
M2ICAL Analyses HC-Gammon

Wee-Chong Oon and Martin Henz
School of Computing

National University of Singapore
3 Science Drive 2
Singapore 117543

Abstract

We analyse Pollack and Blair’sHC-Gammonbackgam-
mon program using a new technique that performs
Monte Carlo simulations to derive aMarkov Chain
model for ImperfectComparisonAL gorithms, called
the M2ICAL method, which models the behavior of
the algorithm using a Markov chain, each of whose
states represents a class of players of similar strength.
The Markov chain transition matrix is populated using
Monte Carlo simulations. Once generated, the matrix
allows fairly accurate predictions of the expected solu-
tion quality, standard deviation and time to convergence
of the algorithm. This allows us to make some observa-
tions on the validity of Pollack and Blair’s conclusions,
and also shows the application of theM2ICAL method
on a previously published work.

Introduction

One of the main difficulties in current research on algorithms
that generate game-playing programs is how to evaluate the
final generated player in a fair and accurate way. The cause
of this difficulty is the fact that there is in general a non-zero
probability that a “weaker” player defeats “stronger” player
in a head-to-head match. This phenomenon has been dubbed
the “Buster Douglas Effect” (Pollack & Blair 1998). Even
though algorithms like competitive co-evolution have been
found to converge to optimality when this phenomenon does
not occur (Rosin & Belew 1996), in all practical games the
Buster Douglas Effect is present. As a result, comparison-
based algorithms that determine the relative strength of two
players by playing them against each other are using an “im-
perfect” comparison function.

In this paper, we describe howMonte Carlo simula-
tions can be used to derive aMarkov Chain model for an
ImperfectComparisonAL gorithm, using a technique called
the M2ICAL method. We use this technique to model the
HC-Gammon backgammon algorithm into a Markov Chain,
which allows us to take advantage of existing Markov Chain
theory to evaluate and analyse the algorithm.

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Definitions and Notations
Let P be an optimization problem, andS the set of solutions
to this problem. In general, any optimization problemP can
be expressed in terms of a correspondingobjective function
F : S → R, which takes as input a solutions ∈ S and
returns a real value that gives the desirability ofs. Then, the
problem becomes finding a solution that maximizesF . We
further define acomparison functionQ : S × S → S as a
function that takes two solutionssi andsj and returns the
superior one. If the comparison function does not always
return the correct solution, it is calledimperfect.

The aim of the game-playing problem is to create a pro-
gram that can play a game well (so the solution spaceS
of the problem is the set of all possible game-playing pro-
grams). Games can be represented by a directed graph
G = (V, E), where each vertex represents a valid posi-
tion, andE = {(vi, vj)| there is a legal move fromvi to
vj}. For simplicity, we only examine 2-player games, turn-
taking, win-loss games.

Definition 1 (Player) A player of a gameG = (V, E) is a
functionPL : V → E that takes as (one of its) input(s) a
valid positionv ∈ V and returns a valid move(v, v′) ∈ E.

Our definition of a player is a function that takes as one
of its inputs a legal position and returns its move. This in-
cludes non-deterministic functions as well as functions that
take information other than the current game position into
consideration when making a move.

One way to compare two players is to play them against
each other and select the winner. Formally, thisbeatscom-
parison function (BCF) is defined as follows:

BCF (PLi, PLj) =

{

PLi PLi beatsPLj

PLj otherwise.

for all PLi, PLj ∈ S (1)

For turn-taking games, the first argument is the first player
and the second argument is the second player. We use the
shorthand notationPLi � PLj to represent the case where
BCF (PLi, PLj) = PLi; andPLi ≺ PLj to represent
BCF (PLi, PLj) = PLj .

The objective of the game-playing problem is to find a
player with maximumplayer strength. In this research, we
make use of the following definition of player strength. The

notation1f is the indicator function for a boolean function
f , i.e. 1f returns 1 iff is true and 0 iff is false.

Definition 2 (Player Strength) The strength of player
PLi, denoted byPS(PLi), is

PS(PLi) =
∑

1≤j≤|S|

1PLi�PLj
+

∑

1≤j≤|S|

1PLj≺PLi
(2)

HC-Gammon
In computer science, the greatest success in backgam-
mon is undoubtedly Gerald Tesauro’sTD-Gammonprogram
(Tesauro 1995). Using a straightforward version of Tempo-
ral Difference learning called TD(λ) on a neural network,
TD-Gammon achieved Master-level play. Pollack and Blair
(Pollack & Blair 1998) implemented a simple hill-climbing
method of training a backgammon player using the same
neural network structure employed by Tesauro (which we
will call HC-Gammon). Although HC-Gammon did not per-
form as well as TD-Gammon, it produced sufficiently good
results for the authors to conclude that even a relatively naive
algorithm like hill-climbing exhibits significant learning be-
haviour in backgammon. This supported their claim that the
success of TD-Gammon may not be due to the TD(λ) algo-
rithm, but is rather a function of backgammon itself.

Experimental Setup
Pollack and Blair used the same neural network architecture
with 3980 weights employed by Tesauro to represent their
backgammon players. The player evaluates the resulting po-
sitions from all possible moves for the given dice roll, and
chooses the move that leads to the position with the high-
est evaluation. The initial player had all weights set to 0.0,
which we call theall-zero neural network(AZNN).

Pollack and Blair implemented and tested 3 different hill-
climbing algorithms. In Experiment 1, the challenger is de-
rived via amutation function, where gaussian noise is added
to the neural network weights of the current player. In their
paper, the only description provided of this function is the
phrase“the noise was set so each step would have a 0.05
RMS distance (which is the euclidean distance divided by√

3980).” Without further clarification available, we assume
that the mutation function is as follows.

Let wi, 1 ≤ i ≤ 3980 be the weights of the current
player, andw′

i be the corresponding weights of the chal-
lenger derived from the current player. For each weight
wi we randomly introduce gaussian noise to the magnitude
of xi, which will be normalized with a multiplierk, i.e.
w′

i = wi + kxi. The value ofk is computed as follows:

k = 0.05 ·
√

3980/
∑

i

(w′
i − wi)2 (3)

If the new player (the “challenger”) defeats the original
player (the “incumbent”) in 3 out of 4 games, which com-
prises two pairs of games using two different sequences
of dice rolls (calleddice streams), then the challenger is
deemed to be victorious. When this occurs, the incumbent
is replaced using thedescendent function:

incumbent= 0.95 · incumbent+ 0.05 · challenger (4)

Experiment 2 increased the challenger’s requirements from
having to win 3 out of 4 games to 5 out of 6 games after
10,000 iterations, and then to 7 out of 8 games after 70,000
iterations; the values 10,000 and 70,000 were chosen after
inspecting the progress of their best player from Experi-
ment 1. The final evolved player from Experiment 2 was the
strongest player created, which was able to win 40% of the
time against a reasonably strong public domain backgam-
mon program calledPUBEVAL. Finally, Experiment 3 im-
plemented a dynamic annealing schedule by increasing the
challenger’s victory requirements when over 15% of the the
challengers were successful over the last 1000 iterations.

The M2ICAL Method
The M2ICAL method is a process that is divided into 4
phases:

1. Populate the classes of the Markov Chain.

2. Generate thewin probability matrixW .

3. Generate theneighbourhood distributionλi for each class
i.

4. Calculate the transition matrixP usingW andλ.

In this section, we describe how we applied theM2ICAL
method to HC-Gammon to derive a Markov Chain model
with N = 10 states. Further details can be found in (Author
2007).

Estimating Player Strength
We make use of Monte Carlo simulations to estimate the
strength of a player over the space of all possible players.
The target playerPLi plays a match ofg games against each
of Mopp = 100 randomly generated opponentsPLij, 1 ≤
j ≤ Mopp. To divide all players intoN unique sets of play-
ers of similar strength, we group them byestimated player
strength ofPLi, denoted byF ′(PLi):

F ′(PLi) =















Mopp
∑

j=1

(1PLi�PLij
+ 1PLij≺PLi

)

(g · Mopp/N)















+ 1 (5)

We also defineF (i) be the quality measure of statei. There-
fore, the state spaceI = {i|∃PL∈S, F ′(PL) = F (i)}.

Populating the Classes
In the first phase, the task is to populate the classes of
the Markov Chain with a representative subset of the algo-
rithm’s search space by making use of its neighbourhood
function. However, HC-Gammon uses a fixed initial player
(the AZNN player). If the model was derived using play-
ers in the neighbourhood of the AZNN player, then the re-
sults will reflect the properties of this neighbourhood (rather
than the search space of the algorithm in the long term). To
address this issue, we performMsample = 200 runs of the
HC-Gammon algorithm using the AZNN player as the initial
player, advancing each run one iteration at a time in parallel
until at least 50% of the runs have experienced at least 10

replacements, i.e. the challenger has defeated the incumbent
at least 10 times. In our experiment, this event occurred after
47 iterations. At this point, we use the current players of the
200 runs as the initial sample. We call this process of run-
ning the algorithm until a sufficient number of replacements
has occurredintroducing a time-lag.

We set amaximum class sizevalue of γ̂, so that we
only retain a maximum of̂γ players per class. For each
of the Msample players, we evaluate its strength by play-
ing it againstMopp randomly generated opponents. We ran-
domly retain up tôγ = 20 players from each class gener-
ated this way and discard the rest. Then, for each playerPL
in an unchecked classi with maximal size, we generate a
playerPL′ using the mutation function, and then a descen-
dent playerPL′′ from PL andPL′ using the descendent
function. If PL′′ belongs to a class with fewer thanγ̂ play-
ers, then it is retained; otherwise it is retained with a prob-
ability of γ̂

γ̂+1 . We repeat this process untilMpop = 100

new players have been generated. If at least one of theMpop

players produced belongs to a class that initially had fewer
thanγ̂ players, then we generate a furtherMpop players from
the same class, and repeat this process until no such players
are produced out of the set ofMpop players.

Comparison Function Generalization
Knowing the probability that a playerPL beats another
player PL′ as both first and second player, we can com-
pute the probability thatPL beatsPL′ in at leastx out ofy
games (wherey1 games are as first player andy2 are as sec-
ond,y = y1 + y2). Hence, we wish to compute anN × N
win probability matrix (WPM)W , such that its elementswij

provides the probability that a player from classi beats a
player from classj playing first.

For all pairs of classesi andj we randomly select a player
PL from classi and a playerPL′ from classj and play
a game between them withPL as first player andPL′ as
second, noting the result. We repeat thisMwpm = 200 times
for each pair of classesi andj, and then compute the value
of wij as1s�s′/Mwpm.

The WPM W gives us the probabilities for winning as
first player. LetW̄ be the corresponding win probability ma-
trix that provides the winning probabilities as second player.
For a win-loss game,̄wij = 1 − wji. We define a shorthand

notationW
≥x(y1/y2)
ij to denote the probability that a player

PL from classi would beat a playerPL′ from classj at
leastx times in a match wherePL plays as first playery1

times and as second playery2 times. For example,

W
≥3(2/2)
ij = ((1 − w̄ij) · w̄ij · w2

ij) +

(w̄2
ij · wij · (1 − wij)) + (w̄2

ij · w2
ij) (6)

The probabilities of other results based on multiple games
can be computed in a similar manner. In this way, we avoid
having to recompute our probability distributions for differ-
ent comparison functions.

Neighbourhood Distribution
For each classi, we first generate thechallenger probability
distributionC, which gives the probability inci(j) that an

incumbent playerPL in classi will create a challengerPL′

in classj using HC-Gammon’s mutation function. This is
done using a Monte Carlo simulation by creatingMcha =
200 challengers this way, evaluating each of them, and then
estimating the probability distribution using this sample. We
store all of the generated challengers in vectors~c1,~c2 · · ·~cN ,
such that ifeval(PL′) = STR thenPL′ will be stored in
~cSTR, including a pointer fromPL′ to its parentPL.

Next, for every non-empty vector~cj , we find thedescen-
dent probability distributionDij that gives the probability in
dij(k) that a descendent created from a crossover between
a player from classi and classj will be of strengthk. To
do so, we randomly select a parent-challenger pairPL from
classi andPL′ from classj, create a descendent from the
crossover ofPL andPL′ and evaluate it. This is repeated
Mdes = 200 times to provide the probability distribution.
Note that for HC-Gammon, the descendent probability dis-
tributionDij is essentially its neighbourhood distribution.

Transition Matrix
Having estimated the values for the win probability matrix
W , the challenger probability distributionCi and the de-
scendent probability distributionDij , we can now formulate
the transition matrixP of the Markov Chain representing
HC-Gammon for each of the 3 experiments.

For Experiment 1, the transition matrixP is given by:

pik =
∑

j

ci(j) · W≥3(2/2)
ji · dij(k) (7)

whereW
≥3(2/2)
ji is computed using Equation (6).

For Experiment 2, we substituteW≥5(3/3)
ji into Equation

(7) after 10,000 iterations, andW≥7(4/4)
ji after 70,000 itera-

tions. We call these resultant transition matricesP ′ andP ′′

respectively.
The model for Experiment 3 also makes use ofP , P ′ and

P ′′. Letκ be the number of challengers that must replace the
incumbent in the lastΛ iterations before a change in compar-
ison function is made; in this case,κ = 150 andΛ = 1000.
Letα(t), α′

(t) andα′′
(t) be the probability that the algorithm is

employing at iterationt the comparison function represented
by P , P ′ andP ′′ respectively.

Let a(t) be the probability that the challenger wins in it-
erationt. To calculate this value, we require the probabil-
ities that the incumbent player is in each classi, given by
the probability distribution vector for the previous iteration
~v(t−1)[i]. Then, given the probabilityci(j) that the incum-
bent produces a challenger from classj, we can find the
probability that the challenger wins using the appropriate
winning probabilityWji by summing these values over all
combinations ofi andj.

a(t) =

N
∑

i=1

N
∑

j=1

~v(t−1)[i] · ci(j) · (α(t) · W≥3(2/2)
ji

+α′
(t) · W

≥5(3/3)
ji + α′′

(t) · W
≥7(4/4)
ji) (8)

Let b
k/l
(t) be the probability that exactlyk challengers were

victorious between iterationst − l + 1 andt inclusive. We

can assume without loss of generality thatl ≤ t. Observe
thatb0/1

(t) = 1 − a(t) andb
1/1
(t) = a(t). Fort − l + 1 < s ≤ t,

we find that:

b
k/l
(s) = b

k−1/l−1
(s−1) · (1 − a(s)) + b

k/l−1
(s−1) · a(s) (9)

In this way, we can recursively expressb
k/l
(t) in terms ofb

values for iteration(t − 1) anda(t).

Letβk/l
(t) be the probability thatat leastk challengers were

victorious in the lastl iterations at iterationt. We can easily
compute this value usingb values as follows:

β
k/l
(t) =

l
∑

i=k

b
i/l
(t) = 1 −

k−1
∑

i=0

b
i/l
(t) (10)

We can now compute the values ofα(t), α′
(t) andα′′

(t):

α(t) =

{

1 0 < t < l

α(t−1) − α(t−1) · βκ/Λ
(t) t ≥ l

(11)

α′
(t) =











1 − α(t) 0 < t < l

α′
(t−1) + α(t−1) · βκ/Λ

(t)

−α′
(t−1) · β

κ/Λ
(t) t ≥ l

(12)

α′′
(t) = 1 − α(t) − α′

(t)) t ≥ 2l (13)

α(t) = α′
(t) = α′′

(t) = 0 otherwise. Obviously, this for-
mulation can be generalized to the cases when the number
of possible annealing steps is greater than three. Once the
α values are computed for a particular iterationt, then the
transition matrix for that iterationP(t) is simply:

P(t) = (α(t) · P) + (α′
(t) · P ′) + (α′′

(t) · P ′′) (14)

Usefulness of Model
To find theexpected player strengthof the current player
after t iterations, we begin with a probability vector~v(0) of
sizeN , ~v(0) = {v1, v2, · · · , vN} that contains in each ele-
mentvi the probability that the initial player will belong to
classi. The values of~v(0) depends on how the algorithm
chooses its initial state.

Let ~v(t) be the corresponding estimated player strength
probability vector of the algorithm aftert iterations. Given
the transition matrixP of our Markov Chain, we can com-
pute~v(t) by performing a matrix multiplication of~vT

(0) andP

t times, i.e.~vT
(t) = ~vT

(0) · P (t). The estimated strength of the
player produced by the algorithm aftert iterations, denoted
by PL(t) is then given by

E(PS(PL(t))) =

N
∑

i=1

~v(t)[i] · F (i) (15)

The computation of the expected player strength requires
t · N2 floating point multiplications, which takes very lit-
tle actual computation time. In general, once the the Markov
Chain has been determined, the computation of the expected
solution quality using this method will be much faster than

running the target algorithm itself, and then using Monte
Carlo simulations to determine the estimated solution qual-
ity after every iteration. This is one of the main advantages
of using theM2ICAL method to analyze imperfect compari-
son algorithms.

While Markov Chain theory has several concise defini-
tions on the convergence of a system, including concepts of
φ-irreducibility, Harris recurrence and geometric ergodicity
of Markov Chains (Meyn & Tweedie 1993), the practitioner
is often less more concerned with the practical performance
of the algorithm. Our notion of thetime to convergenceof
an algorithm is admittedly not theoretically concise, but we
believe that it is useful to the practitioner. Essentially,we de-
tect the number of iterations required before all the elements
in ~v are identical up tok decimal places in two successive
iterations; this is done concurrently with the computationof
the expected player strength given above. The number of
iterations required for this to occur is the expected number
of iterations for the algorithm to converge to the stationary
values to a degree of accuracy ofk decimal places.

It is also useful to know the spread of the solutions gen-
erated by the algorithm. This is measured by thestandard
deviation of the solutions, and can be calculated from the
probability vector~v after any number oft iterations. We
first find the varianceσ2 of the vector:

σ2 =
N

∑

i=1

(~v[i] − µ)2 · F (i) (16)

whereµ =
N
∑

i=1

~v[i] · F (i). We can then find a range of ex-

pected values given by[µ−σ, µ+σ], whereσ is the standard
deviation. Assuming that the set of solutions generated by
the algorithm can be approximated by a normal distribution,
then about 68% of all solutions found by the algorithm will
have a strength within this range (and about 95% will be
within [µ − 2σ, µ + 2σ]).

The standard deviation helps the practitioner decide if re-
running the algorithm is worthwhile. For example, assume
that the quality of the solution generated by one run of the
algorithm is close to the predicted expected quality. If the
standard deviation is small, then it is less likely that re-
running the algorithm will produce a superior result; con-
versely, if the standard deviation is large, then it may be
worthwhile to re-run the algorithm in the hopes of gener-
ating a superior solution (although the probability of gener-
ating an inferior solution could be just as high).

Results and Analyses
Exp 1: Inheritance
Figure 1 shows the predictions given by the time-lag
M2ICAL model compared to 25 runs of HC-Gammon; the
values begin at iteration 48. The model predicts that the
expected player strength of HC-Gammon will rise steadily
from 67.80% at iteration 48 before converging to a value of
86.99%, to an accuracy of 5 decimal places, after approxi-
mately 1050 iterations. This is reasonably close to the re-
sults obtained from the average of 25 runs of HC-Gammon,

Figure 1: Time-Lag Model and experimental results for HC-
Gammon using the AZNN initial player

Figure 2: Time-Lag Model for fixed annealing schedule HC-
Gammon using the AZNN initial player

which fluctuates between 85.5% and 90.5%. However, the
model predicts that the standard deviation of the player
strength will be about 1.8 classes, overestimating the stan-
dard deviation of the values obtained from the 25 runs
of HC-Gammon, which fluctuate between 0.95 and 1.25
classes. Nonetheless, the values obtained from the actual
runs fall well within the range of values predicted by the
model.

Since the highest (10th) class falls within one standard
deviation of the expected player strength, we can expect
that about 13.6% of all players produced using this algo-
rithm will be in the top 10% of all possible players if the
strength of the players is normally distributed. Note how-
ever that since our model contains only 10 classes, we can
only predict the expected strength of the generated players
to within a 10% range, so this experiment does not show that
the algorithm will be able to generate players that can beat
very strong players likePUBEVALor TD-Gammon, who are
probably in the top 1% or better of all possible players.

Exp 2: Fixed Annealing Schedule
When the annealing schedule is at 10,000 and 70,000 iter-
ations, theM2ICAL model prediction of its expected player
strength is given in Figure 2. As expected, the results show
distinct “steps” in the expected player strengths after thean-
nealing points.

Figure 3: Time-Lag Model for dynamic annealing schedule
HC-Gammon using the AZNN initial player

The most startling aspect of this model is the fact that af-
ter both the first and second annealing point, the expected
player strength reaches a local maximum value and then
starts to decline. This occured at about iteration 12,170
when the 5-out-of-6 comparison function was used (at a
player strength of 93.30%); the algorithm reached its high-
est expected playing strength of approximately 94.76% of all
possible players after about 74,900 iterations when 7-out-of-
8 comparison function was in effect. Beyond this point, the
expected player strength decreases, until it reached a value
of 93.29% at iteration 100,000. Hence, this model shows
the possibility that not only is running an algorithm for ex-
tremely large numbers of iterations not significantly benefi-
cial to the algorithm’s performance, it could be detrimental.

Exp 3: Dynamic Annealing Schedule
Even though the time-lag model begins at iteration 48, for
simplicity we assume that the sample players that we ob-
tained at this point were from iteration 0. Surprisingly,
we find that the probability of 15% of the last 1000 chal-
lengers defeating the incumbent 3-out-of-4,α′, is close to
zero throughout the algorithm (needless to say,α′′ is even
smaller). These results are given in Figure 3, which is in ef-
fect almost exactly the same as the results for Experiment 1
(Figure 1), extended to 100,000 iterations.

Limited experiments using actual runs of the algorithm
bear out these findings: none of the actual runs using the
AZNN as the initial player ever managed to achieve the 15%
challenger success rate to elicit an increase in the compar-
ison function requirements. Once again, our experiments
contradict the results reported by Pollack and Blair, who ex-
plicitly stated that the rate of challenger success increased as
the number of iterations of their algorithm increased. Fur-
thermore, none of the players generated using any of the
configurations detailed in this chapeter were able to defeat
PUBEVALover 15% of the time. We are currently unable
to definitively explain the discrepancies in our results, al-
though there are two areas where our emulation of the HC-
Gammon algorithm is most likely to be inaccurate. The first
is in our interpretation of their mutation function, which rep-
resents our best guess given the description provided by the
authors; the second is the move ordering function for our

Figure 4: Model and experimental results for HC-Gammon
with random initial player

backgammon implementation, which was not mentioned by
the authors at all.

Random Initial Player
Evolutionary machine-learning algorithms usually begin
with a randomly generated initial player, so Pollack and
Blair’s decision to begin their experiments with the AZNN
initial player seemed somewhat counter-intuitive. It is in-
teresting to note that according to our Monte Carlo evalua-
tions, the AZNN player belongs to the 80th percentile of all
players. In order to gauge the effect of starting with a su-
perior player, we implemented theM2ICAL method on the
algorithm that starts with a neural network with weights uni-
formly randomly selected from the range of [-0.2, 0.2].

Figure 4 shows the the results for Experiment 1 using a
randomly determined initial player (only the values for the
first 300 iterations are shown here; the remaining 700 it-
erations follow the same trend). In this case, the expected
player strength for the model converges to an accuracy of
5 decimal places after 288 iterations, to a value of about
62.25%, compared to the average of the 25 actual runs,
which fluctuates between 59% and 61%. Furthermore, the
standard deviation given by the model after a large number
of iterations is around 10.05%, which is close to the sam-
ple standard deviation of the 25 runs of between 10.2% and
12.5%.

Note that the predicted value of 62.25% means that the
generated player is not much better than average. The dras-
tic difference between the strengths of the players generated
using a randomly generated player rather than the AZNN
as the initial player was almost 3 classes (or 30% of all
possible players), which reveals that although Pollack and
Blair managed to produce a strong player using a simple
hill-climbing algorithm, the hill-climbing approachin gen-
eral is not fully responsible for the success of the algorithm;
the initial starting player is crucial. In particular, thisob-
servation casts doubt on Pollack and Blair’s hypothesis that
certain qualities of backgammon“operates against the for-
mation of mediocre stable states”(Pollack & Blair 1998),
where the algorithm is trapped in a local optimal. If their
hypothesis is correct, then the identity of the initial player
should have no long-term effect on the quality of produced
players. Our experiments showed that this is not the case.

Conclusions
In this paper, we have shown how the HC-Gammon algo-
rithm can be modelled as a Markov Chain by using the
M2ICAL method. Even though we were unable to duplicate
the reported results, the model was able to predict the per-
formance of our experimental setups reasonably well despite
having only 10 classes in the Markov Chain.

Most of Pollack and Blair’s conclusions on the favourable
characteristics of backgammon to self-learning and its ef-
fect on the evaluation of TD-Gammon’s temporal difference
learning approach is based on how they managed to produce
a player that could defeatPUBEVAL40% of the time using
a simple hill-climbing algorithm. Even though we were un-
able to reproduce their result, our experiments do cast doubt
on some of their conclusions and suppositions. In partic-
ular, the dramatic effect on the generated player’s strength
depending on whether the initial player was the AZNN or
a randomly generated ANN showed that getting trapped in
local optima is still an issue for hill-climbing algorithmson
backgammon.

We do not claim that theM2ICAL method is able to pro-
duce Markov Chain models that reflect the performance of
algorithms with anywhere close to 100% accuracy; this is
impossible for practical problems due to the inherent inac-
curacies involved in doing Monte Carlo simulations. How-
ever, we hope that by implementing the model on an actual,
published algorithm, we have shown the possible benefits of
having a technique that can evaluate algorithm performance
in objective terms.

References
Author, H. 2007. M2ICAL : A Technique for Analyzing
Imperfect Comparison Algorithms using Markov Chains.
Ph.D. Dissertation, National University of Singapore, Sin-
gapore. Manuscript.
Meyn, S. P., and Tweedie, R. L. 1993.Markov Chains and
Stochastic Stability. London: Springer.
Pollack, J. B., and Blair, A. D. 1998. Coevolution in
the successful learning of backgammon strategy.Machine
Learning32:225–9240.
Rosin, C. D., and Belew, R. K. 1996. A competitive ap-
proach to game learning. InProceedings of the 9th An-
nual ACM Conference on Computational Learning Theory
(COLT-96), 292–302.
Tesauro, G. 1995. Temporal difference learning and td-
gammon.Communications of the ACM38(3):58–68.

