ThunderSVM: A Fast SVM Library on GPUs and CPUs

Zeyi Wen†
WENZY@COMP.NUS.EDU.SG

Jiashuai Shi‡†
SHIJIAshuai@gmail.com

Bingsheng He†
HEBS@COMP.NUS.EDU.SG

Qinbin Li†
t0915610@u.nus.edu

Jian Chen‡
ellachen@scut.edu.cn

†School of Computing, National University of Singapore
‡School of Software Engineering, South China University of Technology

Editor: Kevin Murphy and Bernhard Schölkopf

Abstract

Support Vector Machines (SVMs) are classic supervised learning models for classification, regression and distribution estimation. A survey conducted by Kaggle in 2017 shows that 26% of the data mining and machine learning practitioners are users of SVMs. However, SVM training and prediction are very expensive computationally for large and complex problems. This paper presents an efficient and open source SVM software toolkit called ThunderSVM which exploits the high-performance of Graphics Processing Units (GPUs) and multi-core CPUs. ThunderSVM supports all the functionalities—including classification (SVC), regression (SVR) and one-class SVMs—of LibSVM and uses identical command line options, such that existing LibSVM users can easily apply our toolkit. ThunderSVM can be used through multiple language interfaces including C/C++, Python, R and MATLAB. Our experimental results show that ThunderSVM is generally an order of magnitude faster than LibSVM while producing identical SVMs. In addition to the high efficiency, we design our convex optimization solver in a general way such that SVC, SVR, and one-class SVMs share the same solver for the ease of maintenance. Documentation, examples, and more about ThunderSVM are available at https://github.com/zeyiwen/thundersvm

Keywords: SVMs, GPUs, multi-core CPUs, efficiency, multiple interfaces

1. Introduction

Support Vector Machines (SVMs) have been widely used in many applications including document classification (DOrazio et al., 2014), image classification (Pasolli et al., 2014), blood pressure estimation (Kachuee et al., 2015), disease detection (Bodnar and Salathé, 2013), and outlier detection (Roth, 2006). A survey conducted by Kaggle in 2017 shows that 26% of the data science practitioners use SVMs to solve their problems (Thomas, 2017). The open-source project LibSVM which supports classification (SVC), regression (SVR) and one-class SVMs has been widely used in many applications. LibSVM was developed in 2000 (Chang and Lin, 2011), and is maintained since then. Despite the advantages of SVMs, SVM training and prediction are very expensive for large and complex problems.

The recent advancement of machine learning technologies (such as deep learning) is not only because of new algorithms to improve accuracy, but also because of new algorithms to
exploit the high-performance hardware (such as Graphics Processing Units) and multi-core CPUs to improve efficiency. Graphics Processing Units (GPUs) have been used to accelerate the solutions of many real-world applications (Dittamo and Cisternino, 2008). GPUs have abundant computing cores and high memory bandwidth which make GPUs an excellent platform for parallel computing.

In this paper, we introduce a toolkit named ThunderSVM which exploits GPUs and multi-core CPUs. The mission of our toolkit is to help users easily and efficiently apply SVMs to solve problems. ThunderSVM aims to reduce the time of practitioners spent on training SVMs and prediction using SVMs. ThunderSVM supports all the functionalities of LibSVM including SVC, SVR and one-class SVMs. To lift the barrier of using ThunderSVM, we use the same command line input options as LibSVM, such that existing LibSVM users are able to easily switch to ThunderSVM. Moreover, ThunderSVM supports multiple interfaces such as C/C++, Python, R and MATLAB. ThunderSVM can run on machines running Linux, Windows or Macintosh operating systems with or without GPUs. We provide a detailed user guide which includes instructions for execution environment setup and examples of using ThunderSVM. To allow contributors to easily engage in ThunderSVM, we provide a detailed API description. Our experimental results show that ThunderSVM is generally a factor of 10x faster than LibSVM in all the functionalities. The full version of ThunderSVM, which is released under Apache License 2.0, can be found on GitHub at https://github.com/zeyiwen/thundersvm.

2. Overview and Design of ThunderSVM

Like LibSVM, ThunderSVM supports one-class SVMs, C-SVMs and ν-SVMs where C represents the regularization constant and ν represents the parameter of controlling the training error. Both C-SVMs and ν-SVMs are used for classification and regression.

For ease of maintenance, we develop ThunderSVM in a modular manner. Figure 1 shows the overview of ThunderSVM which has many functionalities: one-class SVMs for distribution estimation, C-SVC and ν-SVC for SVM classification, and ε-SVR and ν-SVR for SVM regression. The training algorithms for those SVMs are built on top of a generic parallel SMO solver which is for solving quadratic optimization problems. Notably, the SVM training for regression (such as ε-SVR and ν-SVR) and the multi-class SVM training can be converted into the training for SVM classification. The prediction module is relatively simple, because the prediction is the same for C-SVMs and ν-SVMs. The prediction algorithms
are built on top of the function for computing decision values based on support vectors. The formula of computing decision values is identical for different SVM algorithms, as we will see in Section 2.3. Moreover, ThunderSVM also contains the cross-validation functionality which consists of training and prediction.

2.1 GPU Optimization Methodologies

Although GPUs have been used for machine learning for a while, the design and implementation of an efficient GPU program is still a non-trivial task. We have carefully developed SVM training and prediction algorithms with algorithmic parallelization and memory efficiency optimizations. In SVM training and prediction, kernel value computation consumes significant among of time (especially for data sets of high dimensionality), because it requires accesses to the GPU global memory of high latency and performing massive computation. We have developed a series of novel optimizations. First, ThunderSVM computes a number of rows of the kernel matrix in a batch, reuse the rows that are stored in the GPU memory buffer, and solve multiple subproblems in that batch. Thus, ThunderSVM avoids performing a large number of small read/write operations to the high latency memory and reduce repeated kernel value computation. Second, we apply GPU shared memory to accelerate parallel reduction, and use the massive parallelism mechanism to update elements of arrays.

We take the SMO algorithm for SVM training as an example to demonstrate some above-mentioned methodologies. The SMO algorithm for solving a subproblem in SVM training consists of three key steps. Step (i): Find two extreme training instances which can potentially improve the currently trained SVM the most. Step (ii): Improve the two Lagrange multipliers of the two training instances. Step (iii): Update the optimality indicators of all the training instances. We parallelize Step (i) and (iii). Step (ii) is computationally inexpensive, and we simply execute it sequentially. In Step (i), our key idea is to apply the parallel reduction (Merrill, 2015) twice for finding the two extreme training instances. In the parallel reduction, we first load the whole array from the GPU global memory to shared memory in a coalescent way, and then reduce the array size by two in each time until only one element left. In Step (iii), we dedicate one thread to update one optimality indicator to use the massive parallelism mechanism of the GPU. To reduce access to the high latency memory and repeated kernel value computation, we use a larger working set and solve multiple subproblems in a batch. Hence, kernel value computation can be performed in a batch through matrix multiplication. We use matrix operations from the mature high-performance library cuSparse (Nvidia, 2008) provided by NVIDIA. To reduce memory accesses, we store the kernel values in a GPU buffer for reusage during the optimization.

2.2 Design of Training Algorithms

Training SVMs for regression (SVR) or for multi-class classification can be reduced to training SVMs for binary classification (SVC), as discussed in the previous study (Shevade et al., 2000). Two SVC training algorithms (C-SVC and ν-SVC) and training algorithm for one-class SVMs are essentially solving optimization problems using SMO. More details about the relationship of SVR and SVC, and SMO can be found in our supplementary material (Wen et al., 2017b). The key task is to parallelize SMO, and the insight has been discussed in Section 2.1. The parallelism principles are also applicable to CPUs.
Table 1: Comparison between ThunderSVM with LibSVM

<table>
<thead>
<tr>
<th>data set</th>
<th>cardinality</th>
<th>dimension</th>
<th>ThunderSVM (sec)</th>
<th>LibSVM (sec)</th>
<th>speedup (gpu)</th>
<th>speedup (cpu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnist8m (svc)</td>
<td>8.1x10⁶</td>
<td>784</td>
<td>7.1x10³</td>
<td>3.2x10⁴</td>
<td>114</td>
<td>39.9</td>
</tr>
<tr>
<td>e2006-tfidf (svr)</td>
<td>16087</td>
<td>150360</td>
<td>13.25</td>
<td>343.5</td>
<td>691</td>
<td>25.3</td>
</tr>
<tr>
<td>webdata (osvm)</td>
<td>49749</td>
<td>300</td>
<td>4.66</td>
<td>16.5</td>
<td>320</td>
<td>90.5</td>
</tr>
</tbody>
</table>

2.3 Design of the Prediction Algorithm

Although ThunderSVM supports several algorithms (such as one-class SVMs, various classification algorithms, and regression algorithms), their underlining prediction algorithm is identical: a function based on some support vectors and their Lagrange multipliers. The function is \( v = \sum_{i=1}^{n} y_i \alpha_i K(x_i, x_j) + b \) where \( x_j \) is the instance of interest for prediction; \( y_i \) and \( \alpha_i \) are the target value and Lagrange multiplier of support vector \( x_i \), respectively; \( b \) is the bias of the SVM hyperplane; \( K(\cdot, \cdot) \) is the kernel function. In ThunderSVM, we perform the prediction by evaluating equation above in parallel. First, we conduct a vector to matrix multiplication in parallel to obtain all the needed kernel values, where the vector is \( x_j \) and the matrix consists of all the support vectors. Then, the sum of the equation can be performed using a parallel reduction.

3. Experimental Studies

We compare the efficiency on training SVMs for classification, regression and one-class SVMs (denoted by “OSVM”). Three representative data sets are listed in Table 1. We conducted our experiments on a workstation running Linux with two Xeon E5-2640 v4 10 core CPUs, 256GB main memory and a Tesla P100 GPU of 12GB memory. ThunderSVM are implemented in CUDA-C and C++ with OpenMP. We used Gaussian kernel. Three pairs of hyper-parameters \((C, \gamma)\) for the three data sets are \((10, 0.125)\), \((256, 0.125)\), and \((64, 7.8125)\) and are the same as the existing studies (Wen et al., 2014, 2017c). More experimental evaluation can be found in supplementary material (Wen et al., 2017b). ThunderSVM when using GPUs is over 100 times faster than LibSVM. When running on CPUs, it is over 10 times faster than LibSVM. This demonstrates the effectiveness of our algorithmic design. For prediction, ThunderSVM is also 10-100 times faster than LibSVM (Wen et al., 2017b).

4. Conclusion

In this paper, we present our software tool called “ThunderSVM” which supports all the functionalities of LibSVM including classification, regression and one-class SVMs. For ease of usage, ThunderSVM uses identical input command line options as LibSVM, and supports Python, R and Matlab. Our experimental results show that ThunderSVM is generally a factor of 100x faster than LibSVM in all the functionalities when GPUs are used. When running purely on CPUs, ThunderSVM is often 10 times faster than LibSVM. We hope this significant efficiency improvement would help practitioners in the community quickly solve their problems and enable SVMs to solve more complex problems.
Appendix A. Formal Definitions of Support Vector Machine Algorithms

In this section, we formally define various SVM based algorithms including classification, regression and one-class SVMs. Following the name convention in the research community (and also in LibSVM), we use $C$-SVC for SVM classification with $C$ as the regularization constant; we use $\nu$-SVC for SVM classification with $\nu$ to control training error. Similarly, we use $C$-SVR and $\nu$-SVR for the two types of SVM regression.

A.1 Support Vector Machine Classification

In this subsection, we present a few types of SVM classification algorithms. For consistency, we adopt the same notation as LibSVM (Chang and Lin, 2011) when appropriate. We also use different notations from LibSVM in some places where we think different notations tend to be more natural.

A.1.1 $C$-Support Vector Machine Classification ($C$-SVC)

Formally, an instance $\mathbf{x}_i$ is attached with an integer $y_i \in \{+1, -1\}$ as its label. A positive (negative) instance is an instance with the label of $+1$ ($-1$). Given a set $\mathcal{X}$ of $n$ training instances, the goal of the SVM training is to find a hyperplane that separates the positive and the negative training instances in the feature space induced by the kernel function with the maximum margin and meanwhile, with the minimum misclassification error on the training instances. The SVM training is equivalent to solving the following optimization problem:

$$
\begin{align*}
\text{argmin}_{\mathbf{w}, \xi, b} & \quad \frac{1}{2}||\mathbf{w}||^2 + C \sum_{i=1}^{n} \xi_i \\
\text{subject to} & \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i \\
& \quad \xi_i \geq 0, \quad \forall i \in \{1, ..., n\}
\end{align*}
$$

(1)

where $\mathbf{w}$ is the normal vector of the hyperplane, $C$ is the regularization constant, $\xi$ is the slack variables to tolerant some training instances falling in the wrong side of the hyperplane, and $b$ is the bias of the hyperplane. The form of the optimization Problem (1) is call the primal form of the SVM training.

To handle nonlinearly separable data, the above optimization problem is solved in dual form shown below where mapping functions can be easily applied.

$$
\begin{align*}
\max_{\alpha} & \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \alpha^T Q \alpha \\
\text{subject to} & \quad 0 \leq \alpha_i \leq C, \forall i \in \{1, ..., n\}, \\
& \quad \sum_{i=1}^{n} y_i \alpha_i = 0
\end{align*}
$$

(2)

where $\alpha_i$ is the Lagrange multiplier and denotes the weight of $\mathbf{x}_i$; $Q$ denotes an $n \times n$ matrix $[Q_{i,j}]$ and $Q_{i,j} = y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$, and $K(\mathbf{x}_i, \mathbf{x}_j)$ is a kernel value computed from a kernel function; $C$ is the same regularization constant as in Problem (1). The kernel values of all the training instances form a kernel matrix Weinberger et al. (2004).
A.1.2 \(\nu\)-Support Vector Machine Classification (\(\nu\)-SVC)

The \(\nu\)-SVMs for classification is proposed by Schölkopf et al. (2000). The hyper-parameter \(\nu\) is introduced to control training errors and the number of support vectors. Formally, the optimization problem of training \(\nu\)-SVC is shown below.

\[
\begin{align*}
\text{max} & \quad \alpha, \quad -\frac{1}{2} \alpha^T Q \alpha \\
\text{subject to} & \quad 0 \leq \alpha_i \leq 1, \forall i \in \{1, \ldots, n\}, \\
& \quad e^T \alpha = \nu n, \quad \sum_{i=1}^{n} y_i \alpha_i = 0 \\
\end{align*}
\]

where \(e\) is a vector of all one, and the other notations have the same meaning of those in C-SVC shown in Problem (2).

A.1.3 Multi-class Support Vector Machine Classification

Multi-class SVM classification is implemented via pairwise coupling (also used in LibSVM) which has shown superiority over other methods (Hsu and Lin, 2002). During training multi-class SVMs, many binary SVMs are trained using SMO. Given the training dataset, the dataset is first decomposed into multiple subsets of two classes. A binary problem \((s, t)\) consists of all the instances of class \(s\) and \(t\). There are \(\frac{k(k-1)}{2}\) binary SVM classifiers in total, where \(k\) is the number of classes in the dataset. After training the binary SVM classifiers, the predicted values of SVMs \(s, t\) on the binary problem \((s, t)\) are used for the final class label prediction.

A.1.4 Support Vector Machines with Probabilistic Output

To enable probabilistic output, the predicted values of the \(\frac{k(k-1)}{2}\) binary SVM classifiers on the training instances are used to train the sigmoid function.

\[
P(y_i = 1|x_i) = \frac{1}{1 + \exp(Av_i + B)}
\]

where \(v_i\) is the decision value predicted by an SVM classifier, and the parameters \(A\) and \(B\) can be obtained by maximizing the following log likelihood.

\[
\max_{A,B} F = \sum_{i=1}^{n} t_i \log(P(y_i = 1|x_i)) - (1 - t_i) \log(1 - P(y_i = 1|x_i))
\]

where 

\[
t_i = \begin{cases} 
\frac{N_+ + 1}{N_+ + 2} & \text{if } y_i = 1 \\
\frac{1}{N_- + 2} & \text{if } y_i = -1,
\end{cases}
\]

\(N_+\) denotes the number of positive training instances, and \(N_-\) denotes the number of negative training instances. Newton’s method with backtracking is a commonly used approach to solve the above optimization problem (Lin et al., 2007) and is implemented in ThunderSVM. The aforementioned SVMs with probabilistic output is for multi-class SVMs. For
binary SVMs with probabilistic output, the sigmoid function can be directly used to predict probability.

A.2 Support Vector Machine Regression

In what follows, we discuss two types of SVM regression algorithms: \( \varepsilon \)-SVR and \( \nu \)-SVR.

A.2.1 The \( \varepsilon \)-Support Vector Machine Regression (\( \varepsilon \)-SVR)

Similar to SVC, given a set \( \mathcal{X} \) of training instances, \( \mathcal{X} = \{ \mathbf{x}_i \in \mathbb{R}^d, i = 1, \ldots, n \} \), where \( n \) denotes the data set cardinality and \( d \) denotes the data dimensionality. In SVR, each training instance is associated with a target value \( z \in \mathbb{R} \) instead of a label. The SVM regression is a function estimation process that finds an optimal function \( g(\mathbf{x}) \) which minimizes the difference of the target value of each training instance \( \mathbf{x}_t \) and the function value \( g(\mathbf{x}_t') \). Meanwhile, the function \( g(\mathbf{x}) \) is as smooth as possible for achieving high accuracy in predicting unseen data. The training process of the SVM regression is equivalent to solving the following quadratic programming problem.

\[
\max_{\mathbf{\alpha}} \sum_{i=1}^{2n} s_i \alpha_i - \frac{1}{2} \mathbf{\alpha}^T \mathbf{Q} \mathbf{\alpha} \\
\text{subject to } 0 \leq \alpha_i \leq C, \forall i \in \{1, \ldots, 2n\}, \\
\sum_{i=1}^{2n} y_i \alpha_i = 0
\]

where \( \mathbf{\alpha} = \langle \alpha_1, \alpha_2, \ldots, \alpha_{2n} \rangle \) is Lagrange multipliers for the training instances. The value \( \alpha_i \) denotes the contribution of a training instance \( \mathbf{x}_t \) to the estimated function, where \( t = i \) if \( i \leq n \), otherwise \( t = i - n \). Here,

\[
\begin{cases}
    y_i = +1, \ s_i = \varepsilon - z_i & \text{if } i \leq n \\
    y_i = -1, \ s_i = \varepsilon + z_i & \text{if } n < i \leq 2n
\end{cases}
\]

and \( \varepsilon \) is the error tolerant parameter.

A.2.2 The \( \nu \)-Support Vector Machine Regression (\( \nu \)-SVR)

Similar to \( \nu \)-SVC, the hyper-parameter \( \nu \) is introduced to control the training errors and the number of support vectors. The optimization problem of \( \nu \)-SVR is as follows.

\[
\max_{\mathbf{\alpha}} -\sum_{i=1}^{2n} z_i \alpha_i - \frac{1}{2} \mathbf{\alpha}^T \mathbf{Q} \mathbf{\alpha} \\
\text{subject to } 0 \leq \alpha_i \leq C/n, \forall i \in \{1, \ldots, 2n\}, \\
\sum_{i=1}^{n} \alpha_i - \sum_{i=n+1}^{2n} \alpha_i = 0 \\
\sum_{i=1}^{2n} \alpha_i = C\nu
\]

where the notations have the same meaning as those in \( \varepsilon \)-SVR.
A.3 One-class Support Vector Machines (OSVMs)

OSVMs were first introduced by Schölkopf et al. (2001), and can be used for distribution estimation and outlier detection (Hodge and Austin, 2004). Formally, the optimization problem is defined below.

\[
\max_{\alpha} -\frac{1}{2} \alpha^T Q \alpha \\
\text{subject to } 0 \leq \alpha_i \leq 1, \forall i \in \{1, ..., n\}, \\
\sum_{i=1}^{n} \alpha_i = \nu n
\]  

(8)

The notations used in Problem (8) are the same as the previous optimization problems.

A.4 The Sequential Minimal Optimization Algorithm

All of the above optimization are convex and can be solved by various types of solvers. The goal of the training is to find a vector \( \alpha \) of Lagrange multipliers that maximizes the value of the objective function. Here, we describe a popular training algorithm, the Sequential Minimal Optimization (SMO) algorithm (Platt, 1998). SMO iteratively improves the vector until the optimal condition of the SVM is met. The optimal condition is reflected by an optimality indicator vector \( f = \langle f_1, f_2, ..., f_n \rangle \) where \( f_i \) is the optimality indicator for the \( i^{th} \) instance \( x_i \) and \( f_i \) can be obtained using the following equation:

\[ f_i = \sum_{j=1}^{n} \alpha_j y_j K(x_i, x_j) - y_i. \]

Notably, the number of training instances in SMO for SVM regression is \( 2n \) due to the conversion from SVR to SVC. What we discuss here can be simply applied in SVR by changing \( n \) to \( 2n \). During the SVM training, the SMO algorithm has the following three steps in each iteration.

**Step 1**: Search two extreme training instances, denoted by \( x_u \) and \( x_l \), which have the maximum and minimum optimality indicators, respectively. It has been proven (Keerthi et al., 2001; Fan et al., 2005) that the indexes of \( x_u \) and \( x_l \), denoted by \( u \) and \( l \) respectively, can be computed by the following equations.

\[ u = \arg\min_i \{ f_i | x_i \in X_{upper} \} \]  

(9)

\[ l = \arg\max_i \left\{ \frac{(f_u - f_i)^2}{\eta_i} | f_u < f_i, x_i \in X_{lower} \right\} \]  

(10)

where

\[ X_{upper} = X_1 \cup X_2 \cup X_3, \]

\[ X_{lower} = X_1 \cup X_4 \cup X_5; \]

and

\[ X_1 = \{ x_i | x_i \in \mathcal{X}, 0 < \alpha_i < C \}, \]

\[ X_2 = \{ x_i | x_i \in \mathcal{X}, y_i = +1, \alpha_i = 0 \}, \]

\[ X_3 = \{ x_i | x_i \in \mathcal{X}, y_i = -1, \alpha_i = C \}, \]

\[ X_4 = \{ x_i | x_i \in \mathcal{X}, y_i = +1, \alpha_i = C \}, \]

\[ X_5 = \{ x_i | x_i \in \mathcal{X}, y_i = -1, \alpha_i = 0 \}; \]

and \( \eta_i = K(x_u, x_u) + K(x_i, x_i) - 2K(x_u, x_i); f_u \) and \( f_i \) denote the optimality indicators.
of \( x_u \) and \( x_l \), respectively. This approach for selecting the two training instances is also known as “second order heuristics”.

**Step 2:** Improve the Lagrange multipliers of \( x_u \) and \( x_l \), denoted by \( \alpha_u \) and \( \alpha_l \), by updating them using Equations 11 and 12.

\[
\alpha_u' = \alpha_u + \frac{y_l(f_u - f_l)}{\eta} \tag{11}
\]

\[
\alpha_l' = \alpha_l + y_l y_u (\alpha_l - \alpha_l') \tag{12}
\]

where \( \eta = K(x_u, x_u) + K(x_l, x_l) - 2K(x_u, x_l) \). To guarantee the update is valid, when \( \alpha_u' \) or \( \alpha_l' \) exceeds the domain of \([0, C]\), \( \alpha_u' \) and \( \alpha_l' \) are adjusted into the domain.

**Step 3:** Update the optimality indicators of all examples. The optimality indicator \( f_i \) of the example \( x_i \) is updated to \( f_i' \) using the following formula:

\[
f_i' = f_i + (\alpha_u' - \alpha_u) y_u K(x_u, x_i) + (\alpha_l' - \alpha_l) y_l K(x_l, x_i) \tag{13}
\]

SMO repeats the above steps until the optimal condition is met, i.e., \( f_u \geq f_{\text{max}} \), where

\[
f_{\text{max}} = \max\{f_i | x_i \in \mathcal{X}_{\text{lower}}\} \tag{14}
\]

After the optimal condition is met, we obtain the \( \alpha \) values which corresponding to the optimal hyperplane and the SVM with these \( \alpha \) values is considered trained. Algorithm 1 summarizes the whole training process. In Algorithm 1, \( \mathcal{K}_u \) and \( \mathcal{K}_l \) correspond to the \( u^{th} \) and the \( l^{th} \) rows of the kernel matrix, respectively.

---

**Algorithm 1:** The SMO algorithm

```
Input: a training set \( \mathcal{X} \) of \( n \) instances with labels \( y \)
Output: a weight vector \( \alpha \)
1 for i ← 1 to n do /* initialize \( \alpha \) and \( f \) */
2 \( \alpha_i \leftarrow 0, f_i \leftarrow -y_i 
3 repeat
4 \quad \text{search for } f_u \text{ and } u \text{ using Equation (9)};
5 \quad \text{compute kernel values } \mathcal{K}_u /* u^{th} row */
6 \quad \text{search for } f_l \text{ and } l \text{ using Equation (10)};
7 \quad \text{compute kernel values } \mathcal{K}_l /* l^{th} row */
8 \quad \text{update } \alpha_u \text{ and } \alpha_l \text{ using Equations (11) and (12)};
9 \quad \text{update } f \text{ using Equation (13)};
10 \quad \text{search for } f_{\text{max}} \text{ using Equation (14)};
11 until \( f_u \geq f_{\text{max}} 
```

---

**Appendix B. Experimental Studies**

In this section, we empirically study the efficiency of ThunderSVM in comparison with LibSVM. We compare the efficiency on training SVMs for classification, regression and one-class SVMs (denoted by “OSVM”). Regarding SVMs for classification and regression, we
Table 2: Comparison between ThunderSVM with LibSVM

<table>
<thead>
<tr>
<th>data set</th>
<th>elapsed time (sec)</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ThunderSVM</td>
<td>LibSVM</td>
</tr>
<tr>
<td></td>
<td>GPU</td>
<td>CPU</td>
</tr>
<tr>
<td>MNIST (svc)</td>
<td>34.10</td>
<td>96.55</td>
</tr>
<tr>
<td>E2006-tfidf (svr)</td>
<td>13.25</td>
<td>343.5</td>
</tr>
<tr>
<td>Webdata (osvm)</td>
<td>4.66</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Figure 2: Training time speedup of ThunderSVM over LibSVM with/without OpenMP

study both C-SVC, ν-SVC, ε-SVR and ν-SVR. The three representative data sets we used are listed in Table 2. We conducted our experiments on a workstation running Linux with two Xeon E5-2640 v4 10 core CPUs, 256GB main memory and an NVIDIA Tesla P100 GPU of 12GB memory. ThunderSVM are implemented in CUDA-C and C++ with OpenMP. We used Gaussian kernel and hyper-parameters $C$ and $\gamma$ for the kernel on each dataset are the same as the existing studies (Wen et al., 2014, 2017c). LibSVM uses 12GB (which is the same as the GPU memory) of main memory for kernel value caching.

B.1 Efficiency and Final SVM Comparison

We study the performance of ThunderSVM and LibSVM using more data sets and compare the final results produced by the two libraries. LibSVM with OpenMP uses 40 threads, which achieves the best performance. Some results shown here are from our previous work (Wen et al., 2017a).

Efficiency comparison: Figure 2 shows the speedup on training of ThunderSVM over LibSVM. As we can see from the results, ThunderSVM consistently outperforms LibSVM without OpenMP by one to two orders of magnitude, LibSVM with OpenMP by 10x times. Figure 3 shows the results of speedup on prediction of ThunderSVM over LibSVM. As we can see from the figure, ThunderSVM consistently outperforms LibSVM without
OpenMP by two orders of magnitude. When OpenMP is used for LibSVM, ThunderSVM still outperforms it by more than 10 times.

**Final SVM comparison:** ThunderSVM and LibSVM produce identical SVMs, because ThunderSVM can be viewed as a highly parallelized version of LibSVM. We have measured the training error to confirm if ThunderSVM produces identical results as LibSVM, and the results are shown in Table 3. As we can see from the results, the training errors are identical, which implies that ThunderSVM and LibSVM produce the same SVMs. To further confirm the SVMs trained by ThunderSVM and LibSVM are the same, we also compare the bias of the trained SVMs, and the results are shown in Column “bias” of Table 3. Note that we used the bias of the last binary SVM for the multi-class problems. As we can see from the results, the biases of SVMs trained by ThunderSVM are the same to those of LibSVM. Note that existing studies in machine learning commonly compare the
difference of $||\vec{w}||$ of two algorithms. However, it is impossible for kernelized SVMs, because $||\vec{w}||$ is in an unknown data space.

Appendix C. Related Work

We categorize the most relevant related work into two categories: the studies dedicated to training SVMs using CPUs and the studies dedicated to training SVMs using GPUs.

Training SVMs using CPUs: Platt (1998) proposed the SMO algorithm which is simple and efficient, and hence SMO is used in LibSVM, WEKA (Hall et al., 2009) and Catanzaro’s algorithm (2008). Other studies in training linear SVMs, such as Joachims’ algorithm using cutting plane (2009) and “Pegasos” (Shalev-Shwartz et al., 2011) cannot handle non-linear kernels and does not support MP-SVMs. Training SVMs in distributed environment, such as MapReduce SVMs (Catak and Balaban, 2012) and MPI SVMs (Cao et al. 2006), is inefficient due to the iterative nature of the SVM training and costly network communication. Platt (1999) proposed binary SVMs with probabilistic output.

Training SVMs using GPUs: Catanzaro et al. (2008) first introduced GPUs for training binary SVMs. Wen et al. (2014) proposed GPU based binary SVM cross-validation by precomputing the whole kernel matrix which is stored in high-speed storage (for example SSDs). A recent study extended their algorithm for SVM regression problems Wen et al. (2017c). Athanasopoulos et al. (2011) used GPUs to purely accelerate the kernel matrix computation in the SVM training. These studies are for training binary SVMs and cannot handle large datasets, because the size of kernel matrix is quadratic in the number of instances. For example, processing the MNIST8M dataset with their algorithms needs 256TB of storage which is unacceptable for GPUs. Herrero-Lopez et al. (2010) used one-against-all method to solve multi-class problems on GPUs. However, they represented the training instances in dense format for the ease of implementation and better memory alignment. The dense representation makes the above algorithms difficult to handle large but sparse datasets. Another study (Vanˇ ek et al., 2017) compares different GPU SVM implements and provides some bench mark results, and proposes the OHD-SVM algorithm. However, the work only focuses on binary SVMs and no multi-class SVMs or probabilistic SVMs are presented. Cotter et al. (2011) represented training instances in sparse format, that is CSR format (Bulu¸ c et al., 2009), and proposed a clustering technique to make use of the data sparseness. We also use CSR format to represent the training data for handling large but sparse datasets. We call Cotter et al.’s algorithm GT SVM. GT SVM supports both binary and multi-class SVMs, but does not support multi-class probability estimation due to their mathematical modelling.

References


Duane Merrill. CUB v1. 5.3: CUDA Unbound, a library of warp-wide, block-wide, and device-wide GPU parallel primitives, 2015.


Zeyi Wen, Jiashuai Shi, Bingsheng He, Jian Chen, and Yawen Chen. Efficient multi-class probabilistic SVMs on GPUs, 2017a.
