
offers 64,000 command queues, 64,000 maximal queue depth
per queue, and much lower access latency.

Figure 2 depicts the internal structures and working mecha-
nism of the NVMe interface. NVMe driver, e.g., SPDK NVMe
[33], provides APIs for user application to allocate queue
pairs in user space. A queue pair typically consists of an I/O
submission queue and an I/O completion queue, each of which
is implemented as a ring buffer for efficiency concern.

To issue an I/O request, the application simply submits
an I/O command to a submission queue via io_submit()
function provided by the NVMe driver. Different from tra-
ditional disk-oriented interface where an I/O function call
is blocked until the I/O is completed, io_submit() re-
turns immediately after appending the I/O command to the
submission queue, providing the application an option of
submitting more I/O commands to the NVMe or utilizing the
CPU for other work while waiting for the completion of the
I/O command. The I/O commands on the submission queue
are termed outstanding commands. When there are multiple
outstanding commands available on the submission queue,
the NVM processes the commands in parallel. Finally, the
completion of those commands may not come back in their
submission order. Once an I/O command is completed, the
NVMe controller does not notify the user thread upon the
completion but simply places a message, called I/O comple-
tion, to the corresponding I/O completion queue. It is the
responsibility of the application to probe the completion queue
by calling probe() function, which triggers the callback
function associated with the completed I/O commands. For
each I/O command, its callback function is specified as a
parameter of the I/O command and is used to trigger any
necessary logic for the user application after the I/O command
is completed.
Preference to high queue depth: To quantify the impor-
tance of maintaining sufficient outstanding I/O commands on
NVMe, we show the IOPS of a mainstream NVMe on Amazon
EC2 i3.x2large instance with various queue depth and write
rate in Figure 3(a). Clearly, the queue depth is a dominant
factor to the IOPS performance of NVMe. The IOPS of NVMe
with more than queue depth 32 is higher than that with only
queue depth 1 by an order of magnitude. This observation
leads to the most important guideline in the design of PA-
Tree. That is, the user application must keep NVMe busy with
sufficient outstanding I/O commands.
Unstable access latency: Figure 3(b) shows the data access
latency as the write rate and the queue depth vary. Since
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Fig. 3. The effects of queue depth, write rate and probe cycle to the performance of NVM device.

the degree of internal parallelism for a given NVM device
is limited and the read and write speed could be asymmetric,
the access latency heavily depends on the current workload,
e.g., queue depth and write rate, and may vary significantly.
The unstable access latency poses a huge challenge to the
objective of achieving efficient asynchronous I/O of NVMe as
introduced below.
Sensitivity to probe frequency: With NVMe interface, it is
up to the user threads to decide when and how often to probe
the completed I/O commands. Figure 3(c) shows the IOPS
and latency of the NVM as the probe cycle varies. Since each
probe introduces additional overhead in NVMe, over-frequent
probe lowers the IOPS. When the probe latency grows, on the
other hand, the detection of a completed I/O is significantly
delayed, eventually causing a high I/O latency. Such high
I/O latency may prevent the application from issuing new
I/O commands and consequently result in under-utilization
of the NVM device. In other words, a good probe policy
has the potential to enhance the throughput and latency of
the data accesses, while a bad policy leads to extremely
poor performance. Since the access latency of NVM heavily
depends on the current workload and may vary greatly, PA-
Tree needs to dynamically adjust its probing policy based on
the instantaneous workload.
Out-of-order completions: The NVM processes the out-
standing I/O commands in parallel for efficiency. Therefore,
the completion of the I/Os may not be in the same order
as they are submitted. Out-of-order processing improves the
performance of NVM considerably, but the application has to
take additional efforts to handle them properly.

III. POLLED-MODE ASYNCHRONOUS TREE

PA-Tree is a generic B+-tree index for any block-oriented
storage media under NVMe interface, and therefore it does
not involve in optimizations based on the performance char-
acteristics of a particular type of media. Instead, the core
idea of PA-Tree is to employ a polled-mode, asynchronous
programming paradigm that creates a few working threads to
process multiple index read/write operations in an interleaved
way, as shown in Figure 4. PA-Tree is asynchronous in the
sense that during the process of an index operation, if the
working thread submits an I/O request through NVMe, it does
not wait for the completion of the I/O; instead, the operation
goes into a waiting state, and the thread continues to process
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other index operations and may submit more I/O commands to
NVMe while waiting the completion of the first I/O command.
The major advantage of PA-Tree is its capability of keeping
a sufficiently large number of outstanding I/Os on the NVMe
interface with only one or a few threads. This enables PA-
Tree to exploit the internal parallelism of NVMe interface
while avoiding the overhead of inter-thread synchronization
and context switches by excessively multi-threading. Another
advantage is that it is the working threads who submit I/O
commands, probe their completions, and determine whether
an operation transfers from waiting state to ready state. Such a
polled-mode execution skips system calls made by the working
threads, such as file read/write and sem wait/sem post, and
consequently avoids the time-consuming switch between the
user mode and the OS kernel mode.

PA-Tree provides exactly the same primitives as a standard
B+ Tree, i.e., point / range search, insert, update and delete.
This makes PA-Tree a good option for existing systems with
new NVMe-compatible devices. In this paper, point search and
range search are referred to as search operations, while the
rests are called update operations. When an application thread
calls an index primitive, the corresponding index operation is
created. The application thread is then blocked until the index
operation is fully processed by the working thread.

A. Operation Transitions

To achieve the interleaved execution of index operations,
PA-Tree decomposes the execution of each index operation
into a finite number of transitions and interleaves the execution
of multiple index operations on a transition basis. For each
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index operation, we introduce a concept called operation state,
which contains all the working set for the index operation. The
transition of an operation is executed by the working thread,
which transfers the operation from a state to another state.
The states of an index operation can be categorized into ready
states and waiting states. An operation is in a ready state if it
can be processed by the working thread and transferred to the
next state, or in a waiting state when if it must wait for certain
conditions before transitioning to the next state. The transition
of an operation from a ready state to another state is called
active transition, since it is ready for transition and it is up to
the working thread to decide when to perform the transition.
In contrast, the transition starting from a waiting state is called
passive transition in that the transition can only be made by
the working thread when a certain condition is satisfied. The
condition could be either the completion of a submitted I/O
request or acquisition of latching on a particular index node.

In our implementation, the ready-state operations and the
waiting-state operations are maintained in two collections,
denoted as R(C) and W (C), respectively. When the working
thread submits an I/O request to the NVMe submission queue
and transfers the operation into the waiting state, it specifies
a callback function in which the operation is transferred to its
next state. Based on a scheduling policy discussed in details
in Section 4, the working thread periodically selects a ready
state operation in R(C) to process, and probes the completion
queue of NVMe to transfer the operations with completed I/Os
to their respective next states.

We take the state transition graph of the point search opera-
tion shown in Figure 5 as our running example. Details of the
transition graphs for other index operation types are skipped
in this paper, because it is trivial to make the extensions.
Generally, the working thread traverses from the root node
to the very leaf node which may contain the target search
key. As shown in Figure 5, to search an index node, the
working thread issues an I/O command to the NVMe devices,
which is an active transition and transfers the operation from
P state to state S. Since S is a waiting state, it cannot be
further transfered to its next state C until the I/O command
is completed. Then the thread may switch to the execution of
other operations and resumes the execution of this operation
when the I/O request is completed and the operation is
dispatched to the working thread by the scheduling policy.

Figure 6 depicts how the working thread interleaves the
execution of n index operations over time. Once the ongoing
executing operation is transferred to the waiting state, the
working thread executes another ready-state operation and re-
sumes the processing of the former operation shortly when the
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operation becomes ready. In other words, when waiting for the
completion of the submitted I/Os, the working thread processes
other ready-state operations simultaneously and may submit
more I/O requests. This asynchronous workflow enables one
thread to exploit the internal parallelism of the NVM, thus
achieving high operation processing throughput.

B. Latching

During the execution of update operations, index nodes may
be modified, split or merged, which may cause data corruption
or inconsistency if not handled correctly. To guarantee data
consistency against the interleaved execution of multiple index
operations, we first introduce the concept of latching and then
discuss how to apply existing concurrency control techniques
on PA-Tree based on the operation latches.

A latch is a logical flag that an operation sets to a particular
tree node to declare its shared-read or exclusive write owner-
ship of the particular node. Before it releases the ownership,
other operations attempting to request a conflicting ownership
of this node is forced to stay in the waiting state. An operation
can only set a read latch to a node when there is not any
exclusive latch on the node, while it can only set a exclusive
latch to a node when there are no shared latches or exclusive
latches on the node. If an operation’s latch request to a
particular node is granted, the operation transitions to the next
ready state and is called latch-granted. Otherwise, it stays in
the waiting state and is called latch-requesting, until its latch
request is approved.

In PA-Tree, it is the responsibility of the working thread to
grant the latch to the operations and to transfer a latch-granted
operation to its next state. Such a design not only enables
highly efficient latch requesting and granting by avoiding
the inter-thread synchronization and thread context switches,
but also allows the working threads to utilize instantaneous
workloads to make better scheduling decisions, as discussed
in details in Section IV. To handle the latch requests, PA-
Tree maintains a read latch count r, a write latch count w
and a pending latch request queue for each tree node. Upon
receiving an operation’s latch request to an index node, the
thread checks the values of r and w of the index node to
determine whether the latch can be granted to the operation.
Currently, all the latches are regarded equally important and
thus is on a first-request-first-grant basis. Specifically, a write
latch can be granted when r = 0 and w = 0, while a read
latch can be granted when w = 0. If the latch is granted, the
working thread updates r or w and continues to process the
operation. Otherwise, the latch is added to the pending queue



of the tree node and the current operation goes into the waiting
state. When an operation releases its latch on a particular index
node, the thread updates the corresponding r or w. Then from
the front to the tail, the thread processes each latch request
on the pending queue based on the current value of r and w,
until the thread reaches the first latch request which cannot
be approved or all the latches requests are approved. If the a
pending latch request can be approved, the latch request will
be removed from the pending queue and its corresponding
operation will be transferred to its next ready state.

With the support of the operation latches, we can simply
apply the well-known latch coupling technique [3] on PA-Tree
to guarantee the consistency of the index against concurrently
executing index operations. We opt for this technique mainly
because of its simplicity and high concurrency. Due to space
limitation, we only give a high level description to point search
and insertion. More details are available in articles [3] and
[15]. During the traverse from the root to the leaf node in a
point search, before accessing any node, the operation requests
a shared latch on the node. When the request is granted, the
operation releases its latch on the parent node if any. For
the insertion operation, the operation requests an exclusive
latch on the node. When the latch is granted, the operation
will release its latch on its parent nodes if the insertion will
certainly not cause splitting operations on the parent nodes,
e.g., when the current nodes has at least one empty slot.

C. Buffer Management

Without buffering, every access to a tree node, either read
or write, results in at least one NVM I/O. Since RAM is
still at least 10 times faster than the mainstream NVM,
significant performance improvement is expected by caching
the frequently accessed data in RAM.
Strong Persistent Buffering: To achieve strong data persis-
tence, the update to the tree node structure should be written
directly to the NVM, so that when an update operation is
completed, its modification is deemed on NVM and thus is
persistent against power failures that may happen afterwards.
However, it is unnecessary to always read index nodes directly
from NVM for every access. The I/O requests can be answered
by the data cached in RAM, provided that the data in cache
is always consistent to that on NVM to avoid violating the
semantics of strong data persistence.

Motivated by this, we implement a software read-only buffer
over the NVMe interface. The read-only buffer comprises a
number of in-memory data blocks and employs LRU policy
[10] to evict the old blocks. The key is to make sure that data
read from the read-only buffer is consistent to the data in NVM
in the presence of asynchronous I/Os. To this end, when a write
I/O is submitted, we do not write the data block into the read-
only buffer until the write I/O is completed. That is because,
if we wrote the data block into the read-only buffer before the
completion of the write I/O, the content of the data block will
be visible to other concurrent operations before the completion
of the I/O. This potentially introduces inconsistency if failures
happen before the completion of the I/O.

Weak Persistent Buffering: While strong persistence is
particularly important for the scenarios relying on the indexing
structure for persistence, it introduces unnecessarily high write
amplification factor in the case where data persistence on a
per-operation basis is not needed. For instance, with the help of
write ahead log (WAL), it is unnecessary to persist every single
operation, but persisting a batch of operation is sufficient.

To reduce the write amplification factor of weak-consistent
PA-Tree, we employ a read-write software buffer over NVMe
and provide an additional sync() function to the applications,
which flushes all the updates to the PA-Tree on NVM. The
read-write buffer handles read I/O request in exactly the same
way as the read-only buffer. In contrast, to handle an write I/O,
the read-write buffer updates the corresponding in-memory
data block and does not immediately flush the update to NVM.
Instead, the updated data blocks are only flushed on NVM
when they are evicted or the user calls sync() function. With
the help of the read-write buffer, multiple writes to the same
data block can be merged into a single write to NVM, thus
reducing access to NVM and improving the performance.

The read-write buffer works effectively when the workload
retains a certain degree of data locality in node updates.
However, when the workload lacks of data locality or a
sufficiently large data buffer cannot be used due to the limited
RAM capacity, the read-write buffer may not reduce the
write amplification effectively. In such case, the optimizations
like that used in log-structured merge (LSM) tree [27], can
be employed to further improve the performance. However,
applying our polled-mode, asynchronous programming model
on LSM tree is out the scope of this paper.

IV. SCHEDULING

An advantage of employing a polled-mode, asynchronous
execution paradigm in PA-Tree is that it is the responsibility
of the working thread to determine when to interact with the
NVMe interface and how to interleave the execution of the
operations. Compared with the OS kernel which is unaware
of the application-level workload, the working thread is in a
position to make better decision with a better understanding
of the workloads. In this section, we discuss the internal
scheduling algorithm that guides the working thread and
enables efficient execution of multiple operations.

The objective of the scheduling algorithm in PA-Tree is
to maximize the processing throughput of index operations,
while minimizing the process latency of each individual index
operation as well as the CPU consumption of scheduling.

Let C denote the set of index operations being processed
by the PA-Tree. We partition C into R(C) and W (C), which
denote the set of ready-state operations and the set of waiting-
state operations, respectively. Based on the waiting conditions,
we further define W (C) =Wb(C)

⋃
WIO(C), in which Wb(C)

is the set of barrier-requesting operations waiting for the grant
of operation barriers and WIO(C) is the set of I/O-blocked
operations waiting for the completion of I/O requests. For
an operation c ∈ R(C), we use process(c) to represent the
maximal sequence of transitions of c until c 1) is either fully



Algorithm 1: Naive Scheduling
Input: operation contexts C, ready-state operation contexts

R(C)
1 main loop
2 while R(C) 6= ∅ do
3 c← R(C);
4 process(c);
5 remove c from R(C);
6 RIO(C) = probe();
7 add RIO(C) to R(C);

processed and removed from C, or 2) goes into a waiting-
state operation and is added to Wb(C) or WIO(C). During
the process of an operation c, the barriers obtained by c
may be released, which will trigger the transitions of some
operations from Wb(R) to R(C) if possible, as discussed in
Section 3.2. Therefore, moving the barrier-obtained operations
from Wb(C) to R(C) is handled within process(), and the
scheduling algorithm does not need explicit procedure to do
that. In contrast, due to the polled-mode working mechanism
of NVMe, the working thread is responsible for probing the
NVMe interface for the completed I/O requests and moving
the I/O-completed operation from WIO(C) to R(C) so that
those I/O-completed operations can be processed shortly.

Algorithm 1 shows a naive scheduling algorithm. In each
main loop, the algorithm first processes all the ready-state
operation contexts R(C) (Line 2 - 5), and then calls probe()
to detect the I/O-completed operation, transfers the I/O-
completed operations to ready-state and adds them to R(C).

Compared with the traditional concurrent B+-Tree, PA-Tree
with the naive scheduling algorithm can effectively improve
the utilization of NVM and avoid the high cost of using
multiple working threads. However, there is still large opti-
mization room for PA-Tree in terms of the performance and
CPU consumption. First, the timing of calling probe() plays
an interesting trade-off between the NVM utilization and the
probe overhead, thus has great influence on the performance of
the PA-Tree and scheduling overhead. Second, given a set of
ready-state operations, the order in which the operations are
processed affects the throughput and the latency of the PA-
Tree considerably. Third, when the workload is low, the main
loop will consume CPU cycles without doing any useful work.
Therefore, it is desirable for the working thread to adaptively
yield its CPU when the workload is low. The workload-aware
scheduling algorithm with the three optimizations mentioned
above is shown in Algorithm 2, and will be discussed in details
in the rest of this section.

A. The Timing of Probe

Due to the polled-mode mechanism of NVMe, an I/O-
blocked operation is not transferred to its next ready state
upon the completion of its I/O requests; instead, it can only
be transferred when the completion of its submitted I/O
is detected by probing the NVMe interface. To reduce the
processing latency of each individual operation and improve

the throughput of PA-Tree, it is desirable to minimize the delay
between the I/O completion and I/O detection.

We attempt to tune an optimal probing frequency that
allows the working thread to detect the completed I/Os rapidly
without introducing too much CPU consumption and interrup-
tion to the NVMe. Unfortunately, such global optimal setting
applicable to every workload does not exist. This is because
the latency to process an I/O request heavily depends on the
number of outstanding I/O requests as well as the read/write
ratio, and thus varies greatly as discussed in Section II. To
solve this problem, we maintain a model at runtime to estimate
the number of completed I/Os and only probe the NVMe
interface when the model guesses an I/O command may be
returned.

Given two parameters t and n, we evenly divide the recent
t microseconds into n time slices. We define a vectors w =
[w1, w2, . . . , wn], in which wi is the number of outstanding
write I/Os submitted within the i-th time slice. Similarly,
we define a vector r = [r1, r2, . . . , rn] as the counts of the
outstanding submitted read I/Os for the n time slices. Our
estimation model takes T = w||r, i.e., the concatenation of the
two vectors, as input and outputs the estimation on (w0, r0),
which is the number of completed write I/Os and the number
of completed read I/Os, respectively.

We consider a large variety of methods to model the
relationship between T and (w0, r0), but decide to use linear
regression model [28] mainly because of its simplicity and
effectiveness in solving our problem. In the linear regression
model, the estimation on (w0, r0) is obtained by:

(w0, r0) = Tβ,

where β is a 2n × 2-dimensional parameter matrix. We train
the parameter matrix β offline using the well-known machine
learning tool pandas [23]. To guarantee the accuracy and
robustness of the model, we generate training data from
a variety of workloads with different read/write ratio and
workload intensity. In practice, we set t = 1000 and n = 20,
because 99.9% I/O requests can be completed within 1000
microseconds and n = 20 provides enough resolutions to
guarantee the accuracy of the model.

B. Prioritized Execution of Operations

Another optimization is to choose the ready-state operator
to process according to their priorities based on their state
and properties. Specifically, the priority of the ready-state
operations is determined based on the following intuitions:
a) The operation that was admitted earlier should have higher
priority for processing so as to reduce the process latency for
each individual operation. b) Operation holding write barriers
should be processed with higher priority so that their write
barriers can be released earlier to improve the concurrency
of the PA-Tree for a better overall processing throughput and
reduced processing latency for individual operations.

To implement the prioritized processing of operations with
minimized overhead, we use a priority queue to maintain the



Algorithm 2: Workload-aware Scheduling
Input: All operations C, ready-state operations R(C),

parameter matrix in the predication model β, the
granularity of yielding CPU t.

1 main loop
2 if R(C) 6= ∅ then
3 get c with the highest priority from R(C);
4 process(c);
5 remove c from R(C);
6 construct vector T = w||r;
7 (w0, r0) = Tβ;
8 if w0 ≥ 1 or r0 ≥ 1 then
9 RIO(C) = probe();

10 add RIO(C) to R(C);
11 reconstruct T = w||r to estimate (w0, r0) after t µs;
12 (w0, r0) = Tβ;
13 if R(C) = ∅ and w0 = 0 and r0 = 0 then
14 yield CPU for t µs;

ready-state operations and let the working thread process the
operation with the highest priority. In particular, the priority of
an operation is represented as an unsigned 8-byte integer with
a smaller value implying higher priority. The most significant
bit of the integer being 0 indicates the operation is holding a
write barrier and should possesses highest priority. Otherwise,
the most significant bit is 1. The rest of the bits are used to
store the sequential ID of the operation, which is generated in
an increasing order upon operation admission.

C. CPU Yielding

PA-Tree is polled-mode, asynchronous in that its working
thread will not be blocked by the requests of I/Os or barriers,
but continues to process other ready-state operations. This
avoids the expensive switches between the user and kernel
space, and thus enables a single working thread to process one
million operations per second. However, due to the absence of
blocking system calls, when the workload of the PA-Tree is
very low, e.g., 1K operations per second, the working thread
may waste a large amount of CPU cycles in the main loops
without doing useful work.

To avoid wasting CPU cycles, the working thread yields
its CPU if it detects that there is unlikely to be any work
to do in the following t µs, e.g., t = 100. In particular, at
the end of the main loop, the algorithm employs the model
in Section IV-A to estimate if any outstanding I/O requests
can be completed after t µs. If R(C) = ∅ and no outstanding
I/O requests can be completed after t µs, it indicates that the
working thread has no real work to do in the following t µs.
In such case, the working thread will yield its CPU for t µs,
so that the CPU can be used by other application threads. To
minimize the negative effects on the performance of PA-Tree,
we set t to be the same length as the time slice used in the
operating system, so that the operating system can reschedule
the working threads immediately after t µs.

V. EXPERIMENTS

We implement PA-Tree in C++, open-sourced in [30]. We
employ a single-threaded implementation for PA-Tree, because
a single-threaded implementation is able to saturate the IOPS
of the underlying hardware while avoiding the additional syn-
chronization overhead and implementation complexity from
multi-threading. We use the storage performance development
kit (SPDK) NVMe drive [33] to interact with the NVMe
interface. Since the minimal access granularity in the NVMe
is 512 bytes, we set 512 bytes as the index node size to reduce
the read and write amplification factor. The code is compiled
by GCC 4.8 with -O3 flag. The experiments are run over a
dedicated EC2 i3 x2large instance running Amazon Linux with
kernel version 4.14.70. The instance has 64GB RAM, 8 core
Intel E5@2.3GHz CPU, and 1900GB NVMe SSD. The NVMe
SSD supports up to 256 queue pairs, each with 2,048 maximal
queue depth.

We employ a synthetic workload and two real workloads
in our evaluations. The synthetic dataset is generated based
on Yahoo! cloud serving benchmark (YCSB) [9]. Using a
synthetic dataset enables us to easily control the distribution of
keys as well as the workload characteristics for various eval-
uation purposes. Specifically, we target at three representative
workloads, namely read-only workload, default workload and
update-heavy workload. The default workload comprises 10%
update operations and 90% read operations, and is used for
most evaluations unless otherwise stated. In the update-heavy
workload, 50% of operations are updates while the rest are
reads. All the read and update operations are based on index
keys, which are randomly generated following Zipfian distribu-
tion. Unless otherwise specified, the skewness factor, denoted
by α, for the Zipfian distribution is set to 0.3 throughout our
evaluation. The key and the payloads are 8 bytes in size.

The first real workload is T-Drive [38], which contains
trajectories of over 10,000 taxis in Beijing for a week. Each
record consists of a number of attributes, including taxi ID,
a z-code computed by apply z-ordering [26] on latitude
and longitude, and timestamp. There are over 15 million
records and total driving distance of the trajectories is over
9 million kilometers. Each query in this workload aims to
find all the records within a given range of z-code. This
is an extremely update-heavy workload, which consists of
70% updates. The second real-world workload is SSE [34].
It contains anonymized order records for stock trading in
Shanghai Stock Exchange (SSE), collected over three months
with around 8 million records per trading hour. An order
record is made by a user, who specifies his bid and asking
prices for a specified volume of a particular stock. We define
the stock ID, the price and the timestamp as the index attribute
and store the outstanding orders in the B+ tree, so that a new
order can be efficiently matched against the outstanding orders
using the B+ Tree. A key-value pair is 108 bytes on average.
This workload contains 28% updates.
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Fig. 7. Throughput comparison of PA-Tree and two baseline methods over YCSB workload.

 0

 400

 800

 1200

 1600

 2000

PA-Tree dedicated shared

L
at
en
cy

 
(�
s)

 

1 thread
8 threads
32 threads
128 threads

(a) Read-only Workload

 0

 400

 800

 1200

 1600

 2000

PA-Tree dedicated shared
L
at
en
cy

 
(�
s)

 

1 thread
8 threads
32 threads
128 threads

(b) Default Workload

 0

 400

 800

 1200

 1600

 2000

PA-Tree dedicated shared

L
at
en
cy

 
(�
s)

 

1 thread
8 threads
32 threads
128 threads

(c) Update-heavy Workload
Fig. 8. Latency comparison of PA-Tree and two baseline methods under YCSB workload.

A. Effect of the new scheme:

We first quantify the performance gains from the adoption
of our new polled-model, asynchronous execution scheme. To
this end, we compare the performance of PA-Tree against two
baseline approaches, namely shared approach and dedicated
approach. Both baseline approaches employ exactly the same
index data structure as our PA-Tree, but follow the traditional
execution paradigms, in which the access to the NVMe
interface is synchronous and multiple working threads are
required to issue more than one I/O commands to the interface
simultaneously. Unless otherwise stated, buffering is disabled
in all the three approaches.

In the dedicated approach, each working thread is allocated
a dedicated pair of a submission queue and a completion
queue. When a working thread submits an I/O request to
its submission queue, it will repeatedly probe its completion
queue until the I/O is completely finished. To avoid wasting
CPU cycles, the duration between any consecutive probe is set
to 100 µs. Multiple working threads can be created to improve
the utilization of NVMe. We employ the same latch coupling
technique [3] as the PA-Tree based on semaphore wait and
post primitives, to guarantee the correctness under the multi-
threaded execution of the index operations.

Similarly, the shared approach employs multiple working
threads and the latch coupling technique, but the NVMe
accesses of the working threads are delegated to a dedicated
thread to reduce the interruption to the processing of the
NVMe. Specifically, a global I/O request queue is maintained
to accommodate all the I/O requests from the working thread,
and there is a daemon thread responsible for handling the I/O
requests in the queue. When a working thread submits an I/O
request to the queue, it is blocked until the daemon thread
notifies it upon the completion of the I/O. The synchronization
between the working threads and the daemon thread is via
semaphore wait and post primitives, which shows significant
performance improvement over spin-lock in our scenario.

Throughput: Figure 7 shows the throughput of PA-Tree
and the baseline approaches with various number of working
threads under the read-only default and update-heavy work-
loads, respectively. Despite using the same data structure and
latching techniques, PA-Tree with only one working thread
achieves at least 5 times higher throughput than the baseline
approaches with multiple working threads. By comparing the
results in the sub-figures of Figure 7, the throughput of all
three approaches drops, as the update rate increases. Higher
percentage of update in the workload also generates more
NVMe writes, incurring higher overhead than the NVMe
reads do. We also observe that for either of the baseline
approaches, the throughput is extremely low when there is
only one working threads. A sole working thread under the
synchronous paradigm only issues one I/O request at any
time. Such paradigm fails to utilize the internal parallelism of
the NVMe and consequently leads to poor index throughput.
When more working threads are deployed in the baseline
approaches, the better utilization of the internal parallelism
of the NVMe leads to higher throughput. However, when the
number of working threads exceeds 32, the performance gain
starts to drop, due to the huge context switch and thread
contention overhead when the number of running working
threads exceeds the number of physical CPU cores.

Latency: Figure 8 illustrates the latency of PA-Tree and the
baseline approaches with different number of working threads
under three representative workloads. The latency of PA-Tree
is highly competitive when compared against the smallest
latency achieved by the baseline methods. By deploying
more threads, the latency in both baseline approaches grows
significantly. The latency with 128 threads, for example, is
over 10, 000 µs, which is unacceptable for most applications.
The root problem with the baseline approaches with over 32
threads are in twofold. First, when there are only 8 CPU
cores available, the employment of more than 8 threads results
in frequent context switches. Second, with more working



TABLE I
RUNTIME STATISTICS OF THE APPROACHES IN THE EXPERIMENTS.

methods outstanding
I/Os

IOPS (103)
(max=415.7 )

CPU
consumption

context
switches

shared 29.88 68.1 4.16 12,579,138
dedicated 18.10 58.5 6.50 6,291,027
PA-Tree 48.56 387.3 0.78 121
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Fig. 9. Breakdown of CPU consumption for PA-Tree and baseline methods

threads, it is more likely that a working thread may be
blocked by other threads during the process of an individual
index operation, causing poor latency. The performance of the
baseline approaches in Figure 7 and Figure 8 implies that,
with various number of threads, both baseline approaches
are unable to achieve reasonably high throughput and low
latency at the same time. In contrast, the PA-Tree is the only
solution maintaining high throughput and low latency. As a
short summary, the new polled-mode, asynchronous execution
paradigm is much more NVMe-friendly than the traditional
synchronous execution paradigm, which is the major reason
driving the favored performance advantage of PA-Tree.
Performance analytics: To better understand the performance
gap between PA-Tree and the baselines, we measure the
number of outstanding I/Os on the NVMe, the IOPS, the
CPU consumptions, and the number of context switches for
the three approaches and show the numbers in Table I. The
CPU consumption is measured by the average number of CPU
cores used by the working threads. As there are 8 physical
CPU cores in our evaluation hardware, CPU consumption
varies from 0.0 to 8.0. The number of context switches is
measured by using perf tool [1]. Since both baseline methods
achieve the best performance with 32 threads, we only show
their measurements under 32 working threads in the table. The
results imply, despite using only working thread, PA-Tree is
able to keep a larger number of outstanding I/Os in the NVMe
than the baseline methods. This enables the PA-Tree to fully
exploit the internal parallelism of NVMe and nearly saturate
the NVMe SSD, thus achieving much better performance.
Interestingly, the actual IOPS of the shared and the dedicated
approaches is way lower than the IOPS they are expected to
achieve given their numbers of outstanding I/Os. As discussed
in Section II, this is mainly because they probe the NVMe
too often, which introduces expensive overhead in the NVMe
driver. Due to the single-threaded execution paradigm, the
context switch cost of PA-Tree is 1,000× less than the baseline
approaches. This further deepens the performance gap between
the PA-Tree and the baseline approaches and also entitles PA-
Tree with 5× CPU efficiency improvement over baselines.
CPU efficiency: Table II lists the CPU consumption per

TABLE II
AVERAGE CPU CONSUMPTION PER OPERATION FOR VARIOUS METHODS.

method PA-Tree dedicated shared
CPU cycles (103) 3.23 175.3 156.2
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Fig. 10. Performance comparison of PA-Tree with and without workload-
aware probing.

operation by PA-Tree and its competitors. It is clear that
CPU cycles consumed by the baseline methods is larger than
that of PA-Tree by two orders of magnitude. This explains
why a single-threaded implementation of PA-Tree outperforms
the baseline methods with 16 threads. To gain more insights
into the superiority of PA-Tree in terms of CPU savings, we
make a breakdown analysis over the CPU consumption and
demonstrate the outcomes in Figure 9. The CPU consumption
is divided into five categories: real work, synchronization,
NVMe, scheduling and others. The real work part consists
of the CPU cycles for index structure access, node split and
merge. For PA-Tree, the “synchronization” refers to CPU
cycles used to handle the context barriers, while in the
baseline approaches it refers to the CPU cycles spent on
calling semaphore primitives, i.e., wait() and post(). “NVMe”
covers the CPU cycles spent on calling the NVMe drive.
“Scheduling” refers to the CPU cycles for scheduling the
operations and is only applicable in PA-Tree. We are unable to
directly measure the OS scheduling overhead and the context
switches overhead without modifying the OS kernel. Their
CPU consumption is therefore in the “others” category. We
observe that the synchronization and scheduling in PA-Tree
take only a small fraction of CPU cycles, while more than
half CPU cycles are spent on the real work. In contrast, for
the baseline methods, the real work part is no more than
20% CPU consumption, while the most CPU cycles are spent
on synchronization and context switches. The results validate
that the CPU efficiency of PA-Tree is mainly because of its
avoidance of inter-thread synchronization and context switches
enabled by its single-threaded execution paradigm.

B. Scheduling Evaluation

Workload-aware probing: To evaluate our workload-aware
probing strategy, we compare the performance of PA-Tree with
two naive probing strategies. In the first strategy, the working
thread probes the NVMe in every avg(t) µs, where avg(t) is
the average I/O completion latency measured within the latest
sliding window of 1 second length. The second strategy probes
the NVMe in a pre-defined fixed rate, varying from 0 to 200
µs in different runs. The latency and throughput for the PA-
Tree with different polling strategy are presented in Figure 10.
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Fig. 11. Comparison with PA-Tree and PAD-Tree.

Workload-ware probing outperforms, by a substantial margin,
other strategies probing the NVMe either in a fixed rate or
a dynamic rate based on the average I/O completion time, in
terms of both throughput and latency. When the probe cycle is
short, even under short I/O completion latency of NVMe, the
throughput is extremely poor. This is simply because NVMe
is probed too frequently, causing high CPU consumption for
the interaction with NVMe and unnecessary interruptions of
the normal processing of NVMe, as discussed in Section II.
With the increasing ω grows, the system triggers fewer in-
terruptions to the NVMe, alleviating the system workload for
a higher throughput. However, when ω exceeds 100 µs, the
latency grows and the throughput drops significantly. Such
high probe delay prevents a large number of completed I/Os
from returning the results to the working thread in time,
consequently lowering rate of the subsequent I/O requests
from user applications. Again, appropriate utilization of the
internal parallelism of NVMe is the key to fully exploit the
performance of storage device through NVMe interface.
Workload-aware v.s. dedicated polling: We implement
two variants of PA-Tree, denoted by PAD-Tree, by using a
dedicated polling thread which keeps polling I/O completions
in loops, and PAD+-Tree which also uses our workload-aware
pulling strategy in a dedicated polling thread. The intuition
behind the two variants is not to compete CPU cycles with
the working thread by using another thread handling the I/O
requests. The throughput comparison is shown in Figure 11(a)
with their CPU consumption results available in Figure 11(b).
The first observation is that PAD-Tree performs much worse
than others despite much higher CPU consumption. This is
because PAD-Tree probes NVMe driver too frequently, which
not only waste CPU cycles but also introduces additional
overhead to the driver as discusses in Section II. Another
observation is that compared with PA-Tree, PAD+-Tree has
similar CPU consumption but its throughput is slightly lower
than PA-Tree. Since the indexing thread does not fully utilize a
CPU core, doing the probing in another thread does not bring
benefit but results in inter-thread synchronization, which may
lead to CPU cache pollution and thus hurts the performance.
Prioritized execution: To evaluate the effects of prioritized
execution to the performance of PA-Tree, we compare the
throughput and latency of PA-Tree with and without prioritized
execution when the key skewness varies. The results are shown
in Figure 12. PA-Tree with prioritized execution achieves
higher throughput and lower latency than PA-Tree without
prioritized execution. The performance margin grows with
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Fig. 12. The benefit of prioritized execution to PA-Tree.
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Fig. 13. The effect of CPU yielding.

higher key distribution skewness. After further investigation,
we find that with higher key skewness, the contention among
multiple threads is more severe. In such cases, it is more
important to release the write latches on the index nodes as
soon as possible to improve the concurrency.
CPU yielding: Figure 13 compares PA-Tree with and without
CPU yielding when the input rate to the PA-Tree varies along
the x-axis. The CPU consumption without CPU yielding is
always beyond 75%, even when the input rate is extremely low,
e.g., below 50,000 tuples/s. Without CPU yielding, despite the
low workload, the working thread wastes a large amount of
CPU cycles in the main loop without doing any real work. By
enabling the CPU yielding, the working thread can adaptively
yield its CPU core when it determines that it will not have any
real work to do in the near future. This dramatically saves CPU
consumption, especially when the workload is low, but does
not decrease the overall performance as shown in Figure 13(b).

C. Data Buffering

This group of experiments examines the effects of data
buffering in our PA-Tree. We evaluate the performance of PA-
Tree with strong persistent buffering and with weak persistent
buffering, respectively. Their performance comparison is re-
ported in Figure 14. Data buffering effectively improves the
performance of PA-Tree in terms of throughput and latency.
An interesting observation is the performance boost even when
a very small buffer is used. To process every index operation,
the working thread has to access index nodes from the root
node to the target leaf node. Better spatial and temporal local-
ity is preserved when processing the nodes closer to the root
of the tree. Therefore, buffering the root node and uppermost
layers of the inner nodes effectively reduces the number of
NVMe access for the index operations, finally enhancing the
performance of PA-Tree. PA-Tree with weak persistence also
achieves higher throughput and lower latency than strong
persistent PA-Tree. To guarantee the strong consistency, every
write to the NVMe must be directly flushed onto the NVMe.
In contrast, in the weak persistent PA-Tree, those writes are
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Fig. 14. The benefit of buffer to PA-Tree in terms of throughput and latency.
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Fig. 15. Performance comparison between PA-Tree and the state-of-the-art
competitors.

cached in the data buffer instead and are flushed to the NVMe
only when the system calls the sync() function.

D. End-to-End Evaluation

In this part of section, we compare the performance of
PA-Tree with the state-of-the-art B+ tree implementations in
LevelDB [11], a log-based consistent B+ tree (LCB-Tree) [37]
and Blink-Tree [25]. LevelDB is one of the most popular fast
key-value storage based on LSM-Tree [27]. Among multiple
implementations of LSM-Tree, we choose LevelDB because
its popularity and the support of strong consistency. LCB-Tree
is a concurrent B+-Tree following the traditional synchronous
execution paradigm as introduced earlier. Both LCB-Tree and
Blink-Tree employ compare-and-swap (CAS) instructions to
achieve locking-free. All the methods provide a sync()
primitive. By calling sync() after each index update or after
a group of index updates, we can guarantee strong persistent
semantics or weak persistent semantics, respectively. To keep
the comparison fair, the memory buffer size for each method
is set to 10% to the total index size. For all the weak persistent
version of each method, sync() is called after every 1000
index update operations. For each of the baseline method, we
vary the number of threads from 1 to 128 during the evaluation
and compare its best performance with PA-Tree.

Figure 15 investigates the throughput and latency of the
all the methods under the default synthetic workload and
two real workloads, whose characteristics are described at
the beginning of this section. PA-Tree achieves two times
higher throughput and at least 30% lower latency than the

three baseline methods across all the workloads. For any of the
methods, the weak persistent version outperforms the strong
persistent one by a substantial margin. To achieve strong per-
sistency, at least one NVMe write is required for each update
operation, rendering higher latency and lower throughput. As
for the weak persistence versions, by persisting on a group of
updates, e.g., 1000 updates, rather than individual tuple level
in the weak persistent versions, multiple writes to the NVMe
are merged and the write overhead is amortized by multiple
index operations. This effectively reduces write amplification
factor and thus leads to higher throughput and lower latency.
Surprisingly, the performance penalty of achieving strong
consistency in LSM-Tree is extremely high. That is because
LevelDB invokes sync() system call to guarantee the flush
of the cached I/Os. sync() system call is known to be time-
consuming and consequently leads to high latency and poor
throughput.

VI. RELATED WORK

A large body of work [14], [22], [24], [40] revisits the
design of database systems and proposes a set of new tech-
niques for flash memory to take advantage of the fast random
read, overcome the limitation of expensive writes and erases
by avoiding in-place update, and improve the durability by
wear leveling. Oukid et. al. propose a hybrid SCM-DRAM
persistent and concurrent range index, called FPTree [29].
FPTree comprises a set of optimizations to minimize the
overhead of persisting data on storage-class-memory (SCM),
accelerate leaf node search, and utilize the hardware trans-
actional memory for performance enhancement. The major
difference between our PA-Tree and those techniques is that
PA-Tree is optimized for NVMe interface and does not involve
in the optimizations on the internal index structures for the
characteristics of a particular storage media. The polled-mode,
asynchronous execution paradigm, as the core design in our
PA-Tree, is orthogonal to those techniques. Roh et. al. propose
a set of optimizations to exploit the internal parallelism of
flash-based SSD [32]. Their work is similar to ours in terms
of exploiting internal parallelism of storage media. However,
their proposal is designed for flash memory and is based on a
parallel sync I/O, which is a software wrapper of sync I/O and
can only exploit a very limited degree of parallelism. Faster
[5] is a highly efficient key-value store tailored for SSD, which
combines concurrent hash index with hybrid log. Compared
with PA-Tree, it does not support range query. LightNVM [4]
provides a new physical page addressing (PPA) I/O interface
to exposes SSD parallelism to the high-level applications. PA-
Tree can be implemented as an application running on top of
LightNVM to take advantage of its performance improvement.
Asynchronous Memory Access Chaining (AMAC) [19] allows
different operations to execute different and independent code
stages at the same time to hide the memory access latency
and maximize the throughput. This approach is similar to
our PA-Tree in that the execution of multiple operators is
asynchronous using a state machine, but it is not applicable in



our scenario mainly because index operations may update the
same index node and thus needs coordination.

When using NVM as main memory (NVMM), cache flush
instructions, e.g., CLFlush, are needed to make sure the
updates to critical data are written into the NVMM rather
than residing on the volatile CPU cache. Also, memory barrier
instructions, e.g., MFENCE, are needed to guarantee NVMM
reads and writes are in a desirable order. Since cache flush
is achieved by cache invalidation, which results in cache
miss, and MFENCE restricts out of order execution of CPU
instructions, which leads to inefficiency in CPU execution,
minimizing the usage of those instructions is the crucial in
NVMRAM-based index. For instance, Yang et al. [37] propose
a consistent and cache-optimized NV-tree. They only maintain
leaf nodes persistent and reconstruct inner nodes upon failures
to avoid the persistent overhead in inner nodes. Chen et al.
propose wB+-tree [7] with a small indirect slot array/bitmap
to avoid the movement of index entries while guaranteeing
high search performance. Arulraj et al. propose Bztree [2],
which uses a software persistent multi-word CAS operation to
achieve latch-free. Those techniques target at NVMM which is
bit-addressable but has similar performance as main memory.

VII. CONCLUSION

To address the new challenges and opportunities with the
emerging NVMe interface, we present PA-Tree a new B+
tree structure designed with a new polled-mode, asynchronous
execution paradigm. PA-Tree is capable of exploiting the
internal parallelism of high-end NVMs without the huge over-
head associated with multi-threading. Together with the new
paradigm in PA-Tree, a group of optimizations are proposed
to further improve the utilization of NVMe as well as to
reduce operation latency and CPU consumption. Extensive
experiments on both real and synthetic datasets verify the huge
performance advantage of PA-Tree over existing state-of-the-
art B+ tree data structures and system implementations.
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