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Abstract— Evolutionary processes have emerged as the defining
feature of “life” in Artificial Life (Alife). When studying t he
behavior of a particular Alife form, the question naturally
arises, whether a particular run of an Alife experiment exhibits
evolutionary behavior or not. This paper presents the Observer
Framework, a formal framework for answering this question,
based upon the notion of observations made in the Alife model
at hand. Starting with defining entities and their relationships
observed during the runs, the framework prescribes a seriesof
definitions (decisions) that the observer of the Alife form needs
to make, followed by axioms (conditions) that must be met in
order to establish evolutionary behavior in particular run s. We
use the example of Cellular Automata based Langton Loops to
illustrate the Observer Framework, and suggest directionsfor
further Alife research, based upon the framework design and
the case study analysis.

I. THE PROBLEM OF OBSERVING ARTIFICIAL L IFE FORMS

Researchers in Artificial Life (Alife) routinely propose
computational environments and experiments that exhibit be-
havior of which life-like properties are claimed. Most of this
work implicitly equates life-like behavior with evolutionary
behavior (a standpoint that is not universally shared outside
of Alife). Following this approach, the first question that
arises when observing a “run” of an Alife experiment is
what are the entities, or artificial “organisms” of which one
may claim to observe evolutionary behavior. The problem
of identifying time-varying entities has been recognized by
Lehaniv and Dautenhahn [1], but is typically kept implicit in
discussions of Alife experiments. Instead, researchers appeal to
their reader’s intuition to identify the entities of evolutionary
behavior, similar to biologists who rarely worry about how
to define the organisms that are the subject of study in a
breeding experiment.1 Problems arising from this informal
approach include ambiguities in Alife research results, and the
impossibility of automating the process of detecting artificial
life in systematic experiments.

The first goal for a framework to precisely identify evo-
lutionary behavior shall therefore be to formally distinguish
the subjects of study, namely the objects of which life-like

1Sometimes, such a discussion is fruitful in biology, such asthe view of
mitochondria as organisms, replicating within higher lifeforms and through
their maternal ancestor lines.

behavior is expected, from other phenomena in the experi-
ment. Throughout the paper, we are emphasizing that such
distinctions and deliberations are crucial decisions of the
experimenter, which we call the “observer”. Based on the
precise notion of populations resulting from the identification
process, the observer can attempt to identify the ingredients
of evolutionary processes, including reproduction, heredity,
variation due to mutational changes, and finally reproductive
success based on natural selection [2], [3]. The Observer
Framework describes each of these concepts as mathematical
relationships between organisms, and thereby outlines a for-
mal framework for identifying evolutionary behavior in Alife
studies.

The paper is organized as follows: Section II formally de-
fines the Observer Framework. Section III presents the central
components of evolutionary processes cast as conditions on
entities in the framework. Section IV applies the framework
to a well-known Alife experiment—Langton Loops—as a
case study. The remaining sections describe related work,
limitations and conclusions, including design suggestions for
Alife studies arising from the presented framework.

II. T HE OBSERVERFRAMEWORK

We shall see that the way in which the observer looks
at the experiment has a decisive impact on his ability to
identify evolutionary processes. The constructivist nature of
our approach requires the observer to make these deliberations
explicit. To distinguish them from generalDefinitions, we
call them Observer Decisions. Axioms are used to specify
conditions, which need to be established by the observer. For
each fundamental component of evolution—self-reproduction,
mutation, heredity, and natural selection—the Observer Frame-
work specifies one or more Axioms specifying properties
of the entities and relationships between entities (resulting
from his decisions) that justify the claim of the respective
component.

To illustrate the framework throughout this section, we
shall use a simple example of a binary string based artificial
chemistry, which we callCBS (Chemistry of Binary Strings).



A. The Formal Structure of the Framework

We assume that the observer gains information on his
Alife experiment by making snapshot-like observations, called
states.

Definition 1: [States]Σ: set of observed states of an Alife
model in a run.

The exact definition of a “state” varies from one Alife exper-
iment to another owing to their irreducible design differences
as well as the level of abstraction at which observations are
being made. For example, in case ofCBS, we can consider
an observed state as a multiset of binary strings such as
{00101, 00101, 10101, 010, 0100, 10100}.

Definition 2: [Observed Run] A sequence of statesT =
[S1, S2, . . . , Sn], ordered according to the temporal progres-
sion of the corresponding observations, represents oneob-
served runof the experiment. The set of all observed runs
of an experiment is denoted byT .

The fundamental role of state sequences in the Observer
Framework highlights the dynamic nature of evolution, reflect-
ing the importance ofweak emergence[4], a salient feature
of most Alife studies. The model assumes that observations
are made in form of snapshot-like states, which is suitable for
many Alife experiments, but may often fail to account for the
incremental nature of observations in organic life on earth.

B. Entities and their Characteristics

The first obligation of the observer is to define of what kinds
of entities life-like behavior may be claimed.

Observer Decision 1:[Entity Set] The observer defines
uniquely identifiable entities in every state. The set of allsuch
entities is denoted byE.

The criterion to select the set of uniquely identifiable entities
in a given state of the Alife model is entirely dependent on
the observation process defined by the designer of the model.
Thus for the same set of runs of an experiment, there may be
different observed states as well as entities.

For example, inCBS, we might identify individual strings
as entities. In order to make these entities uniquely iden-
tifiable, we would associate with every string an integer
tag i. An entity corresponding to the binary strings can
be represented as[s]i. Thus a possible set of entities
corresponding to the example state given above becomes
{[00101]1, [00101]2, [10101]3, [010]4, [0100]5, [10100]6}. Al-
ternately we may define an entity as a pair of strings
with three identical leftmost bits, which would lead to
{[00101, 00101]1, [10101, 10100]2, [010, 0100]3} as the set of
entities for the same state.

Observer Decision 2:[State Function] Let n be the num-
ber of states in an observed run. The functionF : E 7→
{1, . . . , n} returns for a given entitye the indexi of the state
Si in which e is observed.

The next obligation of the observer is to identify charac-
teristics of entities that are of interest. To this aim, we use a
symbolic character space as follows:

Observer Decision 3:[Character Space]The observer de-
fines a set of characteristics for entities in the model in a

particular state or a sequence of states. Formally, define a
multi-dimensional character spaceΥ = Char 1× . . .×Charn,
whereChar i denotes the set of values forith characteristic
forming one dimension inΥ with zero element0chari

. Each
entity e ∈ E is thus a point inΥ, say e = (v1, v2, . . . vn),
wherevi ∈ Char i.
For a vectorx = (a1, a2, . . . , ar), i

th element (ai) will be
denoted asx[i]. The absence of a characteristic (Chari) in
an entity is represented by special zero element0chari

. Note
that as a run of an experiment progresses, the dimensionality
of Υ may vary because new entities with novel characteristic
might emerge or entities with particular characteristic might
disappear.

C. Distance Measures

The next component of the Observer Framework is the
dissimilarity measure(D) to define the observable differences
(Diff ) between the characteristics of the entities in a popu-
lation. The distance measure can be used by the observer to
distribute entities into separate clusters such that entities in the
same cluster are sufficiently similar to each other, compared
to the entities outside the cluster.

Observer Decision 4:[Distance Measure]An observer de-
fines a feasible distance measureD : E × E → Diff ,
whereDiff is the set of values to characterize the observable
differences between entities inE.

The range of the distance measureD, Diff is a vector of
values. LetDiff = (diff 0, diff 1, . . . , diff n), such that each
elementdiff i represents the set of differences in the values for
characteristicsChar i. The least element0diff

i
is used when

there is no observed difference between two entities forChar i.
Examples include the Hamming distance between strings

in CBS, the set of instructions where two programs may
differ, and functional differences under reaction semantics of
an artificial chemistry [5].

D. Observable Limits on Mutational Changes

Entities may change from state to state. The question arises,
which entities are considered new in a given state, and which
ones are recognizes as the “same” as entities observed in a
previous state. In the Observer Framework, the observer needs
to specify the bound vectorδmut, under which he recognizes
the persistence of an entity across states.

Reproduction also gives rise to changes in entities. In this
case, an observer has to ascertain whether an entity is a
descendent of another entity, or arisesde novo. Thus, we intro-
duce a second bound vector,δrep , for observable reproductive
mutations. This bound is crucial when working with models
where epigenetic development in the entities can be observed
[6]. In such models—including typical examples from organic
life on earth—the “child” entity and the “parent” entities
initially do not resemble each other. The observer has to wait
until the epigenetic developmental process unfolds, and then
compare the entities for similarities in their characteristics. In
less conventional experiments, the boundδrep allows us to
distinguish between parent entities and other “input” entities



involved in the reproductive process, and between child entities
and other “output” entities. Consider, for example, an artificial
chemistry where entityA reproduces according to reaction
A + B → 2A′ + C, whereA′ is a mutant child entity ofA.
Implicit in this notation is the observer decision that the pair
A and A′ enjoy sufficiently similarity with respect to their
characteristics to be considered “parent” and “child”, while
the pairsB and A′, and A and C do not. The bounds on
observable differences are formally defined as follows:

Observer Decision 5:[Mutation Bounds] Based upon the
choice of clustering distance measureD, an observer selects
suitable vectorsδmut, δrep ∈ Diff . Each component ofδmut

andδrep specifies a threshold on the recognizable mutational
changes for the corresponding characteristic.

The choice ofδmut andδrep critically affects further infer-
ences. For example, large values for both bounds would result
in the lack of identification of variability in the characteristics,
which would result in difficulties to establish natural selection.
Small values forδmut would lead to a failure to recognize
persistence of an entity across states under changes, and
small values forδrep make it hard to establish a reproductive
relationship among entities, leading to a failure of establishing
sufficient levels of fecundity.

E. Recognition and Causality

With these bounds in place, we can now formally define
persistence of entities across states.

Definition 3: [Recognition Relation] An observer estab-
lishes persistence of entities across states of the model with
(or without) mutations by defining the partial functionRec:
E ↪→ E.

The relationRec must satisfy the following axioms:
Axiom 1: ∀e, e′ ∈ E . Rec(e) = e′ ⇒ F (e′) = F (e) + 1.
Informally, the axiom states that the entities to be recognized

as same under mutational changes need to be observed in
successive states. This is to avoid the cases where observed
entities temporarily get out of the observations for certain
states and then again reappear later, which might lead to
unsound conclusions pertaining to persistence of entities. Note
that in situations where the information available on each state
is incomplete, such as typical observations on organic lifeon
earth, this axiom would need to be weakened.

Axiom 2: ∀e1, e2 in Si. 6 ∃e′ in Si+1.Rec(e1, e
′) and

Rec(e2, e
′).

This means that no two different entities in one state can
be recognized as the same in the next state.

Axiom 3: ∀e, e′. if Rec(e, e′) thenDiff(e, e′) < δmut.
Informally, if an entity in a state is recognised as being

the same as another entity in the following state, then the
difference between them must be below the mutation bound.

We aim to define reproduction from first principles, by
reducing it to a causal relationship that satisfies a number of
conditions.

Observer Decision 6:[Observed Causality] C ⊆ E × E

If C(e, e′) holds, we say thate causese′ or e gives rise to
e′. The relationC must satisfy the following axiom:

Axiom 4: [Causality] If C(e, e′) for some entitiese, e′,
thenF (e′) = F (e) + 1 and 6 ∃e′′ ∈ F (e).Rec(e′′, e′).

Informally, if an entity e is causally connected to another
entity e′, then the observer must observee′ in the next state
of e and never before.

Notice that in order to establish a causal relation between
entities, the observer does not need not refer to the underlying
reaction semantics or “inner workings” of the experiment.
Instead, the observer is free to claim causality, subject tothe
causality axiom above, as well as further conditions pertaining
to the resulting notion of reproduction and are given in the
next section. This may—in some cases—lead to problematic
conclusions as further discussed in Section VI.

F. Observation Process

All observer decisions combined make up theObservation
Processfor a given Alife modelΓ = (Σ, T ).

Definition 4: [Observation Process]An observation pro-
cessObs is defined as a computable transformation from the
underlying universe of Alife modelΓ to observer decisions
Π = (E, F , Υ, D, δmut, δrep , C) and represented as
Γ 7→Obs Π.

The condition of computability ensures that the framework
is feasible [7], which means the observation process only
involves steps that can be algorithmically programmed by the
designer of the model, and infeasible observations defined in
terms of non-verifiable claims (e.g. claims based on ‘meta-
information’) can be avoided.

III. C OMPONENTS OFEVOLUTION

Having defined the observation process, we proceed now
with observer decisions pertaining to the components of evo-
lutionary processes.

A. Reproduction

Before we can stipulate the properties required for claiming
the presence of reproduction in an Alife experiment, we need
an auxiliary relation∆ to determine that the differences due
to the reproductive mutations are bounded byδrep .

Definition 5: ∆ ⊆ E × E such that for(e, e′) to be in∆,
their differences for each single characteristicChari must be
bounded byδrep [i], that is,∀Char i ∈ Υ . D(e, e′)[i] �i δrep [i]

Based on the thus established notion of causal relationships
between entities and∆, we defineAncestorOf relation,
which connects entities for which an observer can establish
descendence relationship across generations.

Definition 6: AncestorOf = ( (C ∪ Rec)+ ∩ ∆)+

In this definition the (inner) transitive closure ofC ∪
Rec captures the observed causalityC across multiple states
even in cases when parent entities might undergo mutational
changes (Rec) before child entities complete their epigenetic
development with possible reproductive mutations. Intersec-
tion with ∆ ensures that causally related parent and child
entities are not too different from each other, i.e. reproductive
mutational changes remain below the boundδrep. The outer
transitive closure ensures that all entities in an ancestorlineage



are considered ancestors themselves. When for two entities
e, e′ ∈ E, (e, e′) ∈ AncestorOf , we say thate is observed
as an ancestor ofe′.

Fig. 1. Graphical view of the relationships between entities in successive
states. Recognition relationRδmut

, Causal relationC, andAncestorOf .

Figure 1 depicts graphically the relationships between en-
tities in successive states. Vertical lines represent the states
(S0, S1, S2, S3, S4). Various kinds of arrows represent differ-
ent relationships: recognition relationRδmut

, causal relation
C, andAncestorOf . The end points of the arrows on state
lines represent entities.

This definition formally captures the recognition of repro-
ductive relationships under parental mutations together with
reproductive mutations in the child entities along with their
epigenetic developments, which was believed to be difficultto
formalize before [8]. The formalism also captures the case of
multi-parent reproduction (without resorting to the concept of
species) since a child entity can have several ancestors that
are not ancestor of each other.

Using theAncestorOf relation, we now considerrepro-
duction. For a given run of an experiment, the observer defines
the followingParentδ relation:

Definition 7: Parentδ = { (p, c) ∈ AncestorOf | there
is no intermediate ancestor ofc beforep}.

The condition in definingParentδ is used to ensure thatp
is the immediate parent ofc. Using theParentδ relation, in
order for the observer to establish reproduction in the model,
the following axiom must hold.

Axiom 5: [Reproduction] There exists an observed run
T ∈ T of the model, where at least one instance of repro-
duction is observed, that is,Parentδ 6= ∅.

B. Fecundity

Though entity-level reproduction is essential, more signif-
icant for natural selection is the population-level collective
reproductive behavior. The observer needs to establish that
there is no perpetual decline in the size of the population, and
thus there is a statistically sufficient number of generations that
exhibit non-negative population growth. Formally we require
the observer to establish fecundity by satisfying the following
axiom:

Axiom 6: [Fecundity] There are statistically significantly
many generations of entitiesG1, G2, . . . , Gn such that(∀Gi ⊆
E)(∃Gj>i ⊆ E) . |Gj | ≥ |Gi| whereGj = {c ∈ E | ∃a ∈
Gi . (a, c) ∈ AncestorOf}.
Here, the operator|.| denotes the cardinality of a set.

We can now formulate another important axiom from evo-
lutionary perspective, which asserts that reproduction inthe
model should not cease because of harmful mutations.

Axiom 7: [Continuity of Reproduction under Mutations]
Some mutations preserve reproduction. In other words, there
exists entitiese ∈ E that reproduce (with mutations) and one
of the (mutant) children ofe also reproduces.

C. Heredity

Heredity requires mechanisms to prevent the reversal of
mutations in future generations by new mutations. To establish
heredity in Alife models, sufficiently many generations of
reproducing entities need to be observed to determine that
the number of parent-child pairs, where certain characteristics
were inherited by child entities without further mutations, is
statistically significant. We can express this condition bythe
following axiom:

Axiom 8: [Heredity] Let Ω be a statistically large observed
subsequence of a runT , and let Parentall be the set of
all parent-child pairs observed inΩ. Then, there exists a
characteristici such that the set of entities inΩ, where the
ith characteristics were inherited without (further) mutation is
statistically significant.

The axiom of heredity together with the axiom of continu-
ity of reproduction under mutation ensures that reproductive
variation is maintained and propagated across generations.

D. Natural Selection

There are several notions of selection in the literature on
evolutionary theory [9], [10], [6], [3]. In the spirit of the
Observer Framework, we choose to define natural selection as
a statistical inferenceof average reproductive success, which
needs to be established over an evolutionary time scale i.e.,
over a statistically large number of states in a state sequence.
Detailed notions of selection using fitness or adaptedness
relative to the specific abstraction of “common environment”
shared by entities and “the environment-entity interactions” are
beyond the scope of this work. Here, we define the following
(necessary) axioms for the natural selection:

Axiom 9: [Significant Observations] The observer must
observe a statistically significant population of different re-
producing entities, sayΛ (|Λ| � 1), for a statistically large
number of states in a state sequenceT ∈ T .

Axiom 10: [Sorting] The entities inΛ should be different
with respect to their characteristics and there should exist
differential rate of reproduction among these reproducing
entities. The rate of reproduction for an entity is the number
of child entities it reproduces before it undergoes mutations
beyondδmut, or gets eliminated from the population.

The following axioms are aimed at establishing a distinction
between natural selection and neutral selection [3].



Axiom 11: [Heritable Variation] There must be variation
in heritable mutations in population ofΛ. Formally, let
Childmut be the set of child entities carrying reproductive
mutations. LetVarChildmut ⊆ Childmut be the subset of
those child entities having mutations different from other
entities. We require that|VarChildmut| � 1.

This axiom implies that the number of child entities carrying
different mutations is statistically significant.

Axiom 12: [Correlation] There must be a non-zero cor-
relation between heritable variation and differential rate of
reproduction. In other words as the value of characteristics
inherited by the child entity changes, the rate of reproduc-
tion also consistently changes. Based upon the environmental
pressures with respect to a particular characteristic, therate of
reproduction might either increase or decrease owing to the
change in characteristic.

These two axioms state that a significant variation with
respect to their characteristics is observed in a population of
entities, which must be maintained for evolutionarily signif-
icant periods, that this variation is caused by differencesin
inherited characteristics, and that this variation directly affects
the rate of reproduction.

IV. CASE STUDY: LANGTON LOOPS

Having formalized the components of evolutionary pro-
cesses to be observed in an experiment, we illustrate the
Observer Framework the following section using Langton
Loops as a case study.

A. General Considerations

In general, for a given Alife model, we suggest the following
steps to instantiate the framework: The observation process
works on runs of Alife experiments, which iteratively change
the underlying states based upon the application of the updat-
ing rules. The observation process starts with the identification
of states of the experiment (Σ) and state sequences(T ) during
runs.

For every state in the state sequence, the observer needs to
identify a set of well-defined entities with suitable tagging
for individual identification (E). These entities need to be
described in terms of their measurable characteristics (Υ). The
next important task is to define the limits on the observable
mutational changes in individual characteristics of the entities
(δmut, δrep), which will in turn define the recognition relation
(Rδmut

) to determine entities persisting across states as well
to determine whether two entities might be considered for
descendent relationship.

Once the sets of entities in various successive states of the
Alife model as well as their characteristics are known, we turn
our attention to the evolutionary relationships between them.
These relationships depend upon the intermediate causal rela-
tion (C) between the entities as observed under the mechanism
of observation process. Using the limits on mutational changes
as well as causal relationship between entities, we proceed
to define the ancestor (AncestorOf ) and the parent sets
(Parent∆). These sets determine whether there are entities

which might be potentially reproducing in the model, even
with observable differences between parent and child entities
(∆).

The next stage of the observation process is to ascertain
the level of effectiveness of evolution in the model. Using the
long term observations on the model for a statistically large
number of generations, one can infer some statistical patterns
for degrees of heredity and variation.

This process establishes the validity of all or some axioms
of the framework for the given Alife model, which provides
clues to the degree in which evolutionary processes might be
at work for the Alife experiment at hand.

The case study on Langton Loops [11], based on Cellular
Automata, will illustrate this process in detail. Alife models
based on cellular automata offer a good example for an
approach that emphasizes the observation process, since in
such models replicating structures and their variations can
be observed only with respect to a specific high level of
abstraction.

B. Entities and Abstractions

We consider the case of two dimensional CA lattice based
model. An observation is defined on the CA model by as-
suming an underlying coordinate system such that each cell
in a two dimensional cellular automata (CA) lattice can be
associated with unique coordinates (represented as(x, y).) A
cell is then completely represented as< (x, y), s >, where
s ∈ [0..7] is the state of the cell. When a cell is in state
0, it is also known as aquiescentcell. For a given cell
< (x, y), s >∈ Cell, we access its coordinates as follows:
cox(< (x, y), s >) = x, coy(< (x, y), s >) = y, which
can be extended to the set of cells:∀X ⊆ Cell, co+

x (X) =
⋃

c∈X cox(c), co+
y (X) =

⋃

c∈X coy(c).
A CA-based model is initialized by setting a finite number

of selected cells to non-quiescent states. At each step, thestate
of every cell of the model is changed synchronously as per the
state transition rules. We define thestateof the Langton model
as the set of all non quiescent cells,Σ as the set of all possible
states, andT as the set of state sequences obtained starting
from some specific configuration. In the following discussion
we will consider a fixed run given asT ∈ T , starting with a
specific initial state given in Figure 2 (Time 0).

a) Entities: We define entities as pairs consisting of two
values: X , a connected set of non-quiescent cells, and an
associatedpivot. Two cells are connected only if there exists a
consecutive sequence of neighboring non-quiescent cells join-
ing them in the lattice. Thepivot of such a set are coordinates
of a cell uniquely associated with an entity in CA lattice in a
particular state. To define a pivot function, an observer may
choose the coordinates of the top left corner cell of an entity.
Formally pivot(X) = (min{co+

x (X)}, max{co+
y (X)})This

gives an obvious characterization for a two-dimensional char-
acter spaceΥ = Char 1 × Char 2 with Char 1 being the set
of all non-quiescent connected sets of cells andChar 2 being
the set of corresponding pivots, which can also be used to
distinguish identical entities in the model.



b) Distance function:D : E × E → {0, 1} × {0, 1} is
defined such that∀e, e′ ∈ E . D(e, e′) = (d1, d2), whered1

andd2 are defined as follows:d1 = 0 if both entities have same
number of cells arranged in same geometric arrangement, and
d1 = 1 otherwise;d2 = 0 when the pivot for both the entities
are the same and1 otherwise.

c) Limits on Observable Mutations:The observer next
selectsδmut = [1, 0], which means that observer can recognize
an entity in future states even with mutations (changes in the
states, number, and the arrangement of cells comprising the
entity) provided that the pivot remains the same. In contrast,
the observer choosesδrep = [0, 1] which implies that for repro-
duction, the observer demands identical geometrical structure
of the parent and child entities, although they may have
different pivots—this is essential to capture exact replication
of the loops.

d) Recognition relation:Rec : E → E is defined as
follows: ∀e, e′ ∈ E,Rec(e) = e′ ⇔ [F (e′) = F (e) + 1] ∧
[D(e, e′) ≤ δmut] Informally this means two entities in con-
secutive states are recognized same only if they have the same
pivots. This also means that the observer can recognize an
entity even with changes in the number, state, and geometrical
arrangement in the cells of an entity across states providedthat
entity does not shift in the CA lattice (which would result in
the change of the pivot).

Lemma 1:Rec satisfies Axiom1, Axiom 2, and Axiom3.
Proof: Axiom 1 and Axiom3 are satisfied by definition.

Axiom 2, which states thatRec is an injective function holds
because no two entities in the same state share the same pivot.
This is because pivot as defined above is connected to all other
cells of the entity and all the non-quiescent cells which are
connected in any state are taken together as one entity. Thus
two different entities in the same state always consist of cells
such that cells in one entity are not connected with the cells
of second entity, and hence always have different pivots.

e) Causal relation:The relationC between entities in
consecutive states is defined as follows:C ⊆ E×E such that
∀[e = [X, pivot(X)], e′ = [X ′, pivot(X ′)] ∈ E]

(e, e′) ∈ C ⇐⇒















1. co+
x (X) ⊃ co+

x (X ′)
2. co+

y (X) ⊃ co+
y (X ′)

3. pivot(X) 6= pivot(X ′)
4. F (e′) = F (e) + 1

Intuitively what we demand with above definition of causal
relationC is that child entity breaks off from the parent entity
at certain state, as can be seen in Figure 2 at time step127.

Lemma 2:The causal relationC defined above satisfies the
Causality Axiom.

Proof: ConditionF (e′) = F (e)+1 insures thate ande′

are not observed in the same state. To establish thate′ is not
the result of mutations in some other entitye′′ observed in past
(i.e., [F (e′′) = F (e)] ∧ [Rec(e′′) = e′]) we note that because
of the definition ofRec, e′′ ande′ would otherwise have the
same pivots, which means pivot ofe′′ will be included in the
set of cells ine (since [co+

x (Ze) ⊃ co+
x (Ze′)] ∧ [co+

y (Ze) ⊃
co+

y (Ze′)]), which is not possible becausee and e′′ being

Fig. 2. Self-Reproduction in Langton loops (images generated using
Bachmutsky’s Java implementation [12])

different entities in the same state cannot have cells in common
including pivot as argued above in the proof of previous
lemma.

C. Reproduction and Fecundity

Lemma 3:Axiom of Reproduction and the Axiom of
Fecundity are satisfied by the entities and abstractions on
Langton Loops described above.

Proof: These two axioms can be established by the
observer in a specific state sequence as exemplified in Figure2
and Figure 3 by repeatedly applying the recognition relation
Rec when entities are changing in number and states of cells
(retaining the pivots) and applying the causal relation when a
parent entity splits (e.g. at Time=127). The relation∆ connects
the initial parent entity and the child entity at Time=151.

With respect to Figure 2, the single parent entity is identified
at Time=0 with associated pivot. Between time steps[1 . . . 126]
the parent entity changes in number and states of its cells but
the pivot remains the same, hence according to the definition
of Rec as explained above, the observer can recognize the
entity in these successive states even while they change their
structure. At Time=127, the parent entity is observed to be
splitting into two identical copies. One of these is again
recognized as the original parent entity because its pivot
remains the same, and the second entity is causally related
with the parent entity as per the definition ofC. To see this,
notice that the parent entity at Time=126 contains all the cells
of the child entity appearing at Time=127, which satisfies the
definition of C. Between time steps128 and151 both parent
and child entities undergo changes in the number and states of
their cells but their pivots remain fixed. Hence they can again
be recognized. Finally at Time=151 the child entity becomes
geometrically identical to the original parent entity, therefore
the parent entity at Time=0 and the child entity at Time=151
are related using∆. The transitive closure finally give us the
final descendence relationship between the parent and the child
entity.



Fig. 3. Fecundity across generation in a population of Self Replicating Lang-
ton Loops (image generated using Bachmutsky’s Java implementation [12])

D. Mutations, Inheritance, and Natural Selection

Langton loops, though self-replicating, do not exhibit be-
havior that can be interpreted as reproductive and inheritable
mutations. This can be attributed to the choice of the un-
derlying state transitions defined for the cells in the model.
Evoloops, Samaya’s extension of Langton loops represent
an attempt of adding inheritable mutations to this style of
Alife experiments [13]. In his model, the loops differ in the
number and geometrical arrangement of cells. The population
witnesses variations of different kinds such that different
reproducing loops are scattered on the lattice, forming irregular
colonies. Evoloops and their evolution can be analyzed in the
Observer Framework by suitably modifying the definition of
the distance measureD to measure the differences between
the entities in the number and geometric arrangement of cells
and by changing limitδrep such that the observer is able to
establish a descendence relationship even when the parent and
the child entities are not identical.

V. RELATED WORK

Not much work focussing on the observation process for
Alife studies has been reported in literature. The framework
presented here, however, can be seen in contrast to other
proposals to definenumerical parametersor statistics [7] to
recognize life in a model. We are not sure whether there can
be simple numerical definitions capturing the essence of life
in arbitrary models and even if so does not seem to be the
case with the current proposals. The difficulty arises out of
intricate nature of selection inevitably involving non trivial
identification of the population of evolving entities.

Langton defined a quantitative metric, calledlambda pa-
rameter, to detect life in any generic one-dimensional cellular
automata model based on transition rules [14]. Bedau et al.
discuss a classification of long-term adaptive evolutionary
dynamics in natural and artificially evolving systems by defin-
ing activity statistics for the components, which quantifies

their adaptive value [15]. These approaches implement the
identification process of entities emphasized in the Observer
Framework.

Self-reproduction, which has a long history of research
starting from the late 1950s [16] has evaded precise formal
definition applicable to a wide range of models [1]. In some of
the discussions related to self-replication in cellular automata
models [13], [17], formalizations of reproducing structures
are presented, but they do not attempt to provide a general
framework for observing reproduction or other components of
evolutionary processes. The existing attempts at formalizing
reproduction are reminiscent of our definition of entities
(loops) as discussed in Section IV.

VI. L IMITATIONS

The decision to equate life with evolutionary processes
excludes for the scope of this work interesting processes
that in our view lie outside the set of essential ingredi-
ents of evolutionary processes, including metabolism [18],
self-organization [19], and autonomous and autopoitic pro-
cesses [20].

The framework does not place direct emphasis on the
notion of emergence. In our current setting, the notion of
strong emergenceis only implicitly present and indeed the
element of surprise[21] often associated with emergence
is not represented in the framework. Similarly thethe el-
ement of autonomyof emergent processes with respect to
the underlying micro-level dynamics is not addressed in the
framework. Nonetheless the idea ofweak emergence[22],
which emphasizes the importance of experimental simulation
for the emergence of high level macro-states, is fundamental
to the framework.

Like any other generic specification framework, the Ob-
server Framework also suffers from the weakness of admin-
istering false positives.False positiverefers to a situation
where observations and consequent inferences on a model
result in a claim of the presence of a certain property in
the model which actually does not exist. The problem of
false positives is due to the necessarily domain-independent
definition of causality, which cannot account for actual causal
relationships within the underlying micro-level dynamicsof
the experiment. The generic nature of causality might give
rise to false claims on the presence of evolution in the model.
For example, an observer might decide to “ignore” entities
in some states in the beginning and then choose later on to
observe them in some other states so that to use them for
establishing (false) evolutionary relationships, which would
not have been possible had he not preferred to ignore them
earlier. The problem of selectively observing entities in various
states requires additional constraints in the framework.

VII. C ONCLUSION

A. General Remarks

We have formalized an implicit underlying component of
Alife studies, namely the observation process, by which en-
tities are identified and their evolution is observed in par-



ticular runs. Under the assumption that the essence of life-
like phenomena is their evolutionary behavior, we developed
a framework to formally capture basic components of evolu-
tionary phenomena. The observation process as specified in the
framework may be carried out manually or can be automated
and integrated within the model.

The Observer Framework defines aspects of life including
recognition of reproductive relationships under parentalmuta-
tions as well as reproductive mutations in children along with
their epigenetic developments, which were previously believed
to be difficult to formalize [1], [8]. The framework also cap-
tures the case of multi-parent reproduction (without resorting
to the concept of species), and the case of reproduction without
overall growth of the population [1].

The framework design and the case study analysis provides
the following clues for Alife experiment design to improve the
ability to witness evolutionary phenomena in runs.

B. Design Suggestions for Alife Research

1) Sufficient Reproduction with Variation:Alife experi-
ments should be designed such that there exist a potentially
large set of reproducing entities, which are semantically re-
lated and have significant variation in their characteristics.
Semantic relatedness means that sufficiently many variations
of reproducing entities should be reproducing themselves,
since otherwise most of the reproducing entities would have
to appearde novoduring experiment runs, which will make it
difficult to meet the axiom of Heritable Variation (Axiom 11).

2) Measurable Rates of Reproduction:Alife experiments
should be designed such that it is possible to impose measures
for determining the rates of reactions which can be used to
estimate variation in the rates of reproduction in a population.
This measurement of reproduction rates should be independent
of the algorithm that selects entities for reaction. It can be
argued that in Alife experiments, where all (reproductive)
reactions take place in a single step, natural selection—which
can be observed only when different entities reproduce at
different rates—may be difficult to observe.

C. Further Work

The Observer Framework can be extended in several inter-
esting directions, including the following:

• The essence ofstrong emergencecould be captured
by considering several observation processes at different
organizational levels.

• Conditions for overlapping evolutionary processes—
examples from real life include co-evolution, and sexual
selection versus environmental selection—could be for-
mulated within the framework.

• Stricter axioms may be able to partially overcome the
problem of false positives, such that false claims of
causality are bound to give rise to insurmountable dif-
ficulties in meeting other aspects of the framework.

• Additional concepts and axioms may lead to distinction
between genotype and phenotype, and a definition of
Darwinian and Lamarckian evolution within the Observer

Framework [3]. This distinction may then lead to a
precise definition of sexual reproduction [23].

• Further insights shall be gained by applying the frame-
work to novel classes of Alife experiments to refine the
framework.
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