
Parallel Graph Processing on Graphics Processors Made
Easy

Jianlong Zhong
Nanyang Technological University

jzhong2@ntu.edu.sg

Bingsheng He
Nanyang Technological University

bshe@ntu.edu.sg

ABSTRACT
This paper demonstrates Medusa, a programming frame-
work for parallel graph processing on graphics processors
(GPUs). Medusa enables developers to leverage the massive
parallelism and other hardware features of GPUs by writing
sequential C/C++ code for a small set of APIs. This
simplifies the implementation of parallel graph processing
on the GPU. The runtime system of Medusa automatically
executes the user-defined APIs in parallel on the GPU,
with a series of graph-centric optimizations based on the
architecture features of GPUs. We will demonstrate the
steps of developing GPU-based graph processing algorithms
with Medusa, and the superior performance of Medusa with
both real-world and synthetic datasets.

1. INTRODUCTION
Graphs are de facto data structures in various applications

such as social networks, chemistry and web link analysis.
Graph processing algorithms have been the fundamental
tools in various fields. Developers usually apply a series
of operations on the graph edges and vertices to obtain
the final result. The example operations can be breadth
first search (BFS), PageRank, shortest path and even their
customized variants (for example, developers may apply
different application logics on BFS). The efficiency of graph
processing is a must for high performance of the entire
system. On the other hand, writing every graph processing
algorithm from scratch is inefficient and involves repetitive
work, since different algorithms may share the same opera-
tion patterns, optimization techniques and common software
components. A programming framework supporting high
programmability for various graph processing applications
and providing high efficiency as well can greatly improve
productivity.

Recent years have witnessed the increasing adoption
of GPGPU (General-Purpose computation on Graphics
Processing Units) in many applications. New-generation
GPUs can have over an order of magnitude higher memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

bandwidth and higher computation power (in terms of
GFLOPS) than CPUs. Thus, the GPU has been used
as an accelerator for various graph processing applications
(e.g., [7, 5, 8]). While those GPU-based solutions have
demonstrated significant performance improvement over the
CPU-based implementations, they are limited to specific
graph operations. Developers usually need to implement
and optimize GPU programs from scratch for different graph
processing tasks.

Writing a correct and efficient GPU program is challeng-
ing in general, and even more difficult for graph applications.
First, the GPU is a many-core processor with massive
thread parallelism. To fully exploit the GPU parallelism,
developers need to write parallel programs that scale to
hundreds of cores. Moreover, compared with CPU threads,
the GPU threads are lightweight, and the tasks in the
parallel algorithms should be fine grained. Second, the GPU
has a memory hierarchy that is different from the CPU.
Since graph applications usually involve irregular accesses to
the graph data, careful designs on data layouts and memory
accesses are the key factors to the efficiency of GPU acceler-
ation. Finally, since the GPU is designed as a co-processor,
developers have to explicitly perform memory management
on the GPU, and deal with GPU specific programming
details such as kernel configuration and invocation. All these
factors make the GPU programming a difficult task.

To ease the pain of leveraging the GPU in common
graph computation tasks, we propose a software frame-
work named Medusa to simplify programming graph pro-
cessing algorithms on the GPU. Inspired by the bulk
synchronous parallel (BSP) model, we develop a novel
graph programming model called “Edge-Message-Vertex”
(EMV) for fine-grained processing on vertices and edges.
EMV is specifically tailored for parallel graph processing
on the GPU. Like existing programming frameworks such
as MapReduce [4] and its variant on the GPU [6], Medusa
provides a set of APIs for developers to implement their
applications by writing sequential (C/C++) code. The
APIs are oriented at the EMV programming model for fine-
grained parallelism. Medusa embraces an efficient message
passing based runtime. It automatically executes user-
defined APIs in parallel on all the processor cores within
the GPU and on multiple GPUs, and hides the complexity of
GPU programming from developers. Thus, developers can
write the same APIs, which automatically run on multiple
GPUs. Moreover, Medusa embraces a series of graph-centric
optimizations based on the architecture features of GPUs.

We implement Medusa with NVIDIA CUDA 5.0. In this

demo, we will demonstrate the ease-of-programming feature
and the superior performance of Medusa with a series of
common graph processing operations.

2. RELATED WORK
Parallel graph processing. Parallel algorithms have

been a classical way to improve the performance of graph
processing. On multi-core CPUs, parallel libraries like
MTGL [3] have been developed for parallel graph algo-
rithms.

Previous studies [9, 10] have observed that many common
graph algorithms can be formulated using a form of the
bulk synchronous parallel (BSP) model (we call it GBSP).
In GBSP, local computations are performed on individual
vertices. Vertices are able to exchange data with each other.
The same computation and communication procedures are
executed iteratively with barrier synchronization at the end
of each iteration. This common algorithmic pattern is also
adopted by the distributed graph processing frameworks
like Pregel [11]. For example, Pregel applies a user-defined
function Compute() on each vertex in parallel in each
iteration of the GBSP execution. Medusa differs from Pregel
in the following aspects. First, the design, implementation
and optimization of Medusa are specific to the hardware
features of GPUs. For example, our multi-GPU Medusa
adopts graph partitioning to reduce PIC-e data transfer,
while Pregel uses random hashing by default. Second,
Medusa provides more fine-grained programming interfaces
than Pregel, exposing fine-grained data parallelism on edges,
vertices and messages. Finally, Medusa does not have the
sophisticated design for distributed systems, such as failure
handling.

GPGPU. We follow NVIDIA’s terminology. The GPU
consists of an array of streaming multiprocessors (SM).
Inside each SM is a group of scalar cores. CUDA allows
developers to write device programs, which are called
kernels, to run on hundreds of GPU cores with thousands
of threads. Each 32 of the massive amount of threads
are grouped as a warp and execute synchronously on
one SM. Divergence inside a warp is supported but may
introduce severe performance penalty since different paths
are executed serially. An important memory feature exposed
by CUDA is called coalesced access. If memory requests
issued by a warp fall into the same memory segment, they
are coalesced into one, thus significantly improving memory
bandwidth utilization. Different from common CPUs, the
CUDA memory hierarchy includes a scratchpad memory
called shared memory which has much lower latency than
the device memory.

3. SYSTEM OVERVIEW
In this section, we give an overview on how users imple-

ment their graph processing algorithms based on Medusa,
and then outline the key modules of Medusa. The reader
may refer to the project website (http://code.google.
com/p/medusa-gpu/) and a paper [16] for details.

3.1 Programming with Medusa
Medusa adopts an EMV model which enhances the

current single vertex-based API design to support efficient
and fine-grained graph processing on the GPU. In particular,
Medusa hides the GPU programming details from users by

Device code APIs:
/* ELIST API */
struct SendRank{
__device__ void operator() (EdgeList el,
Vertex v){
 int edge_count = v.edge_count;
 float msg = v.rank/edge_count;
 for(int i = 0; i < edge_count; i ++)
 el[i].sendMsg(msg);
}
/* VERTEX API */
struct UpdateVertex{
__device__ void operator() (Vertex v, int
super_step){
 float msg_sum = v.combined_msg();
 vertex.rank = 0.15 + msg_sum*0.85;
}
Data structure definitions:
struct vertex{
 float pg_value;
 int vertex_id;
}
struct edge{
 int head_vertex_id, tail_vertex_id;
}
struct message{
 float pg_value;
}

Iteration definition:
void PageRank() {
 /* Initiate message buffer to 0 */
 InitMessageBuffer(0);
 /* Invoke the ELIST API */
 EMV<ELIST>::Run(SendRank);
 /* Invoke the message combiner */
 Combiner();
 /* Invoke the VERTEX API */
 EMV<VERTEX>::Run(UpdateRank);
}
Configurations and API execution:
int main(int argc, char **argv) {

 Graph my_graph;
 /* Load the input graph. */
 conf.combinerOpType = MEDUSA_SUM;
 conf.combinerDataType = MEDUSA_FLOAT;
 conf.gpuCount = 1;
 conf.maxIteration = 30;
 /*Setup device data structure.*/
 Init_Device_DS(my_graph);
 Medusa::Run(PageRank);
 /* Retrieve results to my_graph. */
 Dump_Result(my_graph);

 return 0;
}

Figure 1: User-defined functions in PageRank im-
plemented with Medusa.

offering two kinds of APIs, user-defined APIs and system-
provided APIs. Through those APIs, Medusa enables
programmability and efficiency for parallel graph processing
on the GPU.

First, Medusa provides six device code APIs for devel-
opers to write GPU graph processing algorithms. Each
API is either for processing vertices (VERTEX), edges
(ELIST , EDGE) or messages (MESSAGE , MLIST). Using
these APIs, programmers can define their computation
on vertices, edges and messages. The vertex and edge
APIs can also send messages to neighboring vertices. The
idea of providing these APIs is mainly for efficiency. It
decouples the single vertex API into separate APIs which
target individual vertices, edges or messages. Each GPU
thread executes one instance of the user-defined API. The
thread configuration such as the number of threads is
tuned to maximize GPU utilization. The fine-grained data
parallelism exposed by the EMV model can better exploit
the massive parallelism of the GPU. In addition, a
Combiner API is provided to aggregate results of EDGE
and MESSAGE using an associative operator.

Second, Medusa hides the GPU-specific programming
details with a small set of system provided APIs. Partic-
ularly, Medusa provides EMV < type >:: Run() to invoke
the device code API, which automatically sets up the
thread block configurations and calls the corresponding user-
defined function. Medusa allows developers to define an iter-
ation which executes a sequence of EMV < type >:: Run()
calls in one host function (invoked by Medusa :: Run()). The
iteration is performed iteratively until predefined conditions
are satisfied. Medusa offers a set of configuration parameters
and utility functions for iteration control.

To demonstrate the usage of Medusa, we show an example
of the PageRank implementation with Medusa, as shown in
Figure 1. Data structures (e.g., vertex) are defined. The
function PageRank() consists of three user-defined EMV
API function calls: an ELIST type API (SendRank), a
message Combiner and a VERTEX type API (UpdateR-
ank). In the main function, we configure the execution
parameters such as the Combiner data type and operation

Storage

From Users

Graph

Code (written

based on Medusa)

Code gen. tool

chain

Medusa

Runtime

Medusa internals

GPU

Profiler Visualization

Figure 2: The key modules in Medusa.

type, the number of GPUs to use and the maximum
number of iterations. Init Device DS automatically builds
the graph data structures and copies them to the GPU.
Medusa::Run(PageRank) invokes the PageRank function.

3.2 System Internals
Figure 2 shows the system architecture of Medusa. It

consists of the following key modules.
Graph storage. In the storage module, Medusa allows

developers to initialize the graph structure through adding
vertices and edges with two system provided APIs namely
AddEdge and AddVertex . The storage component of
Medusa stores the graph with optimized graph layout and
transfer the graph to GPU automatically. The optimized
graph layout exploits the coalesced memory access feature
of the GPU, whereas the classic adjacency list cannot.

Medusa code generation tool chain. This module
generates the CUDA code for graph computation based on
the user-defined EMV APIs. Particularly, users define
the data structures (e.g., vertex, edge and messages)
and implement the EMV APIs and control program
according to their graph computation logic. The example
code of PageRank has been given in Figure 1. The code
generation tool chain performs the following two steps on
the above-mentioned user code. First, a source-to-source
transformation tool generates code for memory allocations
and transforms definitions from array of structure (AOS)
to SOA. This transformation allows Medusa to leverage the
coalesced memory access feature of the GPU. Programming
with SOA diverts developers from the natural way of
thinking about data [13]. To simplify the programming
interface, Medusa allows customized data structures such
as vertex and edge to be defined using C/C++ struct.

Second, Medusa inserts segmented-scan code [12] for the
EDGE and MESSAGE APIs which are declared to be
executed by Combiner. Many collective APIs (including
ELIST and MLIST) computations are associative opera-
tions, for example, PageRank sums the values of received
messages of each vertex to update rank values. This enables
us to use the Combiner interface. Being implemented as a
segmented scan operation, the Combiner API eliminates the
load imbalance problem that each instance of the collective
API processes different numbers of edges or messages.

Finally, the system generates the CUDA code for the
entire graph computation by adding the code of Medusa
runtime. Given the code, we allow users to investigate
the efficiency of the Medusa-based program, and users can
further apply specific optimizations if they want to improve
the performance. Then, the program is compiled and linked
with the Medusa libraries.

Medusa runtime. The runtime module is responsible

for kernel execution and scheduling and memory manage-
ment on the GPU. It supports multiple concurrent programs
from users. The runtime system maintains a number of
data structures to monitor the current state of the GPU.
The data structures include 1) a command queue which
consists of different kinds of commands. A command can
be executing a kernel, memory allocation/deallocation, and
memory transfer between the main memory and the GPU
memory. 2) a queue of active memory objects (e.g., arrays
and global variables) in the GPU memory. The memory
management on the GPU and data transfer between the
GPU memory and the main memory is managed by Medusa,
which is transparent to developers.

First, the runtime prepares the kernel execution and
submits the kernel for execution. Particularly, the runtime
system first enqueues memory deallocation commands if
there is no sufficient GPU memory available, and then en-
queues memory allocation and kernel execution commands.
The memory deallocation is according to the memory queue
maintained by the runtime. The victims for memory
deallocation are chosen according to whether they will be
referenced by the kernels in the command queue and their
access patterns. Thus, the memory queue is implemented
as an LRU queue with looking ahead.

Second, the scheduler schedules the commands in the
command queue for execution. On the machine with
N GPUs, Medusa automatically runs the EMV APIs on
individual graph partitions stored in the N GPUs. There
are two considerations on the hardware features of the latest
GPU. First, latest GPUs can overlap kernel execution with
PCI-e data transfer. We take advantage of this capability
to reduce the overhead of PCI-e data transfer. Second,
latest GPUs support concurrent kernel executions. We can
schedule more kernels smartly for high utilization on the
GPU resources. The details of the scheduling can be found
in our technical report [15].

Profiler. GPU vendors have offered hardware counters
on the GPU to understand the detailed performance of a
GPGPU program. We develop a GUI to hide the details
from vendor-specific profiler tools. As a start, we integrate
NVIDIA command line profiler into our GUI and users
can investigate the performance metrics on memory and
execution. The main performance metrics include accesses
to the global memory and the shared memory and branch
divergence. These performance metrics can be shown on
per kernel or per program basis. The default setting is per
program. With the profiler, we are able to determine the hot
region of a graph computation, and compare the profiling
results for different implementations if available.

Visualization. This module visualizes a graph in a
manner such that the graph structure is well laid out.
Our previous study has implemented GViewer [14] to
assist graph visualization and mining with GPUs. We re-
implement GViewer based on Medusa, using the CUDA-
OpenGL interoperability support for collaboration between
computation and visualization.

4. DEMO PLAN
We have conducted the evaluations on a workstation

equipped with four NVIDIA Tesla C2050 GPUs, two Intel
Xeon E5645 CPUs (totally 12 CPU cores at 2.4GHz)
and 24GB RAM. We plan to conduct the demonstration
with remote access to the workstation. Our experimental

Figure 3: Profiling results (L2 read misses) of a
single iteration of PageRank.

datasets include two categories of sparse graphs: real-world
and synthetic graphs. The real-world graphs include DBLP
and other publicly available ones [2].

Ease of programming. We demonstrate the ease-of-
programming feature in two aspects.

First, we invite interested audience to program with
Medusa. In the demonstration, we will give a short tutorial
to the audience with the examples, and the audience can
follow the examples to understand Medusa and to use
Medusa to implement their graph applications. The ex-
amples currently include a set of common graph processing
operations including PageRank, breadth first search (BFS),
maximal bipartite matching (MBM), and single source
shortest path (SSSP). The fine-grained and flexible API
design of Medusa allows the users to implement graph
algorithms easily.

Second, we demonstrate the code written by users with
Medusa, in comparison with some manual implementations.
We will see that, Medusa simplifies GPU programming for
graph processing, by significantly reducing the number of
GPU-related source code lines written by developers. For
example, developers only need to write 7 and 11 lines
of source code for defining the APIs in BFS and SSSP,
respectively, whereas the manual implementation in the
previous work [5] has 56 and 59 lines of GPU-related
code. This is because Medusa hides the GPU programming
complexity by offering a small set of user-defined APIs.
Moreover, compared with the manual implementations,
Medusa requires no parallel or GPU specific programming.

Superior performance of Medusa. We shall demon-
strate the superior performance of Medusa in two aspects.

First, we shall demonstrate the performance speedup
of Medusa over its optimized CPU-based counterparts on
multi-core CPUs. We implement the graph processing
operations with MTGL [3], as the baseline for graph
processing on multi-core CPUs. In our experiments, Medusa
is significantly faster than MTGL on most comparisons and
delivers a performance speedup of 1.0–19.6 with an average
of 5.5 on the test platform.

Second, we shall demonstrate that the proposed optimiza-
tions significantly improve the performance of GPU-based
graph processing. Particularly, we show the profiling results
by disabling/enabling certain optimizations (e.g., different
graph storage layouts and message passing mechanisms).
Figure 3 shows the screenshot of comparing the number of
L2 read misses for PageRank on RMAT graph (1M vertices
and 16M edges) generated from an existing tool [1]. We
compare two storage layouts – the adjacency array (AA) and
the optimized layout in Medusa (denoted as CAA). We show
the three major kernels in a single iteration of PageRank
execution. The optimized layout has a much smaller number
of read misses on the L2 data cache in the SendMsg kernel,
which executes an ELIST API.

Graph Visualization and Mining. We will use DBLP

as dataset to demonstrate the benefits of GPU-accelerated
graph visualization and mining. Medusa simplifies the
implementation of the graph processing algorithm in graph
visualization and mining, and also enables better interactive
experience to users than the CPU-based counterpart.

5. CONCLUSIONS
Medusa shows that parallel graph computation can ef-

ficiently and elegantly be supported on the GPU with a
small set of user-defined APIs. The fine-grained API design
and graph-centric optimizations significantly improve the
performance of graph computation on the GPU. In this
paper, we present a demonstration of Medusa to show the
steps of building a graph application with Medusa and to
demonstrate the performance impact of the optimizations in
Medusa and its comparison with CPU-based counterparts.
An interactive visualization tool is reinvented based on
Medusa to demonstrate the efficiency on assisting graph
visualization and mining. The source code of Medusa is
available at http://code.google.com/p/medusa-gpu/.

6. ACKNOWLEDGEMENT
The authors would like to thank anonymous reviewers for

their valuable comments. This work is supported by a MoE
AcRF Tier 2 grant (MOE2012-T2-2-067) in Singapore.

7. REFERENCES
[1] GTGraph generator. http://www.cse.psu.edu/~madduri/

software/GTgraph/index.html, accessed on Feb 17th, 2013.
[2] Stanford large network dataset collections.

http://snap.stanford.edu/data/index.html, accessed on
Feb 17th, 2013.

[3] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny.
Software and algorithms for graph queries on multithreaded
architectures. In IPDPS, March 2007.

[4] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[5] P. Harish and P. J. Narayanan. Accelerating large graph
algorithms on the GPU using CUDA. In HiPC, 2007.

[6] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang.
Mars: a MapReduce framework on graphics processors. In
PACT, 2008.

[7] G. He, H. Feng, C. Li, and H. Chen. Parallel SimRank
computation on large graphs with iterative aggregation. In
SIGKDD, 2010.

[8] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun.
Accelerating CUDA graph algorithms at maximum warp.
In PPoPP, 2011.

[9] J. Lin and M. Schatz. Design patterns for efficient graph
algorithms in MapReduce. In MLG, 2010.

[10] Y. Low and et al. GraphLab: A new parallel framework for
machine learning. In UAI, July 2010.

[11] G. Malewicz and et al. Pregel: A system for large-scale
graph processing. In SIGMOD, 2010.

[12] S. Sengupta, M. Harris, and M. Garland. Efficient parallel
scan algorithms for GPUs. NVIDIA, Tech. Rep.
NVR-2008-003.

[13] M. C. Shebanow. Pervasive massively multithreaded GPU
processors. In CF, 2009.

[14] J. Zhong and B. He. GViewer: GPU-accelerated graph
visualization and mining. In SocInfo, pages 304–307, 2011.

[15] J. Zhong and B. He. Kernelet: High-throughput GPU
kernel executions with dynamic slicing and scheduling,
2013.

[16] J. Zhong and B. He. Medusa: Simplified graph processing
on GPUs. IEEE TPDS, 99(PrePrints):1, 2013.

