Introducing Logic and Formal Methods with Coq

Martin Henz and Aquinas Hobbr

National University of Singapore

Abstract. During the past three years we have been integrating mexdthtiie-

orem proving into a traditional introductory course on fatrmethods. We ex-
plain our goals for adding mechanized provers to the coanse,illustrate how
we have integrated the provers into our syllabus to meeétboals. We also doc-
ument some of the teaching materials we have developeddarahrse to date,
and what our experiences have been like.

1 Introduction

National University of Singapore’s School of Computingdiees introductory formal
methods as CS3234 (undergraduate) and CS5209 (graduc28DT and 2008 the first
author taught CS3234 using a traditional approach with thedard undergraduate
textbooksMathematical Logic for Computer ScienfiA01] and Logic in Computer
SciencgHRO0Q]. Sad to say, the results were equally “traditional”:

1. The module was “hard” in the eyes the students due to thessig of understand-
ing of an unusual number concepts on several abstractietslev

2. Students viewed formal systems as a subject far remoweaddseful applications.

3. Weaker students often found exercises and tutorialsuatiysdry” and “boring”.

The first point made for a steep learning curve, the seconkdsed the motivation of
students to climb the curve, and the third posed furtherambess for those students who
have enough motivation to even try. In short, there was cleamn for improvement.

When the second author joined the team we proceeded to adtie=e problems
(after acknowledging the first one as only partially soledbThe goal was to shorten
the gap between theory and practice by providing relevaditagapealing applications
and to implement a “hands-on” approach by introducing adegdidactic tools.

Several tools are popularly used to teach formal systemsrimpater science, in-
cluding logic programming systems, model checkers, and §#Wers. We found it
difficult to justify the learning overhead that these to@guire given that they are of-
ten only used for one or two sections of a module. Ideally,shme tool would be
usedthroughoutthe module, reducing overhead to a minimum and allowing forem
sophisticated use as the course progressed into more cotapi¢ory.

We determined to use the proof assistant Coq. While not havéen developed
specifically for didactic use, Coq’s basic concepts haveguido be sufficiently easy for
third year undergraduates (and even, sometimes, for giadtiedents). Initial results
have been encouraging: the interactive discovery of pnesifsgy Coq provided a useful
reinforcement of the conceptual material, and we have beecessful in integrating
the theorem prover into almost every part of the course.

* Supported by a Lee Kuan Yew Postdoctoral Fellowship.

Remainder of papenVe next go through our course syllabus, focusing for eactt top
on how we have added mechanized proving to a more traditamaculum. We then
describe the course format.§, the number of assignments, weighting of various com-
ponents in the final grade) and explain its rationale. We leoiecwith a discussion of
the feedback we have received from our students and our operiexces.

Associated material.We developed a substantial amount of material (hundreds of
pages) as part of modifying this course, including slidesture notes, homework as-
signments (both paper and Coq), laboratory exercises, Giageg, and exams [HH10].
For much of the course this material was the primary referéorcthe students. When
appropriate in what follows we shall provide pointers inpeaific parts of this mate-
rial; readers are kindly reminded that this supplementatenial is drawn from several
iterations of the same course and is very much a work in pssgk&fe eventually hope

to package this material into some kind of book. Note: remdgerested in seeing the
solutions to the assignments and exams should contactectlglir

2 Syllabus

Orientation. The National University of Singapore (NUS) follows a relaty short 13-
week semester. After week 13, students have a reading pegiode exams. In recent
years, CS3234 has had between 30 and 37 students, with analiguarge number
drawn from the strongest undergraduate students in theoboh@omputing. In con-
trast, CS5209 often has more than 50 students, largely beame of the qualifying
exams (required to proceed with the PhD program) coversdbmmethods.

2.1 Traditional Logic: weeks 1 and 2

Motivation. Usually, courses in formal methods in computer science it propo-
sitional logic because it is the simplest modern formaldagsystem. The challenge is
that students are presented very early with substantiallygoncepts on two levels.

The conceptual level: the distinction of syntax and semantics, what constitutgsaf,
proof theory (natural deduction), and semantic argumentsléls).

The logic-specific level: Propositional formulas as elements of an inductively deffine
set (or of a context-free grammar), introduction and elation rules for proposi-
tional logic, and a valuation-based semantics (truth gble

We found it desirable to pursue a gentler approach at thebigj of the course, aiming
for a shallower learning curve. The idea is to start with addgamework that enjoys
very simple syntax, semantics and formal reasoning teciesicallowing the students
to focus on and properly digest the conceptual componetiis. 8pproach will also
give us the opportunity to introduce the nuts and bolts of Gextly.

We believe that Aristotle’s term logic [PH91] is appropedor this purpose. We
have been able to encode the syntax of term logic in Coq sol\sitinat students can
focus on basic Coq concepts like definitions, proofs, anticc

Basic components of term logid.he atomic unit of meaning in term logic atategor-
ical terms e.g, humans, Greeks , andmortal . We encode this in Coq as follows:

Parameter Term : Type.
Parameters Greeks humans mortal : Term.

A categorical propositiorthen puts two such terms together as in the famous universal
proposition “all Greeks are humans.” Besides the quantityersal” (all), we provide

for “particular” (some) propositions, and beside the gydiaffirmative”, we provide

for “negative” propositions, leading the the following dgfions in Coq:

Record Quantity : Type := universal | particular.
Record Quality : Type := affirmative | negative.

Data structures of typ€ategoricalProposition are then constructed from a
Quantity , aQuality ,asubjeciTerm and an objecTerm.

Record CategoricalProposition : Type = cp {
quantity : Quantity;
quality : Quality;
subject : Term;
object : Term

}.

An appropriate Codlotation enables the students to (most of the time) write propo-
sitions as natural English sentences sucAlasGreeks are humans

Semantics from rige set theoryA model M for a term logic can be given by providing
a universe of objects™, and a subset (or unary predicat&) C UM, for each ternt.
The semantics of a universal proposition is then given by

T if subject! C object!,

(All subjectare objech™ = .
F otherwise

and can be visualized by\enn diagramas follows:

mortal

living beings

The reader can see [HH1Gptes/Traditional.pdf] for the full exposition.

Introducing logical conceptsCategorical propositions are lifted inRyop using
Parameter holds : CategoricalProposition -> Prop.

Axioms can then be introduced interactively, as in:

Axiom HumansMortality: holds (All humans are mortal).
Axiom GreeksHumanity: holds (All Greeks are humans).

A graphical notation for axioms prepares the ground for reideduction:

[HumansMortality
All humans are mortal

A more interesting axiom—traditionally called Beraas a mnemonic device—expresses
transitivity of the subset relation:

All middleare major All minorare middle

[Barbard
All minorare major

Its representation in Coq introduces conjunction and ioapibn at the meta-level.

Axiom Barbara : forall major minor middle,
holds (All middle are major) A holds (All minor are middle)
-> holds (All minor are major).

Basic tactics such aplit can be observed in action in this proof of Greek mortality:

Lemma GreeksMortality : holds (All Greeks are mortal).
Proof.

apply Barbara with (middle := humans).

split.

apply HumansMortality.

apply GreeksHumanity.
Qed.

Interactive proof session€quipped with the basic reasoning techniques of traditiona
logic, students can now proceed to more complex proofs. &kadiive realm of “appli-
cations” are Lewis Carroll's logical puzzles. For examfilemn the following premises

— No ducks waltz.
— No officers ever decline to waltz.
— All my poultry are ducks.

we should be able to conclude, naturally enough, that noevffiare my poultry. After
defining appropriate terms such gmsngs_that_waltz and a complement con-
structor for negative term#¢n), we can define the corresponding lemma in Coq:

Lemma No_Officers_Are_My_Poulty :
holds (No ducks are things_that waltz) A
holds (No officers are non things_that waltz) A\
holds (All my_poultry are ducks)
->
holds (No officers are my_poultry).

The proof uses tactics that implement traditional Aridtatereasoning techniques such
as obversion and contraposition [Bor06]; the interestediee is referred to [HH10,
notes/Traditional.pdf] for details on their implementation in Coqg.

We are able to cover the basics of Aristotelian term logic wegk and a half (the
first half week being reserved for standard course intraxtyanaterial such as state-
ments on course policy). Afterwards, the students are @edipvith an understanding
of the syntax/semantics distinction, models, axioms, lasinproofs, and tactics; and
are thus ready to focus on the logic-specific aspects of @itipoal logic.

2.2 Propositional Logic: weeks 3 and 4

Prelude: rule-defined sets as data structur&sst, we have to give some kind of intu-
ition for what an inductive set is, so that we can define théssyaf the logic. However,
we would prefer to defer formal discussion of such sets aeil #ssociated proof rules
(i.e., induction) until after we cover predicate logic in week.5).

We have discovered that the simplest way to give this irtniis to take advantage
of the fact that we are teaching computer science majorspeake the connection be-
tween a (simple) inductive type and a (simple) data strectsuch as a linked list. We
provide some simple Java code that uses provides poor marsgus of the natural
numbers (witiZzero andSucc(...)) and binary trees; we then demonstrate the cor-
responding Coq code for these types as well [HH@es/Induction.pdf]. This
would be simpler, of course, if our students knew ML, but wendbhave that luxury.
In practice demonstrating the idea in Java provides sonuiorn and reinforces the
idea that logical formulas have a well-defined structureddition we can use the Java
code to start to address interesting questierts, about cyclic data structures.

Encoding as an object logicOur presentation of paper-based propositional logic is
entirely standard: we give the syntax of formulas, definesdmantics€.g, valuations,
truth tables), give the natural deduction rules, and cosandness/completeness. One
small departure from the norm is that we bring up the idea tfiionistic logic quite
early, and informally explain its connection to computepil

More interesting is how we cover the topic in Coq. Because Iveady introduced
some basic Coq in week 34.1), we have the advantage that some basic Coq con-
cepts and tactics (e.g., implication aimros) are already sinking in. To reinforce
that idea, and to keep the concepts of object- and metaltiptys separate, we first
cover propositional logic as an object logic and hew closeliiow we defined it on
paper. That is, we inductively define the syntax of formulatoduce the idea of
a valuation, and then define an evaluator fixpoint that takésraula and a valua-
tion and produces a boolean value according to the standatdtable rules [HH10,
notes/Propositional Logic.pdf 1.

We then provide a module type that gives the various natwdliction rules, and
assign two kinds of homework: first, we require that they bissé rules to prove various
standard problems in propositional logic using machinee&kd natural deduction. One
big advantage of the object-logic encoding is that they raastaxioms explicitly€.g.
apply Conj .) instead of the typical Coq tacticsflit.). We have found that
the built-in tactics do a bit too muck (g, many overloadings for théestruct tactic),
and by explicitly requiring named axioms we can match in @eggixact shape of paper-
based natural deduction proofs. For the second part of theetwork, we require that
they implement a module matching that module type, therebyipg the soundness
of the rules [HH10,cog/homework _02.v]. For natural deduction, we encourage
cross-pollination by assigning some of the same problerbsth the paper portion of
the homework and in the Coq portion.

Switching between the object logic and the meta logiace students have a handle
on propositional logic, and have gotten a bit more of a feeldoq, it is time to ask
an obvious question: why are we defining our own version ofwsmetion, when Coq
already provides it? In fact, it is extremely convenient $& @Coq’s built-in operators,
since it greatly enhances automation possibifiti&se give some problems to ensure
that students are familiar with the basic tactics; by thismpdor most these are quite
simple [HH10,coqg/Propositional _Logic _Lab2.v].

Explaining what Coq is (approximately) doin&tudents tend to be mystified by what
Coq is exactly doing. This leads to undue “hacking”, whergundents try tactics at
random until for some unknown reason they hit on the right lwioattion. After we
have introduced propositional logic and the students have dome Cog homework,
we try to explain what is going on by a series of diagrams lileedne in Figure 1.

Hy,... H,

e split, PAQ A
Fig. 1. A diagram that explains theplit tactic.

This kind of diagram shows a proof state transformation it pre-state to the
left and the post-state to the right. Here we show the tranmsfton for thesplit
tactic; the goal of the pre-state, appropriately enouga dsnjunction” A (). We have
a series of hypothesés, , . .., H,, but Coq is not sure how to proceed from them to the
goal; we symbolize this by labeling the rule with a questiark(boxed for emphasis).
Thesplit tactic tells Coq that the two parts will be proven indepertlyefinom our
hypotheses; accordingly, afterwards, Coq presents ustwifresh goalsP and @,

1 And when we get to predicate logic the ability to offload birsdento Coq is a godsend.

and again asks us how to proceed. Coq has inserted the ctojuimtroduction axiom
(Ai) to connect those goals into a proof of the conjunction.

We have found that students understand the tactics much oheady after we
demonstrate the transformations they perform by usingethigsls of diagrams. As an
aside, one time we ran the course, we provided a series aédabiat followed the
axioms of propositional logic a bit more clearly.¢, we defined a tactidisj _e that
was identical tadestruct). This turned out to be a bad idea: not only did it limit
students’ ability to look up documentation online, but itanethat they were not really
able to use Coq in a standard style after completing the eours

Case study: tournament schedulingoo often, formal systems appear to have little
practical application. To combat this perception, we likeconclude our discussion
of propositional logic with an example of using proposiabfogic to solve a com-
putational problem, via its encoding as a propositionaisBability problem: Han-
tao Zhang’s encoding [Zha02] of the Atlantic Coast Confeeeh997/98 benchmark
[NT98], as a propositional formula. The fully automatedgifrof its satisfiability using
the satisfiability checker SATO [Zha93] yields the solutida the benchmark problem
orders of magnitudes faster than techniques from operatesearch.

2.3 Predicate Logic: weeks 5 and 6

Just as in the case for propositional logic, our presemtatfgen-and-paper predicate
logic is largely standard: syntax, semantics, proof rutestatheory. We have found
that one place where our pen-and-paper explanation is aigldte use of the theorem
prover is in substitution. It is quite simple to create sowrrfulas in Coq and then use
therewrite tactic to substitute equalities, observing how Coq man#ugebinders.

Since we have already made the distinction between object-naetalogics, we
take full advantage of Coq’s binder management. That is|lemkie carefully define
substitution for paper methods, and demonstrate how Codlésithe situation as ex-
plained above, we entirely avoid defining any mechanizedtguion methods our-
selved. Among other advantages, this allows us to completely sigethe quicksand
of computable equality testing, which would be needed tandefubstitution in Coqg.

Most of the tactics for predicate logic in Cogpsts ,destruct , andintros)
are fairly simple; one exception is the tactic for univeahination generalize),
which is a little bit weird (why has my goal just changed?}thélugh usually we prefer
to just teach the Coq tactics as-is, in this case we define taroumctic that does a
universal elimination by combininggeneralize with anintro and aclear

The students report that the Coq homework on predicate (@dicch includes De
Morgan’s laws, etc.) is quite simple. We believe that thia ieflection of the tactics
being straightforward; students having had many hourspéegnce by now with Coq;
and of course because Cog handles the messy details of gtesltigic very nicely.

2 |f students are interested we may briefly mention De Bruigfiges.

2.4 Midterm exam and case study: week 7

We find it convenient to give a midterm examination after pratk logic. This exam
covers traditional, propositional, and predicate logid @&xdone entirely on paper. By
this point, the students have already had several Coq qgjiand so we are able to track
their progress in the theorem prover that way. In additiba,lbgistics of running an
exam in the laboratory are fairly complicated and so we ooljad the final §3).

Network security analysisAfter the midterm, the students are too jumpy to listen to
anything formal, and so we do not want to start a fresh topistelad, just as with
propositional logic, we like to present an example of appiypredicate logic to a real-
world problem, this time of network security analysis [OGA0

2.5 Formal Induction: week 8

After predicate logic, we return to the subject of inductigvhereas our treatment of
induction in week 3§2.2) was informal and by analogy to data structures in coerput
science, by week 8 we are ready to be quite formal.

In previous years, we discovered that students had an eslydmard time under-
standing the nuances of formal structural induction; commors include: not cov-
ering all cases, not proving the induction hypothesis in secassuming the wrong
induction hypothesis in a case, failing to generalize tlai@tion hypothesis, etc. The
advantage of deferring the formal treatment of inductiotil after predicate logic is
that students have enough familiarity with Coq to be ableswitito explore the topic.
The payoff is substantial; indeed, the single biggest im@noent in comprehension for
an individual topic occurred after we introduced mecheashineuction.

We were not able to find a textbook that covered structuraldtidn in a way we
were happy about; accordingly, we wrote some fairly extengcture notes on the
subject [HH10,notes/Induction.pdf]- By doing so, we were able to develop
the paper and mechanized versions of induction with sinmitgation and in parallel,
which allows students to follow along with their own Coq sessand experiment.

Another advantage of developing our own materials was tleasirg able to intro-
duce several related topics that are “off the beaten trdek”example, although we do
not cover it in full detail, we find it useful to explain coinction as a contrast to in-
duction. We point out that for both inductive and coinduetiypes, case analysis forms
the basic elimination rules and constructors form the bismdioduction rules. Induc-
tive types get a more powerful kind of elimination rule (fixpis) whereas coinductive
types get a more powerful kind of introduction rule (cofixms). We also point out the
connection to nonterminating vs. terminating computgteconcept which connects
back to earlier discussions about intuitionistic logic.

Generalizing induction hypothese3he end result of this approach to induction was
that most students were able to write extremely clear indeigroofs, even when the
induction in question was not straightforwaedg, when it required a generalization
of the induction hypothesis (including the often-confgssituations wherein quan-
tifiers need rearrangement before induction). A good prodier demonstrating the

technique of generalizing the induction hypothesis is devis. Suppose we have the
standard inductive definition of dataless binarges with constructoreaf : Tree and
Node : Tree — Tree — Tree; defineleaves(¢) as the function that counts all theafs

in a Tree, andnodes(t) as the function that counts all of théodes. Now prove that
for all ¢ : Tree, leaves(t) > nodes(t). Although this seems extremely obvious, the in-
duction hypotheses one gets if one proceeds directly ammuaniently weak and are
not enough to complete the inductive step. One must gereltlé goal to the stronger
leaves(t) > nodes(t) before doing induction.

Teaching with Coq becomes a bit entwined with teaching Gdae of the challenges
of using Coq as a didactic tool is that Coq is extremely coogpéid. It is amazing how
easily one runs into all kinds of didactically-inconvertiapics at awkward moments.
We try to sprinkle in some of these ideas ahead of time, sathah they come up later
students already have some context. Moreover, coveringjtiyegritty details further a
minor goal, which is to provide the students with a betteraratinding of Coq, in case
they want to use it going forward for another class or a reseproject—and indeed,
several did so. While discussing induction we also coveitbas of pattern-matchifg
exhaustive/redundant matching, polymorphic types, aqdigib arguments.

2.6 Modal Logic: weeks 9 and 10
Introducing modal logic with Coq was a bit challenging. Tdnare two main problems:

1. The semantics of modal logic is usually introduced on péyedefining a finite
set of worlds, each of which is a finite set of propositiona@nas. The relation
between worlds is then a finite set of arrows linking the warldnmediately this
runs into trouble in Cog—an example of the already mentigore@ensity for Coq
to force unpleasant didactic issues to the ferg, Coq does not have a simple way
to encode finite sets without using library code and exptajrthe importance of
constructive tests for equality (both of which we have aedith the past).

2. Coqg does not have a clean way to carry out natural deduatamfs in modal logic.
The best method we have found, a clever encoding by deWistllislunky when
compared to simple paper proofs [dWO01]. Current researcbag using modal
logic tends to prefer semantic methods over natural desluetihat is, modal logic
is used tostate properties and goatsather tharprove theorems

In the end, although our initial explanation of modal logit paper was given in the
standard propositional style, on the Coq side we decideduoge headlong into a
higher-order encoding of modal logic. Modal formulae anections from the parame-
terized type of worlds int@rop , and we lift the usual logical operators (conjunction,
etc.) from the metalogic. With judicious use Mbtation , the formulas in Coq can
look pretty close to how we write them on paper. Here is a sgzatiple of our setup:

3 One detail we have largely avoided discussing is the distindetween computable and in-
computable tests for equalityi-e., those that live imype vs.Prop . This might be a mistake;
one of the advantages of using a mechanical theorem protieatié is easy to demonstrate
the importance of maintaining the computable/incompetatitinction by simply observing
that Coq can do much less automation when computabilitytismantained.

10
Definition Proposition : Type := world -> Prop.

Definition holds_in (w : world) (phi : Proposition) :=
phi w.
Notation "w ||- phi* := (holds_in w phi) (at level 50).

Definition And (phi psi : Proposition) : Proposition :=
fun w => (w ||- phi) A (w ||- psi).
Notation "phi && psi" = (And phi psi).

We also lift the universal and existential quantifiers frdra metalogic, giving the stu-
dents a first-order (at least) version of modal logic to plahiv Even better, if we are
careful in how we lift the logical operators then the usuatjGactics éplit , etc.)
work on modal logic formulas “as one might expect”:

Goal forall w P Q,
w|-P & Q ->
w |- Q && P.
Proof.
intros w P Q PandQholds.
destruct PandQholds as [Pholds Qholds].
split; [apply Qholds | apply Pholds].
Qed.

This is extremely useful since the cost of learning a newdastuite high to a student.

Since our students already have a grasp of quantificatiep,dén understand when
we define the modal box and diamond operators in the standaydparameterized
over some global binary relation between worR)s

Definition Box (phi : Proposition) : Proposition :=
fun w => forall w, R w w -> (w' ||- phi).
Notation "[] phi" := (Box phi) (at level 15).

Definition Diamond (phi : Proposition) : Proposition :=
fun w => exists w, R w w \ (W [|- phi).
Notation "<> phi" := (Diamond phi) (at level 15).

To reason about these operators they mustitifeld ed and then dealt with in the
metalogic, but in practice we find that easier than tryinguplitate paper natural de-
duction proofs. In any event, encoding modal logic in thig/vadows the students to
prove standard modal facts without undue stress, and iriaddgjives a feel for modal
logics with quantifiers. We also introduce multimodal Iagielogics with multiple re-

lations between worlds, by parameterizing Box and Diamond:

Definition BoxR (R’ : world -> world -> Prop)
(phi : Proposition) : Proposition :=
fun w => forall w, R® w w' -> (W’ [|- phi).

*In fact, we have given them something much more powerful:cientification is fully im-
predicative, although we do not go into such details.

11

We return to this idea when we study the semantics of Hoaiie ingveek 12 §2.7).
Multimodal logics also lead into our investigation of capendence theory+e.,
the connection between the worlds relatRand the modal axioms. Here we are able
use our Coq encoding of modal logic to demonstrate some Vegget proofs of some
of the standard equivalences.d, reflexive with T, transitive with 4) in a way that
demonstrates the power of higher-order quantificationngigtudents a taste of richer

logics. For more details see [HH1flptes/Modal _Logic.pdf].

2.7 Hoare Logic: weeks 11 and 12

We turn towards Hoare logic as we near the end of the seméxrierCoq integration
was not very successful in helping students understand-etmpgrogram verifications.
The problem seems to be that mechanically verifying evetyfsimple programs leads
to huge Coq scripts, and often into tedious algebraic maations €.9, (n+1) xm =
n X m + m, wheren andm are integers, not naturals). These kinds of goals tend to
be obvious on paper, but were either boring or very frustegfibr the students to prove
in Coq. Accordingly, we did almost all of the program verifioas on paper only.
There were two exceptions: first, we required the student®ta handful of ex-
tremely short€.g, two-command) program verifications in Coq, just to gettielttaste
of what they were like. Secondly, we showed them a verificatithe 5-linefactorial
program given as the standard example of Hoare verificatibtuth and Ryan [HROO].
Although the Coq verification was more than 100 lines, it wastly demonstrating,
since it found a bug (or at least a woeful underspecificationhe standard textbook
proof. This got the key point across: one goes through the inciedissle of me-
chanically checking programs because it is the most thdraway to find mistakes; see
[HH10, slides/slides -11 b.color.pdf , 46-56] for more detail.

Success on the semantic sid®e had much better luck integrating Coq into our expla-
nation of the semantics of Hoare logic. This is a topic the¢sa introductory textbooks
skip or only cover informally, but we found that Coq alloweslto cover it in consider-
able detail. In the end, our students were able to mechénjmalve the soundness of
Hoare logics of both partial and total correctness for a &rtgnguag® The difficulty

of these tasks were such that we think they demonstrate thattodents had reached
both a certain familiarity with Coq and a deeper understagdf Hoare logic.

Part of the challenge with providing a formal semantics faraké logic is the
amount of theoretical machinery we need to introdueg,(operational semantics).
A second challenge is producing definitions that are simptaugh to make sense to
the students, while still allowing reasonably succinctgfsof the Hoare axioms.

Finding the right balance was not so easy, but after sevéshpats we think we
have developed a good approach. We use a big-step opetatonantics for our lan-
guage; for most commands this is quite simple. Howevethde command is a bit

® The underspecification comes from not defining how the fadtéunction (in math, not in
code) behaves on negative input, and the bug from not aduste verification accordingly.

® The proof of thewhile rule was extra credit. Several students solved this rulthistogic of
partial correctness; to date we have not had any studems @ total correctness variant.

12

trickier; here our step relation recurses inductively,abhineans that programs that loop
forever cannot be evaluated. Our language is simple enaughr(o input/output) that
this style of operational semantics is defensible, everisfmot completely standard.

Hoare logic as a species of modal logitVe use modal logic to give semantics to the
Hoare tuple in the style of dynamic logic [HKTO0O0]. One obwvsoadvantage of such a
choice is thaHoare logic becomes an application for modal logithat is, it increases
students’ appreciation of the utility of the previous topitis style allows the defini-
tions to work out very beautifully, as follows. Suppose duigf)step relation, written
ck p~ p, relates some starting contgxto some terminal context after executing
the command. Define the family of context-relations indexed by commasidby

pSep = ckp~y
and the multimodal universal? and existentiad)? operators as usual ov8f:

pEOZP Vo', (pSep') = (p) EP)
pEOIP 3. (pSep) = (¢ EP)

That is, if JS P holds on some statg, then P will hold on any state reachable after
running the command(recall that only terminating commands can be run); sirtyil&r
02 P holds on some staje then it is possible to execute the commanand afterwards
P will hold. Now we can give semantics to Hoare tuples as foffow

{P}c{Q} Vp. pE (P =02Q)
[P] ¢ [Q] Vp. p = (P = 02Q)

Although this style of definition is not suitable for more cplivated languages, they
work very well here and we find them to be aesthetically plepdvioreover, they lead
to extremely elegant proofs of the standard Hoare rulesadt) fvith the exception of
theWhile rule for total correctness, none of the Hoare axioms tooka®rthan about
10 lines of Coq script to prove, which put them within reactoaf students’ efforfs
This allowed us to give the entire soundness proof of the éltmagic as a (fairly long)
homework assignment. For more details, see [Hhib@es/Hoare.pdf 1.

2.8 Other Topics: week 13

The final week of the course is less formal. Since there isme tb assign homework
on topics covered, we do not want to get into huge amountstafidend any final exam
questions on those topics are by convention fairly simpl@ddition, we schedule part
of the lecture for students’ questions on material covanekle earlier part of the course.

In various iterations of the course we introduce other topitinterest, including
temporal logic, model checking, thecalculus, type theory, and separation logic. The
Curry-Howard isomorphism makes thecalculus and type theory an interesting place
to spend some time, but given the informal nature of the firedkiit is mostly a matter
of taste. We have not made any effort to integrate Coq intoohtiyese topics to date.

" Writing = to mean (lifted) implicationi.e, p = P = Q = (p = P) — (p = Q).
8 A useful rule of thumb when setting assignments: if the ingttrs can solve something in
lines, most of the students can solve the same thing in févearSt lines.

13

3 Course Format

We found it crucial for the students to acquire familiarititwCoq early in the course.
Accordingly, we gave Cog assignments and quizzes. Thiteglsn a student workload
that was significantly above average for comparable cousgese we did not compro-
mise on the number of traditional paper-based assignmi&sits result, the assessment
components in the latest incarnation of CS3234 (Sem 1 201@)dncluded:

— 7 paper assignments (at 2% each)

— 5 Coq assignments (at 2% each)

— 6 twenty minute Coq quizzes (at 2% each)

— A one hour paper midterm (10%)

— A two hour final with both Coq and paper problems (22% in Coo3fh paper)

As one might imagine, preparing and grading this many asségs requires a serious
commitment on the part of the instructors as well—and in taldli we were preparing
course slides, lecture notes, and laboratory exercisetirfaiely, our department was
able to allocate two teaching assistants to help givingutmrials/laboratories and do-
ing some of the grading; we ended up having one of the higlpgiast/student ratios
in the department. In the previous year (Sem 1 2009/2010)ievé dll ourselves, and
we had very little time to do other work. Of course, as we qurgito develop and can
begin to reuse the course materials, a good part of the lalveduced.

When we last taught the graduate version CS5209 (Sem 2 200%Ave tried to
assign less homework, hoping that graduate students wewddle to learn the material
without as much supervision. We were mistaken; quite a feaunfgraduate students
had a very hard time with Coq, which was related to the lesseruat of homework.
In the future we will assign more work in CS5209. We also ttedjive some of the
material as a group project; this also turned out to be a baa & some of the team
members did not put in nearly enough work to do well on the Cotjqf the final exam.

Academic honestyA peculiar issue arose as a result of having student turn ip Co
scripts as homework assignments. Since the scripts ardyuquée short and appear
to contain little idiosyncratic information, the temptatito copy solutions from other
students seemed to be unusually high. We countered thigagompby:

— Emphasizing the importance of academic integrity from thets

— Conducting systematic cross-checking of scripts. Thisddmout to be surprisingly
effective albeit extremely labor-intensive: even relalyssimple assignments gave
rise to a large variety of correct solutions, with a surpigdy low likelihood of two
students independently submitting identical scripts tdtiple problems.

— Giving a relatively low grade weight to the Cog homework.

— Introducing Coq quizzes, which are conducted in compuber\eth internet access
disabled and submitted at the end of the session.

— Changing the structure of the final exam to include a signifi€2oq component
along with a traditional paper component. We informed stisi@bout this very
early in the course and reminded them that if they did not waid on the Coq
homeworks they would be unlikely to do well on this part of th@m. The actual
exam was conducted in the lab, and students were alloweddosehhow they
wanted to split the available two hours between the Coq apdmpaomponents.

14

4 Student Feedback

For CS3234, we can do a fair before-and-after comparisocause the two incar-
nations of the module before introduction of Coq were givgnthe first author in
Semester 1 2007/2008 and Semester 1 2008/2009, and thecvoations after the in-
troduction of Coq were given by both authors in Semester B2AW0 and Semester 1
2010/2011. The National University of Singapore colletisient feedback on lecturers
and courses. Students provide their general opinion of théute using scores rang-
ing from 1 (worst) to 5 (best). The students also provide ettbje feedback on the
difficulty of the module, ranging from 1 (very easy) to 5 (veiifficult). The following
table includes the average feedback scores in these twgoeegs, as well as the student
enrollment and survey respondents in the listed four iret#ons:

Semester |Enrolimen{Respondeni®pinionDifficulty
Sem 12007/2008 37 24 3.58 | 3.87
Sem 12008/2009 33 20 355 | 3.95
Sem 12009/2010 32 17 4.17 | 4.00
Sem 12010/2011 30 19 3.84 | 4.05

The students can also provide written qualitative feedpatiich provides additional
anecdotal evidence for the change that the introductionaef @ade to the module.
Student feedback before the introduction of Coq (all feedh@rbatim; please keep in
mind that for many of our students English is not their firsigaage):

— “Suggestion: | would like to see more materials from a (réa) lapplication per-
spective.” (2007/2008)

— “dry module to me, cant see the link in what is taught and tldag¢ver going to
apply it. maybe can make it more real life applicable, ank &dout how in real
programming life would we use such logics. i mean we justide logics but dun
really know where we will really be making use of it.” (2000(B)

— “Quite good.. But everything is too therotical [sic]..” (28/2009)

— “There are very complex ideas which are very difficult to exp!’ (2008/2009)

Some feedback after the introduction of Coq:

— “Fantastic module. The workload is slightly heavy with &ktassignments but that
is fine. Learnt a lot.” (2009/2010)

— “Strengths: help students understand various aspectgyaf émd how it can be
applied in computer science. Weakness: Only the surfacesroé topics. cannot
appreciate their usefulness. Homeworks (paper + coq) eveek consume a lot of
time” (2009/2010)

— “The strength of this module covers various topic on formaMmng, giving me a
deeper understand on the application of discrete strutiatd had taken before.
The lecture slides and some of the additional notes are atehhelpful. | like the
idea of having Coq lab session, whereby we apply what we létowever, some
of the quiz are very challenging and i think we do need moreagpitactices (not
included in CA marks) on the Coq besides just the homework. Warkload is
rather heavy and each assignment and homework is just 2%eafpercan increase
percentage ?).” (2010/2011)

15

— “good module with many labs that can give me a good understgmd the module
software COQ” (2010/2011)

We received an email from a student of CS5209 that nicely samzes the benefits
and challenges from Coq from the students’ perspectiveotld like to thank you for

the Automated Theorem Prover (Coq) you taught in CS5209%eolirmakes life easy
while trying to prove theorem as compared to paper part. tit@d to this it saves life

of student in Final exam. In the beginning for the course etaoq a lot, but slowly
| start liking it as | understood the way tactic works and howse them. Now it has
become most favorite and interesting part of mine in thigsel (2009/2010)

5 Conclusion

We have outlined a migration of a traditional course on Idgiccomputer science
to a format that makes extensive use of the theorem prover@agapproach resulted
from teaching the material three times (twice in an undehgase and once in a graduate
setting). Along the way, we have found a number of didactbmgques to be useful:

— Introduction of Aristotelian term logic prior to propositial logic so that we can
introduce the basic concepts of logic and Coq more gently.

— Keeping the object- and metalogics separate at the begjnoiy transitioning to
direct use of Coq'$#rop once the distinction is clear.

— Delaying formal discussion of induction until after prealie logic, and then cover-
ing it in detail once students’ familiarity with Coq can pide assistance.

— Presenting a full-powered modal logic in Coq instead ofmagitng to precisely du-
plicate the experience on paper; a significant explorati@owespondence theory.

— Giving a semantics for Hoare logic so that students can pfowvéloare axioms.

— Presenting several direct applications of formal systenssmputational problems:
resource scheduling for propositional logic; network sig@nalysis for predicate
logic; and Hoare logic’'s semantics for modal logic.

Comparing the student feedback from CS3234 before andthé&eanigration, it is clear
that the introduction of Coq was well received by the stuseas$ shown by a signifi-
cant improvement of the overall student opinion of the megat the cost of a modest
increase in module difficulty. Anecdotal evidence suggiststhe students appreciated
the additional learning opportunities afforded by the usgaq throughout the courses.
The material resulting from the migration (including anegive collection of Coq
assignments, quizzes and exam questions) is availableediiH10] for the benefit of
the community of academics involved in teaching logic to pater science students.

References

[BAO1] Mordechai Ben-Ari.Mathematical Logic for Computer Sciencgpringer, 2001.

[Bor06] Donald M. Borchert, editorGlossary of Logical TermsEncyclopedia of Philosophy.
Macmillan, 2%dition, 2006.

[dwO01] Paulien de Wind. Modal logic in Coq. VU University Amesdam, |IR-488,
http://www.cs.vu.nll tcs/mt/dewind.ps.gz, 2001.

16

[HH10] Martin Henz and Aquinas Hobor. Course materials fos3234/cs5209.
http://www.comp.nus.edu.sghenz/cs3234, 2010.

[HKTOO] David Harel, Dexter Kozen, and Jerzy TiuryDynamic Logic MIT Press, 2000.

[HROO] Michael R. A. Huth and Mark D. RyanLogic in Computer Science: Modelling and
reasoning about system€ambridge University Press, Cambridge, England, 2000.

[NT98] George L. Nemhauser and Michael A. Trick. Schedulnmajor college basketball
conferenceOperations Researcid6(1):1-8, 1998.

[OGAO05] Xinming Ou, Sudhakar Govindavajhala, and AndrewAfppel. MulVAL: A logic-
based network security analyzer. 1dath USENIX Security Symposiug905.

[PH91] William T. Parry and Edward A. HackeAristotelian Logic State University of New
York Press, 1991.

[Zzha93] Hantao Zhang. Sato: A decision procedure for pritiposl logic. Association of
Automated Resasoning Newsletf@3, 1993. updated version of November 29, 1997.

[Zzha02] Hantao Zhang. Generating college conference Hzekeschedules by a SAT solver.
In Proceedings of the Fifth International Symposium on Theorg Applications of
Satisfiability Testingpages 281-291, Cincinnati, Ohio, 2002.

