
OmniDB: Towards Portable and Efficient Query Processing
on Parallel CPU/GPU Architectures

Shuhao Zhang, Jiong He, Bingsheng He
Nanyang Technological University

Mian Lu
A*STAR IHPC, Singapore

ABSTRACT
Driven by the rapid hardware development of parallel CPU/GPU
architectures, we have witnessed emerging relational query
processing techniques and implementations on those parallel
architectures. However, most of those implementations are
not portable across different architectures, because they
are usually developed from scratch and target at a specific
architecture. This paper proposes a kernel-adapter based
design (OmniDB), a portable yet efficient query processor
on parallel CPU/GPU architectures. OmniDB attempts
to develop an extensible query processing kernel (qKernel)
based on an abstract model for parallel architectures, and
to leverage an architecture-specific layer (adapter) to make
qKernel be aware of the target architecture. The goal of Om-
niDB is to maximize the common functionality in qKernel so
that the development and maintenance efforts for adapters
are minimized across different architectures. In this demo,
we demonstrate our initial efforts in implementing OmniDB,
and present the preliminary results on the portability and
efficiency.

1. INTRODUCTION
We have witnessed the trend of heterogeneity in the

development of parallel processor architectures. Hard-
ware vendors have continued to offer different new multi-
core/many-core processors. AMD and Intel offer multi-core
CPUs, usually with fewer than eight cores. Sun Niagara
and Cell processors have dozens of cores per chip. AMD
and NVIDIA offer GPUs (Graphics Processing Units) that
consist of dozens to hundreds of cores in a single chip.
Traditionally, GPUs are usually connected with CPUs with
PCI-e bus. Recently, coupled architectures (such as AMD
APU (Accelerated Processing Units) and Sandy/Ivy bridge)
integrate a CPU and a GPU into the same chip. How data
management systems can fully leverage those architectures
is still largely an open problem, and has attracted a lot
of fruitful research efforts [1, 8]. Various architecture-
aware query processors such as C-Store [16], GPUQP [9]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 21508097/13/10... $ 10.00.

and StagedDB [7] as well as query processing techniques
(e.g., [2, 4, 12, 3, 11, 10]) have been developed. However,
most of those implementations are developed from scratch,
and they are usually tuned, optimized, and can only run
on some specific architectures. For example, GPUQP can
run on NVIDIA GPUs but cannot run on AMD GPUs.
This creates code bases with similarities and differences.
As time goes by, more parallel CPU/GPU architectures
appear and more code bases would be created. Ideally, a
portable and efficient query processor should be developed
on different architectures. That motivates us to investigate
the portability and efficiency of query processing on parallel
CPU/GPU architectures.

Let us first discuss the pitfalls of having many code bases
of query processors on different parallel CPU/GPU architec-
tures, mainly from software engineering’s perspective. One
observation on architecture-aware query processors (e.g.,
[16, 9, 7]) is that some components can be shared among
them, e.g., query parser. The other observation is that many
of previous studies on architecture-aware techniques (e.g., [2,
4, 12, 3, 11]) have implicitly/explicitly made the assumption
that they can be integrated into an existing query processor.
Those observations lead to the necessity of developing and
maintaining different code bases of query processors on
different architectures. Even worse, those code bases may
have common or similar components, and intersect with each
other. As the hardware evolves, the code bases and their
relationship need to evolve as well. According to the Laws
of software evolution by Lehman [14, 15], the complexity of
such software evolution is significantly increased. It requires
a significant amount of work to maintain the software.

Portability is a must for reducing the development and
maintenance cost. On the other hand, the efficiency of
a query processor should be optimized according to the
target architecture. To capture the best of both words,
we propose a kernel-adapter based design (OmniDB), a
portable yet efficient design for query processing on parallel
CPU/GPU architectures. OmniDB attempts to develop an
extensible query processing kernel (namely qKernel) based
on an abstract model for parallel architectures, and to
leverage a software layer (adapter) to make qKernel be aware
of the target architecture.

It is an open problem on defining the boundary between
qKernel and adapter so that software development and
maintenance cost are minimized. Ideally, OmniDB should
maximize the common functionality in qKernel to reduce
the efforts on adapters. qKernel should be extensible to al-
low developers to plug architecture-specific parameters and

GPU core

cache

CPU core

Main

Memory

cache

GPU

Memory

(a) CPU-only (b) GPU-only

Main

Memory

CPU

GPU

Memory

GPU

PCI-e

(c) CPU-GPU

Main

Memory

CPU GPU

(d) APU

Figure 1: Example parallel architectures with one
CPU and one GPU.

configurations into query processing operations and com-
ponents. On the other hand, adapters include architecture-
aware configurations, tunings and optimizations for qKernel.
It is not the intention of this demo to entirely solve the

above-mentioned problem. Instead, we present our initial
efforts in implementing OmniDB. This demo demonstrates
a case for feasibility of the OmniDB design, and sheds some
lights on defining the boundary. Our implementation is
based on OpenCL (Open Computing Language) so that
OmniDB can run on different architectures like CPUs and
GPUs. We further develop adapters for four kinds of ar-
chitectures: CPU-only, GPU-only, (classic) CPU-GPU and
APU (We follow AMD’s terminology). This demo presents
the preliminary results on the portability and efficiency of
OmniDB. First, OmniDB has the “one code base fits all”
feature, whose code base can be compiled and run on all the
four architectures. Second, we evaluate the effectiveness of
adapters on different architectures. Our adapters effectively
capture the differences among architectures.

2. BACKGROUND ON PARALLEL ARCHI
TECTURES

We currently focus on parallel architectures including
multi-core CPUs and GPUs. Figure 1 illustrates the abstrac-
t view of four example parallel CPU/GPU architectures.
This figure illustrates a machine with one CPU and/or one
GPU for simplicity. The system design in this paper can be
applicable to multiple CPUs and GPUs in the same machine.
According to heterogeneity, we can divide them into two
categories. CPU-only and GPU-only are homogeneous,
whereas CPU-GPU and APU are heterogeneous. We briefly
compare the similarities and differences among architectures
within each category. More technical details have been
elaborated in [6, 5].
As illustrated in Figures 1(a) and 1(b), both the CPU and

the GPU are multi-/many-core architectures with a shared
data cache. A GPU can have much more cores as well as
much higher memory bandwidth than a multi-core CPU.
On the other hand, the CPU has much larger L2/L3 data
caches. Ideally, the GPU is more suitable for fine-grained
data parallelism, and the CPU is more suitable for coarse-
grained parallelism.
As illustrated in Figures 1(c) and 1(d), the CPU-

GPU and the APU architectures utilize both the CPU and
the GPU in the system (i.e., co-processing). The major
difference is on how the CPU and the GPU communicate
with each other. On the CPU-GPU architecture, the CPU
and the GPU are connected with a low-bandwidth PCI-e
bus. Thus, we need to carefully minimize the data transfer
on the PCI-e bus. On the APU, the CPU and the GPU share
the main memory directly and the PCI-e bus is eliminated.
We have more flexibility in fine-grained co-processing.

3. DESIGN AND IMPLEMENTATION
In this section, we give an overview of the design of

OmniDB, followed by our initial implementation. The
design goal of OmniDB includes two aspects: portability and
efficiency. We aim at designing a portable query processor
that requires a minimum amount of efforts in achieving
architecture-awareness for efficiency.

3.1 Architectural Design of OmniDB
Abstract architecture model. We model a parallel

CPU/GPU architecture withN threaded-parallel processing
elements (PPEs) P1, ..., and PN . Each PPE has its own
memory space, which can be overlapped or non-overlapped
with other PPEs. The memory accesses are in blocks. For
example, we can model the CPU and the GPU as individual
PPEs. On the APU, the two PPEs can share the main
memory, whereas the CPU and the GPU have their own
memory in the classic CPU-GPU architecture.

Our abstract architecture model is general for parallel
query processing. It is able to capture a machine with
multiple CPUs and GPUs, in which a PPE can be a CPU
or a GPU. Also, our model is similar to PRAM (Parallel
Random-Access Machine). Differently, the PPEs of our
model may or may not share the main memory, whereas
those of PRAM do.

A kernel-adapter based approach. To balance the
portability and efficiency of architecture-aware query pro-
cessing, we propose a kernel-adapter based approach to
develop OmniDB. OmniDB consists of a query processing
kernel (qKernel) and architecture-aware adapters.

Figure 2 illustrates the overall system design of OmniDB.
Based on the abstract architecture model, qKernel consists
of an execution engine, a scheduler, a cost model and other
components in a standard query processor (such as query
optimizer). There are some parameters and configurations
in those components that will be customized by the specific
adapter. The execution engine includes the data-parallel
implementations for query processing operators. A workload
scheduler is developed to assign work units to individual
PPEs. The work unit is defined to a certain amount of work
assigned to an PPE in one scheduling decision. In practice,
it can be evaluating a query, an operator or processing a
number of tuples. An abstract cost model is developed for
estimating the execution cost. We estimate the total cost
of executing a work unit on a PPE to be the total time of
memory accesses and instruction executions.

An adapter includes the software components, parameters
and configurations that adapt qKernel to the target archi-
tecture. It also instantiates the abstract architecture model
to the target architecture specification (e.g., the cache size
and the number of PPEs).

As discussed in Introduction, it is an open problem to
define the boundary between qKernel and adapters. It
is our long-term goal to solve this problem. In the next
sub-section, we present our initial efforts in implementing
OmniDB.

3.2 Preliminary Implementation
As a start, we use OpenCL to implement OmniDB.

OpenCL is a framework for writing programs that execute
across heterogeneous platforms such as CPUs and GPUs.

Execution engine. Like GPUQP [9], we adopt a layered
design for the execution engine of OmniDB. This layered

qKernel

CPU

Adapter

CPU

GPU

Adapter

GPU

CPU-GPU

Adapter

CPU-GPU

APU

Adapter

APU

Execution

engine
Cost model

Query

Other

components
Scheduler

Figure 2: The kernel-adapter design of OmniDB.

Storage Relations Indexes

Access methods (scan, B+-tree and

hash index)

Data-Parallel Primitives (map,

filter, split etc.)

Operators (Selection, projection, join,

sort, aggregation etc.)

Figure 3: The layered design of execution engine.

design has high flexibility in software development and
maintenance. Particularly, the execution engine consists
of four layers from bottom up, including storage, data-
parallel primitives, access methods and relational operators.
Figure 3 shows the layered design. Primitives are common
operations on the data or indexes in the system. The
engine also supports common access methods, including the
table scan, the B+-tree and the hash index, as well as a
set of common query operators. Our access methods and
relational operators are developed based on primitives. The
data parallelism of those operations fits well on the abstract
architecture model.
As a start, we develop the execution engine based on

the code of GPUQP [9]. Most of the algorithmic design
of primitives, access methods and operators can be found
in the previous paper [9]. Beyond that, we have made the
following major efforts.
First, we have ported GPUQP from CUDA to OpenCL,

which allows the code to run on both multi-core CPUs
and GPUs. Additionally, we modified the implementations
of primitives, access methods and operators so that they
can be customized to different work unit sizes. Note,
GPUQP adopts fixed and fine-grained work unit size to take
advantage of massive parallelism of the GPU.
Second, we have integrated more recent architecture-

aware techniques into the execution engine, for example,
tree index [13], sort and hashing [12]. Thanks to the kernel-
adapter based design, we implement those algorithms into
one code base (qKernel), rather than multiple code bases.
Third, we have implemented a new scheduling algorithm.

GPUQP currently uses FIFO, which is suboptimal for CPU-
GPU and APU architectures. The new scheduling algorithm
considers multiple PPEs and the capabilities of PPEs.
Scheduler. The scheduling algorithm design has two

major considerations. First, it balances the workload among
different PPEs (i.e., avoiding the contention). Second, query
processing performance may vary on different PPEs, and

the scheduling algorithm prefers to choose the PPE that
achieves the best performance.

Since calculating the optimal scheduling plan for a work-
load is an NP problem, we adopt an on-line greedy algo-
rithm. Particularly, our scheduling algorithm chooses the
suitable PPE as follows. First, we estimate the throughput
of processing a work unit on each PPE. Note, the work unit
size may vary on different PPEs, e.g., the CPU and the
GPU may have different work unit sizes. In out settings,
the work unit size varies among query-level, operator-level
and OpenCL-kernel-level. Second, we obtain the current
workload of each PPE (i.e., how much pending workload to
finish). Third, we pick a PPE with the highest throughput
for those PPEs whose current workload level is within a
predefined threshold T0 to the average workload among
all PPEs. If that PPE cannot be found, we simply pick
the one with the lowest workload. The on-line scheduling
algorithm considers both hardware capability and current
workload of each PPE. T0 is a tuning parameter to adjust
the two considerations mentioned above. In experiments,
we choose T0 =20% by default. On CPU-only or GPU-only
architecture, the scheduling algorithm degrades to FIFO.

Cost model. In order to allow adapters to plug in
architecture-aware cost estimations, the cost model offers
two interfaces for adapters to instantiate for each primitive
and operator. One interface is to count the number of mem-
ory blocks referenced by the PPE, and the other interface
is to calculate the instruction execution time for the PPE.
The later interface is simply an empty function, because the
instruction cost is architecture dependent in OpenCL. The
memory cost estimation is simply counting the number of
memory blocks accessed in the query processing operation.
By default, our cost model does not assume the existence of
cache. We adopt very standard I/O model to estimate the
cost [17].

Adapters. Our current implementation of adapters is
simple, with the following major purposes. First, the
adapter performs calibrations on the target architecture to
obtain some important parameters. One important issue
is whether the target architecture has a cache. If so, we
need to measure the cache parameters such as cache line
sizes and cache capacity. Second, the adapter performs
architecture-aware tuning. On the CPU-only and the GPU-
only architecture, work unit sizes are calibrated with the
approach proposed in the previous studies [9, 3]. For CPU-
GPU and APU architectures, we not only calibrate the
suitable work unite sizes for both PPEs, but also calibrate
the interconnect bandwidths among PPEs. Third, developer
needs to override the interfaces defined in the cost model and
the execution engine. Based on the cost functions, OmniDB
can choose the most efficient primitives, access methods and
operators for the target architecture.

Put it all together. We briefly present how OmniDB
adapts to the four different architectures in the experiments.

Homogeneous architectures. We view the CPU-only or
the GPU-only architecture as one PPE, because the data-
parallel design of the execution engine can take advantage
of the parallelism. Our scheduling algorithm degrades to
FIFO. For the same query processing operations, the CPU
mostly has a larger work unit size in numbers of tuples to
process than the GPU, because of the more powerful CPU
core design and larger cache.

Heterogeneous architectures. We view the CPU-GPU and

the APU architecture as two PPEs with different intercon-
nect bandwidths, which equal the PCI-e bandwidth and the
memory bandwidth, respectively. The throughput calcula-
tion in the scheduler takes that bandwidth information into
account. Also, adapters may choose work unit definitions
with different granularities: query-level, operator-level and
OpenCL-kernel-level, where the scheduling decision is made
per query, per operator and per OpenCL kernel, respective-
ly. Query-level scheduling has the minimum data transfer
between the CPU and the GPU, whereas OpenCL-kernel-
level scheduling is the most fine-grained to exploit different
capabilities of the CPU and the GPU.
There are other system components in our demo to

help users understand the detailed performance behavior of
OmniDB. We leverage vendor specific profiler from hardware
vendors (e.g., Intel VTune, AMD CodeAnalyst Performance
Analyzer and NVIDIA command line profiler).

4. DEMO PLAN
We briefly present the demo setup and objectives.

4.1 Demo Setup
We evaluate OmniDB on four target architectures, name-

ly, CPU-only, GPU-only, (classic) CPU-GPU and AMD
APU. We will use remote access during the demo. Due to
space limitations, we present the detailed demo setup in the
project site,
http://code.google.com/p/omnidb-paralleldbonapu/.

4.2 Demonstration Objectives
Portability. Portability is an important feature of

OmniDB. We demonstrate system internals of OmniDB in
two ways. First, we will make a poster with more detailed
descriptions on the system internals, and also add one
example to show the workflow of evaluating a query. Second,
we will make OmniDB open-sourced, and will briefly go
through our code base to the audience.
Efficiency. We shall demonstrate the efficiency of Om-

niDB in three aspects.
First, we shall evaluate the effectiveness of adapters on

different architectures. As an example, we show the perfor-
mance impact of different work unit sizes on homogeneous
architectures: CPU-only and GPU-only. Overall, a suitable
work unit size improves the query processing performance.
Take hash joins as an example. The hash join with the
suitable work unit size is up to 28%, 24% and 27% faster
than that of other work unit sizes on the Intel CPU, AMD
GPU and NVIDIA GPU, respectively.
Second, we assess the impact of the scheduling algorithm

with different work unit definitions on heterogeneous ar-
chitectures. The baseline scheduling algorithm is FIFO.
Our scheduling algorithm achieves a higher throughput than
the baseline algorithm, with the improvement of 8–33%
and 4–19% on the CPU-GPU and the APU architectures,
respectively. Among different work unit definitions on
the specific architecture, OpenCL-kernel-level is the most
efficient for APU, and query/operator level is the most
efficient on the CPU-GPU architecture. This is mainly due
to the different interconnects between the CPU and the GPU
in those two architectures. A GUI is used to dynamically
visualize the workloads in different PPEs.
Third, we demonstrate the profiler result. For example,

from NVIDIA GPU profiler, we show partitioning reduces

the L2 cache misses of hash joins by 20% on the NVIDIA
GPU, in comparison with simple hash joins.

5. SUMMARY
OmniDB demonstrates that portability and efficiency of

query processing on different parallel CPU/GPU architec-
tures can be elegantly supported with a kernel-adapter
approach. As the heterogeneity of parallel architectures,
we believe that a portable and efficient query processor
becomes more and more desirable. This demonstration
presents our initial efforts in designing and implementing
OmniDB. More work should be done along the direction.
First, we plan to evaluate our system on other architectures
such as Intel Xeon Phi. Second, we plan to evaluate
OmniDB in comparison with existing architecture-aware
query processors like GPUQP and StagedDB.

6. ACKNOWLEDGEMENT
The authors would like to thank anonymous reviewers

for their valuable comments. This work is supported by a
MoE AcRF Tier 2 grant (MOE2012-T2-2-067) in Singapore
and an Inter-disciplinary Strategic Competitive Fund of
Nanyang Technological University for “C3: Cloud-Assisted
Green Computing at NTU Campus”.

7. REFERENCES
[1] A. Ailamaki, N. K. Govindaraju, S. Harizopoulos, and

D. Manocha. Query co-processing on commodity processors. In
VLDB (tutorial), 2006.

[2] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of
main memory hash join algorithms for multi-core cpus. In
SIGMOD, pages 37–48, 2011.

[3] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck: Memory access.
In VLDB, pages 54–65, 1999.

[4] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving hash join performance through prefetching. ACM
Trans. Database Syst., 2007.

[5] M. Daga, A. M. Aji, and W.-c. Feng. On the efficacy of a fused
cpu+gpu processor (or apu) for parallel computing. In
SAAHPC, pages 141–149, 2011.

[6] K. Fatahalian and M. Houston. A closer look at gpus.
Commun. ACM, pages 50–57, 2008.

[7] S. Harizopoulos and A. Ailamaki. A case for staged database
systems. In CIDR, 2003.

[8] B. He, H. P. Huynh, and R. Mong. Gpgpu for real-time data
analytics. In IEEE ICPADS, pages 945–946, 2012.

[9] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo,
and P. V. Sander. Relational query coprocessing on graphics
processors. ACM Trans. Database Syst., pages 21:1–21:39,
2009.

[10] J. He, M. Lu, and B. He. Revisiting co-processing for hash joins
on the coupled cpu-gpu architecture. In PVLDB, pages 1–12,
2013.

[11] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. Gpu join
processing revisited. In DaMoN, pages 55–62, 2012.

[12] C. Kim and et al. Sort vs. hash revisited: fast join
implementation on modern multi-core cpus. Proc. VLDB
Endow., pages 1378–1389, 2009.

[13] C. Kim and et al. Fast: fast architecture sensitive tree search
on modern cpus and gpus. In SIGMOD, pages 339–350, 2010.

[14] M. M. Lehman. Programs, life cycles, and laws of software
evolution. In Proceedings of the IEEE, pages 1060–1076, 1980.

[15] M. M. Lehman. Laws of software evolution revisited. In
Proceedings of the 5th European Workshop on Software
Process Technology, pages 108–124, 1996.

[16] M. Stonebraker and et al. C-store: a column-oriented dbms. In
VLDB, pages 553–564, 2005.

[17] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, 3rd edition, 2007.

