
COMPOzE — Intention-based Music Composition through Constraint
Programming

Martin Henz
Programming
Systems Lab

Stefan Lauer
Computer Science

Department

Detlev Zimmermann
Graduate School for
Cognitive Science

University of Saarland
Im Stadtwald

D-66041 Saarbrücken, Germany
E-mail:fhenz,lauer,detlevg@cs.uni-sb.de

Abstract

The goal of this work is to derive four-voice music
pieces from given musical plans, which describe the har-
monic flow and the intentions of a desired composition.
We developed the experimentation platform COMPOzE for
intention-based composition. COMPOzE is based on con-
straint programming over finite domains of integers. We ar-
gue that constraint programming provides a suitable tech-
nology for this task and that the libraries and tools avail-
able for the constraint programming system Oz effectively
support the implementation of COMPOzE.

This work links the research areas of automatic music
composition on one hand and finite domain constraint pro-
gramming on the other, and contributes the tool COMPOzE,
which practically demonstrates the potential of constraint
programming to open up new areas of application for auto-
matic music composition.

1 Introduction

The aim of this project is to build a system for the auto-
matic composition of music.

Music experts are often skeptical about music which
is autonomously composed by computers. We share this
skepticism and therefore chose—instead of completely au-
tonomous composition—the task of composition to accom-
pany multimedia presentations as our application domain.
In this context, music serves as acoustic background, and
supports the intentions of the presentation using the appro-
priate musical effects.

The system developed in the project consists of two main
modules: thearrangement systemAARON [12] and the
composition systemCOMPOzE. AARON derives amusical

planfrom the intentional and metric structure of a given pre-
sentation by proceeding in two steps. In the first step, it gen-
erates a vector of musical parameters describing in musical
terms how the given intentions ought to be realized. In the
second step, it generates from these musical parameters an
harmonic progression. The harmonic progression fixes the
metric, rhythmic and harmonic structure, but leaves open
the harmonic elaboration and the melody.

COMPOzE derives concrete audible music (i.e. MIDI
data) from a musical plan and an harmonic progression. In
this presentation, we focus on the COMPOzE subsystem.
COMPOzE produces a progression of four voice chords
(soprano, alto, tenor, bass), which implements the musical
plan generated by AARON and is in accordance with stan-
dard musical laws. To accomodate different musical tastes
and to allow for easy tuning of the system, we want to open
up the composition process to the user by giving her max-
imal flexibility in the choice of the musical laws. COM-
POzE’s graphical user interface allows the user to choose
musical laws by direct manipulation. The composition pro-
cess is visualized including its solutions. The user can listen
to and compare the solutions by mouse click.

It turns out that this task of open intention-based compo-
sition can be elegantly described as a constraint satisfaction
problem and efficiently implemented using the constraint
programming (CP) system Oz. The main contribution of
COMPOzE is to demonstrate that CP in general and Oz
in particular provide an adequate computational framework
for open intention-based music composition.

2 Musical Plan

The given musical plan consists on the one hand of an
harmonic progression. An harmonic progression is a se-
quence of harmonic functions. As an example, consider:



T9 S6 D
7

4 D 7 T
7

s
3

DT D 7 T

Additionally, a basic tonal key is given in which the score
is to be set. Throughout the paper, we assume that the basic
tonal key is C major. Every harmonic function corresponds
to a certain tonal scale and limits the pitches of the corre-
sponding chord to three tones. The harmonic functionT
selects themajor tonicscale of the basic key, and fixes the
pitches of the chord to the first, third and fifth tone of this
scale, in our case the tonesc, e or g. Similarly, the harmonic
functionsSandD select the majorsubdominantanddomi-
nantscales, and the harmonic functionst, s, andd select the
minor instead of the major tonal scales. An introduction to
these basic notions of harmony is given in [1].

Additional attributes of the harmonic function may force
disharmonic tones into the chord as indicated by numeric
upper indices to the function symbols, mix harmonic func-
tions as indicated by function symbols as upper indices, or
fix the bass voice to a certain tone as indicated by the nu-
merals below the symbols.

On the other hand, COMPOzE has access to the musi-
cal parameters generated by AARON (Section 1). This is
necessary in order to deduce conditions for the movement
of single voices. The following vector of musical parame-
ters describes for instance the musical restrictions derived
when preparing the music for the ending of a presentation
context:

Rhetoric: finish Melody: downwards
Tempo: slow Rhythm: calm
Metric: metrical Harmony: soothing

A typical parameter used by COMPOzE describes the
course of the melody voice, in our case the soprano:
“Melody: downwards” forces the last pitch of the soprano
to be well below the first one, while all others must lie be-
tween those two.

3 Composition Rules

In addition to the musical plan, the generated sequence
of chords needs to obey the rules of composition, most of
which we adapted from standard textbooks on harmony [6,
4]. To explain the implementation of these rules, we are
using the following two examples:

Crossing Prohibition: The voices within one chord may
not cross, in a sense that a lower voice may not play
a higher note than a higher voice. For example, the
bass may not play a higher note than the tenor within
a chord.

Jump Law: A jump of a voice from a chord to its neighbor
that exceeds a given distance must be soothed in the
following chord by a jump of one or two steps in the
opposite direction.

4 Related Work

An interesting approach to the simulation of Jazz impro-
visations is described in [5]. The system takes as input a
chord progression to which a melody is automatically im-
provised. Besides aesthetic criteria, there are no restrictions
such as intentions given. The algorithm generates in the
first step a certaincontour. This contour represents the main
shape of the melody and is derived by a regular grammar. In
the second step the concrete pitches are chosen using con-
straints.

The expert system CHORAL [2] is a system for harmo-
nizing chorals in the style of J.S. Bach. The input is a fixed
soprano (melody) voice of a certain choral. The system’s
task is to generate a four voice score according to the har-
monic rules of Bach’s epoche (17th and 18th century) in
traditional musical notation. The system uses a rule-based
heuristic search with backtracking. The knowledge base
contains 350 rules, which may be absolute or heuristic. The
absolute rules represent conditions which must be strictly
obeyed. The heuristic rules do not have to be strictly sat-
isfied, but they are necessary to support composition deci-
sions based on knowledge about the asthetic appearance of
chorals.

In [7], a system is described that automatically derives a
four voice score from a given melody, i.e. it composes the
missing bass and middle voices. The basic musical knowl-
edge needed for realizing the scores is represented in an
object-oriented framework. The composition task is repre-
sented as a constraint system. The algorithm has two main
steps. In the first step, constraints are applied which repre-
sent relations of intervals between notes of a single voice in
neighboring chords. The second step concerns constraints
which represent relations between notes of the four voices
in each single chord. The search algorithm is based on back-
tracking.

5 The Composition Task as a Constraint Sat-
isfaction Problem

The most suitable framework in which to formalize the
composition task is provided by the theory of constraint sat-
isfaction [11]. Cast into a constraint satisfaction problem
(csp), the problem looks as follows:

� In general, there aren � v variableswheren is the
number of chords in the sequence andv the number of
tones in each chord. In our case, we have 4 voices in
each chord, namely bass, tenor, alto and soprano. We
name the variables as follows:B

i

; T

i

; A

i

; S

i

, where
i 2 f1 : : : ng.

� Thedomainfor these variables is given by a range of
playable pitches.



� The harmonic functions and the composition rules
can be formulated asconstraintsruling between one
or several variables. For example, the crossing prohi-
bition in Section 3 can be expressed by the following
constraint:

8

i2f1:::ng

(B

i

� T

i

� A

i

� S

i

)

To solve thiscsp it turned out that approaches from Op-
erations Research are not able to account for the variety of
present constraints. Thus, we used the framework of CP [3].
Recent developments in CP culminated, among others, in
the system Oz [10] that we use as implementation platform.

6 Constraint Programming

The goal of CP is to progressively restrict the set of pos-
sible values for variables using the given constraints, until
finally, a unique value has been found for each variable.

The set of possible values is kept in theconstraint store.
For example, the fact that the base pitch of the first chord
must be taken from the first 25 pitches of the scale is ex-
pressed by the constraintB1 2 f0 : : :24g in the constraint
store. More complex constraints are expressed bypropaga-
tors that observe the constraint store and amplify it if possi-
ble as depicted below.

constraint store

propagator � � � propagator

7 Composition Rules as Propagators

A propagator inspects the store with respect to a fixed
set of variables. When values are ruled out from the domain
of one of these variables, it may add more information on
others to the store, i.e., it mayamplify the store by adding
constraints to it. As an example consider the crossing pro-
hibition in Section 3. It can be expressed for the first chord
by installing the following three propagators:

B1 =<: T1 T1 =<: A1 A1 =<: S1

To explain how they can amplify the constraint store, let
us assume thatA1 is constrained tof30 : : :45g, andS1 to
f25 : : :60g. Then the third propagator will exclude the val-
ues25; : : : ; 29 from the domain ofS1, reducing its domain
to f30 : : : 60g. Vice versa, if later on it becomes known
thatS1 2 f30 : : :40g, thenA1 will also be constrained by
A1 2 f30 : : :40g. Note that this propagator remains active,
waiting for more information on eitherA1 or S1 to arrive.
It only ceases to exist, when it becomes clear that it will
never amplify the store again. Since it is not known in ad-
vance when the propagators will be able to perform their
computation, they should be viewed as concurrent entities

that observe the constraint store and amplify it whenever
possible.

Similarly, we implement the Jump Law in Section 3 by
a propagator that observes the distance between two neigh-
boring tones of a voice. For example, the Jump Law is in-
forced on the bass voices of the first three chords by the
following Oz program:

thread

if {FD.distance B1 B2 ´>:´ JumpDistance}

then {FD.distance B2 B3 ´=<´ 2}

if B1 >: B2

then B2 <: B3

else B2 >: B3 end

else true end

end

The conditional is moved to a concurrent thread of com-
putation. As soon as the condition betweenif andthen
becomes logically implied by the constraint store, the con-
ditional will reduce to thethen part, which will emit a
propagator forFD.distance and another conditional. If
the negation of the condition becomes logically implied,
the conditional just disappears, as indicated bytrue in the
else part.

8 Search

Constraint propagation typically does not suffice to de-
termine the values for all variables of thecsp. Thus, after
exhaustive propagation, a non-determined variable is spec-
ulatively constrained to one of its remaining values. This
decision typically enables some propagators to exclude val-
ues for other variables. Thus the search space is continu-
ously pruned while it is being explored. For a more detailed
treatment of search and finite domain programming in Oz
consider [9].

9 The Experimentation Platform COMPOzE

COMPOzE takes as input a musical plan, as given by the
user or generated by AARON. The output of COMPOzE is
one or several compositions that implement the given mu-
sical plan and fulfill user defined criteria. Figure 1 shows
a snapshot of the current COMPOzE interface after config-
uration by a user. COMPOzE allows a user to decide for
each musical law, if it should be be ignored (off), strictly
obeyed (hard), or preferably obeyed (soft) with a user
given weight from 0 through 100. The implementation uses
a branch-and-bound technique to minimize the violation of
the soft laws. If there is more than one soft law, their weight
is used to determine their relative importance. The Oz Ex-
plorer [8] is used to visualize the search tree as shown in
Figure 2. The user can interactively listen to a solution (re-
alized by generating MIDI output) by clicking on the so-



Figure 1. The COMPOzE Manager Window

Figure 2. The Oz Explorer

lution nodes represented by diamonds in the Explorer and
compare different solutions.

The current performance results are encouraging; with
most user parameters and harmonic progressions of length
20 to 30, the system either shows that there is no solution
or finds a first solution within one second of computation
using a PC (Pentium 133Mhz). If there are soft constraints
and the first solution was not optimal, the system usually
finds several better solutions within another second. The re-
sulting compositions are simplistic in style due to the rigid
dynamic structure, but very pleasing from an harmonic and
melodic point of view. Dynamics, instrumentation and per-
cussion are subjects for further research.

References

[1] C. Dahlhaus. Harmony. InThe New Grove Dictionary of
Music and Musicians. Groves Dictionaries of Music, Wash-
ington D.C., 1980.

[2] K. Ebcioğlu. An expert system for harmonizing chorales
in the style of J.S. Bach. In M. Balaban, K. Ebcioğlu, and
O. Laske, editors,Understanding Music with AI: Perspec-
tives on Music Cognition, The AAAI Press, pages 3–28. The
MIT Press, Cambridge, Menlo Park, London, 1992.

[3] J. Jaffar and J.-L. Lassez. Constraint logic programming. In
Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages, pages 111–119, 1987.

[4] K. Jeppesen.Counterpoint: The Polyphonic Vocal Style of
the Sixteenth Century. Dover, 1992.

[5] P. Johnson-Laird. Jazz improvisation: A theory at the com-
putational level. In P. Howell, R. West, and J. Cross, editors,
Representing Musical Structure, pages 291–325. Academic
Press, London, 1991.

[6] T. Krämer. Harmonielehre im Selbststudium. Breitkopf &
Härtel, Wiesbaden, Germany, 1991.

[7] F. Pachet and P. Roy. Mixing constraints and objects: A case
study in automatic harmonization. InProceedings of TOOLS
Europe, Versailles, 1995.

[8] C. Schulte. Oz Explorer: A visual constraint program-
ming tool. ftp://ftp.ps.uni-sb.de/pub/papers/Programming
SysLab/explorer96.ps.Z, 1996.

[9] C. Schulte, G. Smolka, and J. Würtz. Encapsulated search
and constraint programming in Oz. In A. Borning, editor,
Second Workshop on Principles and Practice of Constraint
Programming, LNCS, vol. 874, pages 134–150, Berlin,
1994. Springer-Verlag.

[10] G. Smolka. The Oz programming model. In J. van Leeuwen,
editor, Computer Science Today, LNCS, vol. 1000, pages
324–343. Springer-Verlag, Berlin, 1995.

[11] E. Tsang.Foundations of Constraint Satisfaction. Computa-
tion in Cognitive Science. Academic Press, San Diego, CA,
1993.

[12] D. Zimmermann. Exploiting models of musical structure
for automatic intention-based composition of background
music. In G. Widmer, editor,Proceedings of the IJCAI’95
Workshop on Artificial Intelligence and Music. AAAI Press,
Menlo Park, CA, 1995.


