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Abstract—Resource provisioning is an important and com-
plicated problem for scientific workflows in Infrastructure-as-
a-service (IaaS) clouds. Scientists are facing the complexities
resulting from the diverse cloud offerings, complex workflow
structures and characteristics as well as various user require-
ments on budget and performance. In this paper, we review
the related work on the cost-aware optimizations of workflows
in IaaS clouds and summarize the underlying research issues.
Existing studies are not effective enough on finding good solutions
to workflow optimization problems due to the complexity of
workflows and the cloud dynamics. The heuristics proposed in the
existing work are specifically designed for certain applications or
certain budget and performance requirements. To address those
issues, we propose a flexible and effective optimization system to
simplify the resource provisioning for scientific workflows in IaaS
clouds. The system adopts a probabilistic QoS notion to obtain
good optimization results in the dynamic cloud environment and
a cloud- and workflow-specific declarative language to specify
various workflow optimization problems. We summarize our
ongoing work and present some preliminary results on real-world
scientific workflows. The experimental results demonstrate the
effectiveness of our system on monetary cost optimizations and
its capability to solve a wide class of optimization problems for
scientific workflows.

Keywords-Cloud computing, cloud dynamics, spot instances,
resource provisioning, scientific workflows.

I. INTRODUCTION

Workflow models have been widely used by scientists to
organize and manage their data analysis jobs in many scientific
applications [1]. For example, the astronomical application
Montage [2] and the Ligo [3] application for detection of
gravitational waves are widely used in many case studies. A
scientific workflow is composed of multiple tasks with data
dependencies. Each task in the workflow involves managing
and processing large data sets and different tasks can have
very different I/O and computational behaviours. For example,
a task responsible for loading the input data is an I/O-intensive
task while another task for processing the input data may have
special requirement on the computational resources.

Due to the pay-as-you-go characteristic of the cloud, many
real-world scientific workflows are currently deployed and
executed in IaaS clouds such as Amazon EC2 [4]. Although
the scalability and elasticity of the cloud have brought great
opportunities for the workflows, many research problems also
arise. Resource provisioning is one important problem for
the monetary cost and performance optimizations of scientific
workflows in IaaS clouds. Since cloud providers usually offer
multiple instance types with different prices and computational
capabilities, we need to carefully decide the types of instances
that each task of a workflow for performance and monetary

Fig. 1: Workflow structures of Montage, Ligo and Epige-
nomics.
cost optimizations. However, making the resource provisioning
decisions is non-trivial, involving the complexities from cloud,
workflows, and users.

A. Motivation

The resource provisioning for workflows in IaaS clouds is
a complex problem, from the following three aspects.

Diverse cloud offerings. The IaaS clouds usually offer a
large number of instance types. For example, Amazon EC2
provides more than 20 types of instances (only counting the
latest generation) for the users [5]. Different types of instances
have different capabilities and prices. For example, Amazon
EC2 offers storage optimized instances to provide very high
random I/O performance for I/O-intensive applications. If we
consider multiple clouds, the situation is even worse since the
cloud providers usually adopt different cloud offerings. For
example, Amazon EC2 adopts hourly pricing scheme while
Google Compute Engine charges users by minute.

The dynamics in cloud performance and prices make the
problem even more complex. The cloud environment is by
design a shared infrastructure. The performance of cloud
resources, such as I/O and network, is dynamic due to
interferences between users. We have observed remarkable
dynamics in the I/O and network performances from Amazon
EC2 [6]. On another hand, the cloud is an economic market
and has dynamic prices [7]. Amazon EC2 offers spot instances,
whose prices are determined by market demand and supply.
Most existing optimization approaches for scientific workflows
in IaaS clouds [8], [9], [10] adopt static notions of performance
and cost, which are not suitable for performance and cost
optimizations in the dynamic cloud environment. Effective
optimization techniques and more rigorous QoS notions are
in need to capture the cloud dynamics.

Complex workflow structures and characteristics. The
tasks within a scientific workflow can have different charac-
teristics, e.g., I/O-intensive tasks and computational intensive
tasks. Different workflows can have different structures and
parallelism. For example, as shown in Figure 1, Montage has a



very complex workflow structure while Ligo and Epigenomics
have high parallelism in their workflow structures. There are
also different application scenarios of workflows. For example,
the workflows can be continuously submitted to the cloud and
the optimizations are made for each workflow individually [9],
[10]. Users can also group the workflows with similar structure
but different input parameters as an ensemble, and submit QoS
and optimization requirements for the entire ensemble [8].
We need an effective system that is capable of simplifying
the optimizations of different kinds of tasks and workflows.
We should also consider how to make use of the different
workflow structures for cost and performance optimizations.

Various user requirements. Scientists submit their work-
flow applications to the IaaS clouds usually with some pre-
defined optimization objectives and QoS requirements. For
example, one may desire to finish a workflow execution
with a minimum monetary cost before a predefined deadline
while another one may desire to execute a workflow as
fast as possible with a given budget. Users may also define
skyline optimization objectives, e.g., minimizing both of the
monetary cost and the execution time of workflows. The
users’ requirements are also evolving. For example, a user
may want to minimize the execution time of a workflow on
a cloud C1 with a predefined budget. On the other scenario,
she may consider running the workflow on multiple clouds
besides C1. At this point, the optimal solution depends on the
offerings of the multiple clouds and the network performance
across clouds. Existing optimization algorithms are specifically
designed for certain optimization problems and are usually not
extensible or flexible to various evolving user requirements.
B. Goals and Objectives

The major goal of our research is to design a flexible and
effective optimization system to simplify the optimizations of
monetary cost and performance for scientific workflows in
IaaS clouds.

Effectiveness. The system should be effective on obtaining
good optimization results and capturing the cloud dynamics
in performance and prices. There are a good number of
studies [9], [8], [10] working on the monetary cost and
performance optimizations for scientific workflows. However,
none of them have taken the cloud dynamics into account
and thus can hardly always satisfy the performance and
budget requirements in the dynamic cloud environment. Some
heuristics adopted in the previous work, such as the deadline
assignment heuristic [9], have been demonstrated less effective
than the more comprehensive approach to explore the solution
space [6].

Simplification. We are aiming at designing a system that
can simplify the optimizations of various resource provisioning
problems for workflows in IaaS clouds. Many existing opti-
mization techniques for scientific workflows are only designed
for certain optimization goals and constraints, and thus are not
suitable for the evolving cloud offerings and user requirements.
In our study, we aim to propose a flexible optimization system
to solve a wide class of optimization problems for workflows,
without modifying the optimization system. We observe that,
scientists often have the tedious issues on handling workflow
structures, cloud offerings and resource provisioning. Thus,

our simplification allows users to focus on their high-level
application logics (e.g., the performance and budget require-
ments), without worrying about those tedious issues.
C. Our Solution

To achieve the above goals and objectives, we propose
the following techniques. We propose to use probabilistic
distributions to effectively capture the cloud dynamics in
network and I/O performances as well as the cloud prices.
We adopt a probabilistic deadline notion for users to specify
their QoS requirements in the dynamic cloud and propose
a scheduling system to meet the probabilistic deadline re-
quirements. We have formulated a number of transformation
operations for monetary cost and performance optimizations
of workflows. These operations are common for any workflow
structures. We also propose a declarative language specifically
designed for workflows in the cloud for users to specify their
optimization problems and utilize an efficient search engine to
solve the problems. To the best of our knowledge, our solution
is the first of its kind in developing a flexible declarative
optimization framework with the awareness of cloud dynamics
for workflows in IaaS clouds.

The organization of this paper is as follows. We introduce
the background and review the related work in Section II. We
present the underlying research problems in Section III and
briefly introduce our initial work and results in Section IV.
Section V concludes this paper and highlights some directions
for future research.

II. BACKGROUND AND RELATED WORK

We introduce the background on the cloud application
scenario and revisit the related work.
A. Background

We consider two typical scenarios of resource provisioning
for scientific workflows in the IaaS clouds. In the first scenario,
scientists purchase resources from the IaaS clouds to run their
workflows. Our goal in this scenario is to design an optimiza-
tion framework for the scientists to satisfy their performance
and cost requirements. Another typical scenario is providing
software-as-a-service for workflows in the IaaS clouds. We
denote this model as workflow-as-a-service (WaaS). WaaS
providers rent resources from the IaaS cloud providers to
run the workflow applications. In this scenario, we perform
optimizations for the sake of WaaS providers.

We have seen many applications with different workflow
structures and optimization objectives in the cloud [4]. We
use our project [11], “cloud-assisted water quality management
and analysis”, as an example to show the background scenario
of our problem. The project is developing a cloud processing
platform such that users (e.g., water quality related experts
and officials) can submit their simulation tasks to predict the
water quality for different reservoirs, or perform sensitivity
analysis with water quality simulations. Users can also perform
data analysis on the water quality history with data mining
or machine learning techniques. The workload fluctuates in
the system: in the rain-fall season, users run the simulation
more often than other times; report generation tasks are more
frequent when approaching the end of every week or every
month, even the end of season or year. The elasticity feature
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of cloud computing is attractive to adapt to the workload
fluctuation. The monetary cost optimization is an important
problem for the research project, since those workflows are
executed for many times during the year.
B. Related Work

Monetary cost optimizations is a popular research topic for
scientific workflows in IaaS clouds. Many studies have been
presented on this topic and we only review the ones most
relevant to our research goal.

Cost-aware optimizations for workflows. The pay-as-you-
go nature of cloud computing attracts many research efforts in
dynamic resource provisioning with performance and budget
requirements. Workflow scheduling with deadline and budget
constraints (e.g., [12], [9], [8], [10]) has been widely studied.

Many research studies have been conducted for a single
cloud provider. Yu et al. [13] proposed deadline assignment
technique for workflow scheduling problems with deadline
constraint. Mao et al. [9] applied a series of heuristics, includ-
ing the deadline assignment method, to automatically scale
out for the monetary cost optimizations of workflows with
deadline constraints. They also considered the performance
optimization problem with budget constraints for scientific
workflows.Malawski et al. [8] proposed dynamic scheduling
strategies for workflow ensembles. These studies all assume
static execution time of individual tasks. Buyya et al. [10]
proposed an algorithm with task replications to increase the
likelihood of meeting deadlines for workflows.

Considering multiple cloud providers, Fard et al. [14]
introduced a heuristic for the cost optimization with SLA re-
quirements. Many studies are introducing cloud brokers to deal
with the scheduling problem with multiple cloud providers.
For example, Simarro et al. [15] proposed a scheduler under
the context of cloud broker to minimize the monetary cost.
We refer readers to a recent survey [16] for inter-cloud
optimizations.

Cloud dynamics. There are generally two categories of
research studying the cloud dynamics. The first category is
on utilizing and modeling the price dynamics and the second
category is on measuring and analyzing the performance
dynamics in the cloud.

Amazon EC2 spot instances, which cause price dynamics in
the cloud, have attracted many research interests due to their
ability on reducing monetary cost. Yehuda et al. [17] proposed
a price model consistent with existing spot price traces
using reverse engineering. Javadi et al. [17], [18] developed
statistical models for different types of spot instances. Existing
studies are utilizing spot instances for different applications.
Chohan et al. [19] proposed a method to utilize the spot
instances to speed up the MapReduce tasks. Yi et al. [20]
introduced some checkpointing mechanisms for reducing cost
of spot instances. Ostermann et al. [21] utilized spot instances
for large workflow applications when the Grid resources
are not sufficient. Further studies [22], [23], [24] used spot
instances with different bidding strategies and incorporating
with fault tolerance techniques such as checkpointing, task
duplication and migration. Those studies are with spot instance
only, without offering any guarantee on meeting the workflow
deadline. Chu et al. [25] proposed a hybrid method to use both

Fig. 2: Overview of the underlying research problems.
on-demand and spot instances for minimizing total cost while
satisfying a predefined deadline constraint. However, they did
not consider the cloud performance dynamics.

A few studies have evaluated the performance of cloud
services from different aspects [26], [27], [28]. We have
also performed performance calibration on Amazon EC2 and
have consistent observations with the previous work [26].
Some studies are proposed to specifically study the network
performance [29], [30] and I/O interference [31], [32] of the
cloud.

Simplification of optimization problems. There have been
some optimization frameworks proposed to simplify various
domain-specific optimization problems in the cloud. Alvaro et
al. [33] proposed to use a declarative language called Overlog
to reduce the complexity of distributed programming in the
cloud. Cologne [34] also proposed a declarative language
with extensions for constraints and goals to solve a wide
class of constrained optimization problems in distributed
systems. Zhang et al. [35] proposed to model cloud service
configurations in a structured data model, and to formulate the
mapping of users resource requirement to cloud resources with
SQL queries. ClouDiA is another system that provides instance
deployment solutions for users [36]. Rai et al. [37] proposed a
novel bin-ball abstraction for the resource allocation problems.
Different from bin-ball abstractions, workflows have more
complicated structures with data dependencies. Moreover,
bin-ball abstractions are mainly for static resources, which
cannot capture dynamic cloud performance. To the best of
our knowledge, none of the previous generalized optimization
frameworks are specifically designed for workflows in IaaS
clouds.

III. RESEARCH PROBLEMS

IaaS clouds, workflow applications and user requirements
are three important design factors in the resource provisioning
problems of workflows in IaaS clouds. Figure 2 summarizes
the ontology of potential research issues in an ontology form.

A. IaaS Clouds

With the popularity of cloud computing, more and more
cloud providers offer various infrastructures as a service. We
consider the following design aspects in IaaS clouds.

Infrastructure. From the perspective of infrastructures,
we consider the optimization problems in both single cloud
and multi-cloud environments. Within a single cloud, the
optimization problem is to choose appropriate instance types
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for tasks from the diverse cloud offerings, considering the per-
formance/cost optimization requirements. For example, when
the optimization goal is to minimize the monetary cost, cost-
effective instance types are selected for tasks. In the multi-
cloud environment, the cloud offerings are much more diverse.
Also, we need to consider the data/task migrations between
clouds for performance/cost optimizations. We need to decide
which cloud to migrate the data/tasks to, considering the
network bandwidth and price between clouds for perfor-
mance/cost optimization requirements.

Dynamics. The cloud dynamics include dynamics on both
the cloud performance and prices. In either the single cloud or
the multi-cloud environment, we should consider the impact
of the cloud dynamics on the workflow execution and the
optimization effectiveness. We need a more rigorous notion for
QoS requirements in the dynamic cloud and new scheduling
algorithms to adapt to the notion. The price dynamics in
the cloud are mainly caused by the temporally varying price
schemes, such as spot instances provided by Amazon EC2.
The major issue in utilizing spot instances is that spot instances
may fail at any time due to out-of-bid events (the bidding
price is lower than spot price). We need to design fault-
tolerant methods to ensure meeting the deadline requirements
of workflows when utilizing spot instances.
B. Workflow Applications

Single workflow vs. Multiple workflows. In many work-
flow optimization problems (such as [10]), optimization goals
and QoS requirements are defined for a single workflow.
Appropriate instance types are chosen for each task in the
workflow in order to satisfy the optimization goals and
constraints. We should also make use of the characteristics
of tasks and consider consolidating tasks/instances to further
reduce cost. For example, consider two tasks with different
characteristics and similar start time. One task is I/O-intensive
but does little computation while another one is computation-
intensive but does very little I/O operations. In this case, we
can actually schedule the two tasks onto the same instance
in order to more efficiently utilize the I/O and computation
resources.

Workflow ensembles are an representative application to
group multiple workflows to execute. Each workflow is as-
sociated with a priority to indicate its importance. QoS
requirements are either associated with the entire ensemble
(e.g., budget constraint) or each single workflow (e.g., deadline
constraint). The goal of such a resource provisioning problem
is to maximize the overall priorities of completed workflows
in the ensemble, within the budget and deadline constraints.
In this scenario, we need to decide which workflow to execute
and select the appropriate instance types for each task in
the workflow. We should avoid executing workflows that are
unlikely to finish before deadline and use the limited budget
to execute as many high-priority workflows as possible.
C. User Requirements

Performance vs. Monetary cost. Users can have very
different performance and monetary cost optimization goals
and constraints. One widely studied problem is to minimize
the monetary cost of executing workflows while satisfying a

Fig. 3: Overall Design.
predefined deadline constraint. The users may also require op-
timizing the performance of workflows with budget constraint.
Many heuristics have been proposed for the two constrained
optimization problems [9], [38]. Another type of optimization
problems are skyline optimizations, which target at multiple
optimization objectives at the same time, e.g., monetary cost
and performance.

Unfortunately, existing studies propose specific heuristics
to tackle each one of them. However, we need to design a
flexible optimization system applicable to various evolving
user requirements. Since a flexible optimization system does
not include any customized problem-specific heuristic, an
important design issue is to balance the trade-off between
simplification and effectiveness.

IV. PRELIMINARY WORK AND RESULTS

In this section, we briefly introduce our current research
projects, and present some preliminary results. Specifically,
we introduce our work and results on the optimization effec-
tiveness and simplification aspects.
A. Overall Design

Figure 3 shows the overall design of our work. From the
bottom up, we have explored three projects (Dyna, ToF and
Deco) to achieve the effectiveness and simplification goals.
In our Dyna [6] project, we propose probabilistic models to
capture the cloud dynamics and a probabilistic QoS notion
to effectively minimize the monetary cost of running WaaS
for workflows. To simplify the various workflow optimiza-
tion problems, we have conducted two studies, namely the
transformation-based optimization framework (ToF) [39] and
the declarative optimization framework (Deco) [40]. ToF
embraces several transformation operations that are common
for any workflow structures and uses a cost model to guide the
selection of transformations during the cost optimization. Deco
proposes a workflow- and cloud-specific declarative language
called WLog for users to specify their optimization problems.
Deco models these optimization problems as search problems
by default to be able to solve a wide class of optimization
problems.

In Dyna, we consider both the performance and price
dynamics in the cloud to effectively minimize the monetary
cost for workflows. Specifically, we propose a probabilistic
deadline notion for users to specify their QoS requirements
in the dynamic cloud environment. A probabilistic deadline
requirement of pr% means the pr-th percentile of the workflow
execution time distribution is no longer than a predefined
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Fig. 4: Example of applying transformation operations on a
three node structured workflow.
deadline. The system embraces a series of optimization tech-
niques for monetary cost optimizations, which are specifically
designed for cloud dynamics. We develop probabilistic models
to capture the performance dynamics in I/O and network of
instances in IaaS clouds as well as the price dynamics of
spot instances. With the captured dynamics, we estimate the
execution time of tasks in the dynamic cloud as probabilistic
distributions instead of single values. We further propose
a dynamics-aware hybrid instance configuration approach to
adopt both spot and on-demand instances while satisfying
the probabilistic deadline requirements of users. The spot
instances are adopted to potentially reduce monetary cost and
on-demand instances are used as the last defense to meet
deadline constraints.

ToF formulates six common structural transformation op-
erations for the performance and monetary cost optimizations
of workflows, including Merge, Demote, Promote, Move, Split
and Co-Scheduling. The first two operations are main schemes
and the rest are auxiliary schemes. The main schemes can
directly reduce cost while the auxiliary schemes are used
to help main schemes reduce cost. Consider the example
shown in Figure 4, a simple workflow has three tasks and the
execution time of Tasks 0, 1 and 2 on the assigned instance
types are 30, 40 and 40 minutes respectively. The Move
operation only changes the start and end time of tasks and
thus is an auxiliary scheme. The Merge operation reduces the
charging hours from three to two and thus is a main scheme.
We divide the six operations into different categories to reduce
the optimization space and optimization overhead. During the
optimization process, we adopt a light-weight cost model to
guide the selection of transformations periodically. In each
plan period, we select two operations, each from main schemes
and auxiliary schemes, with the lowest estimated cost. ToF is
applicable to any workflow structure and can also be extended
by users with their customized transformation operations.

Deco is a declarative optimization framework especially
designed for the optimization problems of workflows. Deco
is able to serve a wide class of optimization problems for
workflows in IaaS clouds. It adopts the probabilistic QoS
notion in Dyna to capture the performance dynamics in the
cloud and incorporates the transformation operations designed
in ToF to efficiently reduce the monetary cost for workflows.
Deco designs a declarative language called WLog for users
to specify their workflow optimization problems. WLog is
extended from Prolog with workflow and cloud specific
extensions. Table I gives several examples of such extensions
and explains their functionality. Given a WLog program, Deco
formulates the problem of finding a good solution as a generic
search problem or even more efficient A⋆ search problem (if
users can offer some application specific heuristics to prune
optimization space). Users can easily enable the A⋆ search
using the enabled(astar) keyword shown in Table I. Deco

TABLE I: Workflow and cloud specific built-in functions and
keywords in WLog.

Function/Keyword Remark

import(dax�le)
Import the workflow-related facts generated
from a DAX file.

import(cloud)
Import the cloud-related facts from the cloud
metadata.

enabled(astar)
The A⋆ heuristic is enabled for efficiently find-
ing solutions.
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Fig. 5: The average monetary cost and execution time of
the compared algorithms on Ligo, Montage and Epigenomics
workflows.
performs a series of optimizations to automatically improve
the effectiveness of finding a good solution for provisioning
workflows. Moreover, Deco leverages the power of the GPU
to find the solution in a fast and timely manner.

In the following, we present the preliminary results.

B. Preliminary Results

Optimization Effectiveness. We compare Dyna with the
state-of-the-art algorithm [9] (denoted as Static) on three dif-
ferent workflow applications shown in Figure 1. The detailed
experimental setup can be found in our technical report [6].
Figure 5 shows the average monetary cost and execution time
of the compared algorithms. Dyna saves monetary cost over
Static by 15–73% when the probabilistic deadline requirement
is 96%. Although the average execution time of Dyna is
longer than Static, it can guarantee the probabilistic deadline
requirements under all settings.

Optimization Simplification. We compared ToF with the
state-of-the-art algorithm [9] on the Montage and Ligo work-
flows. ToF outperforms the state-of-the-art algorithm by 30%
for monetary cost optimization, and by 21% for the execution
time optimization. Please refer to our previous work [39] for
experimental details.

We use Deco to solve three different workflow optimization
problems. Specifically, we formulate a workflow scheduling
problem (single workflow and single cloud), a workflow en-
semble optimization problem (multiple workflows and single
cloud) and a workflow migration problem (multiple workflow
and multiple clouds). These use cases have covered a large
part of the research problems mentioned in Section III. Our
experimental results show that, Deco is able to obtain better
optimization results than heuristic based methods in all use
cases [40].

Many Workflow Management Systems (WMSes), such as
Pegasus [41] and Kepler [42], are widely used to manage the
execution of workflows in the cloud. Several tools such as
Wrangler [43] and cloudinit.d [44] are developed for automatic
resource provisioning in the cloud. We have developed a
prototype which integrates Deco into Pegasus to schedule and
execute the workflows and a script written with Amazon APIs
to acquire and release instances on Amazon EC2.
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V. CONCLUSION AND FUTURE WORK

Scientific workflows are emerging on IaaS clouds, and
resource provisioning has been an important research problem
for monetary/performance optimizations of the workflows. In
this paper, we review the related work on this problem and the
underlying research issues to be addressed. We have conducted
several projects aiming at designing a flexible and effective
optimization framework to simplify the workflow optimization
problems in IaaS clouds. Our preliminary experimental results
demonstrate the effectiveness of our system and its capability
to solve a wide class of optimization problems for scientific
workflows.

We have identified several directions for future research.
Firstly, we are looking into the issues of designing an energy-
efficient cloud with energy-efficient hardware/software. Sec-
ondly, we plan to discover the optimization opportunities in
multi-cloud environments.
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