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ABSTRACT
This paper demonstrates G3, a framework for Graph Neu-
ral Network (GNN) training, tailored from Graph process-
ing systems on Graphics processing units (GPUs). G3 aims
at improving the efficiency of GNN training by supporting
graph-structured operations using parallel graph processing
systems. G3 enables users to leverage the massive paral-
lelism and other architectural features of GPUs in the fol-
lowing two ways: building GNN layers by writing sequential
C/C++ code with a set of flexible APIs (Application Pro-
gramming Interfaces); creating GNN models with essential
GNN operations and layers provided in G3. The runtime
system of G3 automatically executes the user-defined GNNs
on the GPU, with a series of graph-centric optimizations
enabled. We demonstrate the steps of developing some pop-
ular GNN models with G3, and the superior performance
of G3 against existing GNN training systems, i.e., PyTorch
and TensorFlow.
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1. INTRODUCTION
Recent neural network (NN) models have moved beyond

regular data such as image and speech, to irregular graph-
structured data. Graphs are not only the de facto data
structures in various applications such as social networks,
biological networks and weblink analysis, but also show their
essentials in problem domains across different machine learn-
ing settings. Graph Neural Network (GNN), the NN-based
method on graph-structured data, attracts surging interests
due to its wide adoption and effectiveness in many appli-
cations such as node classification [3] and program verifica-
tion [4]. Therefore, popular deep learning frameworks like

∗These authors contributed equally to this work.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

P PG T TG
0%

20%
40%
60%
80%

100%
Pubmed

P PG T TG
0%

20%
40%
60%
80%

100%

O
O

M

O
O

M

O
O

M

Reddit
Graph Ops

NN Ops

Others

Figure 1: Time breakdown of training GCN using PyTorch
(P), PyTorch-GPU (PG), TensorFlow (T), TensorFlow-
GPU (TG). “OOM” means the training execution has out-
of-memory errors.

PyTorch [7] and TensorFlow [1] start to support GNN train-
ing.
However, in real-world development, the bottlenecks in

GNN training begin to surface. Our experiments show that
graph-structured operations take a large portion of the to-
tal workload in training. As shown in Figure 1, 44%–99%
of the overall training time of Graph Convolutional Net-
work (GCN) [3] is spent on graph-structured operations for
PyTorch and Tensorflow (with GPU accelerations). All of
the tested GNN frameworks are developed based on ma-
trix operations and message passing without specially op-
timized for graph structures. As shown in many previous
studies on graph processing [16, 12], matrix-based graph
processing has two major performance pitfalls. First, mem-
ory consumption for storage and intermediate results is pro-
hibitively large and inefficient. Second, when dealing with
graph-structured data, matrix-based operations are usually
costly and contains redundant computation comparing to
graph operations. As a consequence, the performance and
scalability of such frameworks are lagged by inefficient graph
processing.
Existing parallel graph processing systems (PGPS) pro-

vide high-performance and scale solutions for graph tasks,
e.g., breadth-first search. For example, Gunrock [12] and
Medusa [16] leverage the massive parallelism of modern GPU
architectures, while providing flexible APIs that express a
wide range of graph primitives. Those PGPS systems’ suc-
cess enables system-wide opportunities in resolving the per-
formance bottleneck of graph operations in GNN training.
However, the intersection of these two research threads (GNN
and PGPS) has not yet been well studied.
In this work, we advocate that, by introducing PGPS to

GNN, we can fundamentally improve graph-structured op-
erations and the overall efficiency of GNN training. We have
identified the following technical challenges for such integra-
tions.
First, applying existing deep learning tools and frame-

works trades efficiency in execution for the simplicity of
programming and deployment due to the lack of native sup-
port for graph processing. Second, existing graph process-



ing frameworks hardly provide essential building blocks for
GNNs. Even though there are some GNN libraries as build-
ing blocks for GNN on GPUs, users have to manually per-
form memory management and deal with GPU specific pro-
gramming details such as kernel configuration and schedul-
ing. Third, a hand-crafted GNN on GPU with high effi-
ciency requires explicit program optimizations for GPU ar-
chitectures. Moreover, such a hand-crafted GNN is inflexible
and is limited to specific operations, which cannot fulfill the
surge of new models.
To ease the pain of leverage GPUs for GNN, we propose

a GNN framework, G3, built based on PGPSs on GPUs.
G3 extends the PGPS with essential NN operations (includ-
ing matrix operations, SoftMax, and ReLU, to name a few)
supported by other libraries, e.g., SuiteSparse [2] or imple-
mented by us. Like existing frameworks, G3 embraces the
layered GNN processing model and provides flexible APIs
for users. In our implementation, we adopt Gunrock [12],
one of the state-of-the-art PGPSs on GPUs, to take over the
graph-related operations in GNNs.
We will demonstrate the ease-of-programming feature and

the superior performance of G3 with popularly applied GNNs,
e.g., GCN [3]. Notably, G3 significantly outperforms Py-
Torch and TensorFlow on their CPU and GPU versions.

2. RELATED WORK AND MOTIVATION
GNN. There are three major categories of GNN mod-

els: graph convolutional networks [3], graph recursive net-
works [4], and graph attention networks [10]. Generally,
different GNN models share the same essential operation
of collectively aggregating information based on the edge
connections of vertices. We refer the readers to several sur-
veys [13, 17], which provide thorough reviews of different
GNN models and applications.
Comparing with standard NN approaches, the complex-

ity of graph-structured operations and the inherent irregu-
larity of graph data in GNNs lead significant performance
challenges for efficient implementations on massively paral-
lel architectures like GPUs. Most of the existing tools and
libraries in NN models are designed for regular matrix opera-
tions and do not efficiently express iterative graph processing
models.

PGPS on GPUs. Google has pioneered the research
thread of PGPS by introducing Pregel [6]. Since then, we
have seen the development of a large number of PGPSs. The
technical advance of GPU, especially the features of mas-
sive parallelism and high memory bandwidth, has attracted
many research interests on accelerating graph processing us-
ing GPUs. Existing efforts have shown great success in par-
allelizing a plethora of graph applications [15, 9]. Many
frameworks and primitives have also been presented for de-
veloping high-performance graph algorithms on GPUs [16,
12].
In the past decades, researchers have paid numerous ef-

forts in addressing the performance issues in GPU graph
processing, e.g., memory accesses, workload mapping, and
load balancing. Since GNN and traditional graph algorithms
share common graph operations, such as transformation on
vertices or edges, we can take advantage of the systems-wide
opportunities enabled by PGPSs on GPUs.

Bridging GNN and GPU graph processing. There
have been some preliminary efforts in building a GNN train-
ing system based on combining existing graph systems and
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Figure 2: The architecture overview of G3
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Figure 3: Components of GNN developments using G3, Py-
Torch, and Tensorflow

NN models. TuX2 [14] makes the first effort by inherit-
ing the benefits of graph computation model, data layout
management, and balanced parallelism for distributed ma-
chine learning. DGL [11] presents a graph-oriented message-
passing wrapper for deep learning systems but does not ex-
plore in depth the opportunities to leverage graph-aware
optimizations for efficient executions. Most recently, Neu-
Graph [5] introduces GNN-related graph operations in Ten-
sorFlow to enable processing on large-scale graphs. Un-
fortunately, the system is not yet publicly available. Be-
sides, NeuGraph replaces the layered model of NN with
the Scatter-ApplyEdge-Gather-ApplyVertex graph model,
which fails to ease the GNN development, while G3 sticks
to the layered model, similar to PyTorch, for users’ conve-
nience.

3. G3 SYSTEM
The architectural overview of G3 is shown in Figure 2.

The system is built based on a GPU-based PGPS with other
libraries that support NN operations integrated. In particu-
lar, G3 boosts the graph processing in GNN training in order
to improve the overall training. Compared with PyTorch
and Tensorflow, G3 contains graph-aware components, in-
cluding graph-structured operations, graph data manage-
ment, workload mapping, and load balancing. These com-
ponents are commonly available in PGPSs at high perfor-
mances but were not used in previous GNN systems.
To ease the pain of leverage GPUs, G3 embraces the mod-

ular design principle and provides flexible APIs. Descrip-
tions of the APIs are listed in Table 1. Specifically, G3

offers three categories of APIs:
1) Graph APIs: exposed from existing PSGS or from our

extensions on PSGS based on PSGS’s provided APIs.
2) NN APIs: for manipulating the NN layers
3) GNN layers: common GNN layers on top of Graph

APIs and NN APIs.
Due to space limitations, we do not detail each layer and

refer the readers to a survey paper for more details [8]. The



Table 1: APIs in G3

Graph APIs Description
Filter Filters all the nodes/edges in the frontier
Atomic AtomicAdd/AtomicMin/AtomicMac operations

Advance Performs a customized function on the
nodes/edges, powered by Gunrock

NN APIs Description
ForEach Performs a customized function on each element
Forward Training and inference of the NN layer
Backward Gradient updating scheme for the NN layer
GNN Layers Description
GraphSum Aggregates information from neighbor vertices
SparseMul Sparse dense matrix multiplication layer
ReLU Rectified linear units as activation function
MatMul Dense dense matrix multiplication layer
SoftMax Normalize input to a probability distribution
DropOut Eliminates a portion of elements randomly
CrossEntropy Loss function, output layer

Graph/NN APIs exposed in G3 allow users to implement
customized GNN layers to support the fast-emerging of new
GNN models. These APIs require only sequential C/C++
code. Users do not have to handle GPU-related program-
ming explicitly. G3 automatically executes the GNN appli-
cation constructed using these APIs on the GPU at a high
performance.
Listing 1 shows the implementation of the GraphSum layer

(graph aggregation). G3 uses the graph intrinsics in the
PGPS, e.g., Advance, to build graph graph-structured oper-
ations and APIs to avoid reinventing the wheel.
Similar to the given GraphSum sample, to implement cus-

tomized layers, users only need to describe the behaviors of
forward and backward operations applied on vertex, and G3

integrates them into the Advance kernel at compilation time.

3.1 Implementation Details
We build G3 based on Gunrock [12] as it is one of the

state-of-the-art systems and satisfies our requirements of
building a GPU-based GNN system. The requirements in-
clude rich graph-related intrinsics and efficient GPU man-
agements, e.g., low-level GPU memory management, work-
load mapping, and load balancing. The other libraries, e.g.,
SparseSuite, are integrated into Gunrock. In the rest of this
section, we briefly give implementation details of G3.

Graph Storage. Gunrock stores graph in compressed
sparse row (CSR) format and represents all per-node and
per-edge data as structure-of-array (SOA) data structures
that allow coalesced memory accesses with minimal memory
divergence. We reuse the graph storage provided by Gun-
rock and extend the support for graph storage with feature
vectors and weighted matrices required for different layers
of GNN.

Neural Network Generation. G3 fuses user-defined
operations into GPU processing kernel and statically assem-
bles them with pre-built layers during compilation. G3 con-
nects the layers in order by directing the dataflow from the
output of preceding layers to the input of subsequent layers.

G3 Runtime. G3 adopts the existing GPUmemory man-
agement solution provided by Gunrock. Gunrock handles
the low-level memory management, including memory ac-
cesses and data transfers, while G3 handles high-level dataflow,
avoids memory copy among GNN operations, and minimizes
data transfers between GPU and host memory.

4. DEMONSTRATING G3

Our demonstration focuses on the following two aspects.

Listing 1: Building the GraphSum layer using Graph APIs
1 class GraphSum : G3:: Layer {
2 // vertex forward operation
3 auto _f=[&] __G3__(VtxT &src , VtxT &des){
4 float coef =1.0/ sqrt(numNgb(src)*numNgb(des));
5 for(int i=0;i<dim;i++)
6 atomicAdd(out+des*dim+i,*(in+src*dim+i)*coef);
7 };
8 void forward () {
9 PGPS:: Advance (graph.csr() ,&local ,_f);

10 }
11 // vertex backward operation
12 auto _b=[&] __G3__(VtxT &src , VtxT &des){
13 float coef =1.0/( numNgb(src)*numNgb(des));
14 for(int i=0;i<dim;i++)
15 atomicAdd(out+src*dim+i,*(in+des*dim+i)*coef);
16 };
17 void backward () {
18 PGPS:: Advance (graph.csr() ,&local ,_b);
19 }};

Figure 4: Web-based front-end of G3

1. How to develop a GNN application using G3?
2. How well does G3 perform on GNN training?
Demonstration setup. We plan to conduct the evalua-

tions with remote access to a Linux server with two 10-core
Xeon E5-2640v4 CPUs, 256GB memory, and an NVIDIA
Tesla P100 GPU. The GPU has 12GB global memory and
56 SMs. The statistics of data sets used for evaluations are
summarized in Table 2.

Ease-of-programming demonstration. Overall, we
hope to demonstrate to the audience on the improved pro-
grammability by leveraging existing PSGS, and also the con-
venience of G3 in constructing GNN models. This part of
the demo consists of two parts.
Firstly, we let participants understand the layered struc-

ture of GNN by using the web-based GUI (shown in Fig-
ure 4) to reproduce a GNN training using preset layers.
These preset layers, which include the popular GNN models,
can be selected on the left of the GUI. Next, we will guide
the participants to alter the GNN models by adding/remov-
ing layers using the GUI and re-train the model.
Secondly, we illustrate how to program a new network

layer using the provided APIs. Participants will be provided
with code editor boxes to complete forward and backward
functors. G3’s functor code is C/C++ sequential code with
little requirement of parallel programming knowledge.

Performance demonstration. We shall demonstrate
that G3 significantly improves the performance of GNN train-
ing against existing solutions.
Figure 5 shows the time breakdown and the speedup for

two common GNN models GCN and SGC. We do not in-
clude the results for SGC on Tensorflow, because there is no
publicly available implementation for SGC in Tensorflow.
The speedup of a framework is defined as the ratio of the
execution time of PyTorch (P, running on the CPU) and the



Table 2: Data set statistics

Dataset # Nodes # Edges # Features
Pubmed 19,717 44,338 500
Reddit 233K 11.6M 602
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Figure 5: Performance evaluation of PyTorch (P), PyTorch-
GPU (PG), TensorFlow (T), TensorFlow-GPU (TG), and
G3 on Pubmed and Reddit data set. “OOM” means the
training execution has out-of-memory errors.

execution time of the framework. G3 significantly reduces
the overall execution time cost by graph operations in GNN
training (from 80% down to 20% of the total execution time),
and also improve the overall performance. Specifically, G3

can be 1.6×–101× faster than PyTorch and Tensorflow on
their CPU and GPU counterparts. GPU is not fully uti-
lized on Pubmed data set, where G3 shows only up to 7×
speedup over PyTorch. G3 shows significant speedup on
the large Reddit data set, while the other counterparts run
out of memory due to inefficient implementations of graph-
structured operations.

5. CONCLUSIONS
We introduce G3 for efficient GNN training on GPUs by

leveraging the graph native operations in parallel graph pro-
cessing systems on the GPU. This is an initial but important
step for bridging the gap in GNN training towards native
graph optimizations. We are actively maintaining G3 and
featuring web-based GUI and Python interfaces for broader
adoption1.
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