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We describe a framework that combines a combinatorial approach, pattern matching and automated deduction
to generate and solve geometry problems for high school mathematics. Such a system would help teachers
to quickly generate large numbers of questions on a geometry topic. Students can explore and revise specific
topics covered in classes and textbooks based on generated questions. The system can act as a personalized
instructor - it can generate problems that meet users specific weaknesses. This system may also help standard-
ize tests such as GMAT and SAT. Our novel methodology uses (i) a combinatorial approach for generating
geometric figures (ii) a pattern matching approach for generating questions and (iii) automated deduction to
generate new questions and solutions. By combining these methods, we are able to generate questions in-
volving finding or proving relationships between geometric objects based on a specification of the geometry
objects, concepts and theorems to be covered by the questions. Experimental results show that a large number
of questions can be generated in a short time. We have tested our generated questions on an existing geometry

question solving software JGEX, verifying the validity of the generated questions.

1 INTRODUCTION

Geometry, the study of space and spatial relation-
ships, is an important and essential branch of the
mathematics curriculum at all grade levels. The study
of geometry develops logical reasoning and deduc-
tive thinking, which helps us expand both mentally
and mathematically. Children who develop a strong
sense of spatial relationships and who master the con-
cepts and language of geometry are better prepared
to learn number and measurement ideas, as well as
other advanced mathematical topics (National Coun-
cil of Teachers of Mathematics, 1989).

Euclidean geometry is a branch of mathematics
which deals with the study of plane and solid figures
on the basis of axioms and theorems employed by the
Greek mathematician Euclid. It is important to un-
derstand Euclidean geometry when studying a course
because geometry does not follow any set pattern. In
Euclidean geometry, one can only learn the axioms
and results proven from these axioms. The student
must apply these axioms with no set pattern or list of
steps for solving such questions. Therefore, a ques-
tion may have (possibly infinitely) many solutions. To
practice the required problem solving skills, students
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require a large number of different types of geome-
try questions on various concepts. Generally, text-
books and online sites provide a limited predefined
number of questions for each topic. Once practiced,
these questions lose their purpose of enhancing stu-
dent thinking. The tedious and error-prone task of
generating high-quality questions challenges the re-
sources of teachers. Hence, there is a need for soft-
ware which assists both teachers and students to gen-
erate geometry questions and solutions.

The software can also act as a personalized in-
structor. It can generate questions that cover the re-
quired topic and meet the required level of student
proficiency. Apart from helping users, the framework
of generating questions has scientific contributions to
other research areas, such as Intelligent tutor systems
(ITS) and Massive Online Open Courses (MOQOC).

Various research has been performed in automated
deduction of theorems at high school level in the ge-
ometry domain, although none with the goal of auto-
matic question generation. Instead, they mainly de-
mand users to generate the question with the help
of tools. In addition, they mainly focus on solving
and assessment of the questions. Our survey shows
that the currently available geometry systems, such as
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JGEX, Geogebra, Cinderella and Sketchpad, are not
able to automatically generate questions of user spec-
ified geometry topics.

The aim of this paper is to develop a framework
that can be used to generate geometry questions based
on specific inputs, such as geometry objects and theo-
rems to be involved in their solution. For a given set of
geometry objects, the algorithm can generate a large
set of questions along with their solutions. The so-
lutions will involve user desired theorems directly or
indirectly. Hence the framework can generate ques-
tions to test the theorem on various geometry objects
and concepts.

Our framework can generate questions involving
algebraic computations for a solution. Currently, we
restrict the relationships between quantitative enti-
ties to linear ones. Our framework has a predefined
database of theorems and concepts which can be used
for generating questions. Given a set of user-selected
objects, our system can generate all possible ques-
tions using an existing database of concepts and theo-
rems.

The main contributions of this paper are as fol-
lows:

1. Our geometry question generator combines the
complementary strengths of a combinatorial ap-
proach, pattern matching and deductive reason-
ing. It can generate geometry questions which
were not possible previously.

2. A substantial evaluation is provided that demon-
strates the effectiveness of our generator. It can
generate various categories of the questions cov-
ered in the textbooks and questions asked in SAT
and GMAT.

3. A knowledge representation is described for ge-
ometry objects and predefined theorems. This
representation helps in applying theorem informa-
tion within the generated questions.

2 RELATED WORK

In this section, we provide a general review of related
works. Computational research in the geometry do-
main started in the 19th century. However, lack of
question generating in geometry in the literature re-
quired a principled ab-initio approach in our work.
Researchers mainly focused on proving geometry
theorems. Broadly, geometric theorems are proven
using algebraic or non-algebraic methods. Algebraic
methods such as Wu’s method and Grobner bases
(GB) (Chou et al., 1994) generate algebraic equa-
tions from the given facts and relations. They involve

coordinate geometry and algebraic formulas to find
new theorems. Hence, the proofs generated by these
methods are out of scope of high school mathematics
(Chou and Gao, 2001). Therefore, we are mainly in-
terested in the non-algebraic methods. Non-algebraic
methods for automatic discovery and proof of ge-
ometry theorems can be further divided into three
approaches: coordinate-free methods, formal logic
methods and search methods.

2.1 Coordinate-free Methods

These methods are applicable to constructive geom-
etry statements of equality. Various methods have
been proposed under this category, such as the area
method (Narboux, 2010; Chou et al., 2011), the full-
angle method (Chou et al., 2000; Wilson and Fleu-
riot, 2005), the complex number method, the vec-
tor method for Euclid plane geometry (Chou et al.,
2000), the volume method for Euclidean solid geom-
etry (Chou and Gao, 2001) and the argument method
for non-Euclidean geometry (Chou and Gao, 2001).
The area method was further improved and developed
into a computerized algorithm (Chou et al., 2000;
Chou and Gao, 2001). These methods can only be
applied in constructive geometry, which is outside the
scope of this paper.

2.2 Formal Logic Methods

Theorems in Tarski’s geometry were proven using
Interactive Theorem Prover (ITP) (McCharen et al.,
1976), albeit limited to several trivial theorems. ITP is
an interactive theorem prover based on the resolution
principle, which generates resolution style proofs that
resemble traditional proofs. In 1989, Quaife contin-
ued the work of McCharen with Otter (Quaife, 1989).
Otter is an automated theorem prover based on resolu-
tion. A series of tactics such as Hyper-resolution, UR-
resolution, paramodulation, support set and clause
weight can improve the resolution efficiency. In
2003, Meikle and Fleuriot developed Hilbert’s geom-
etry with the theorem prover Isabelle/Isar (Meikle and
Fleuriot, 2003), an interactive and/or semi-automated
theorem prover. The greatest disadvantage of formal
logic methods is their low reasoning efficiency (Jiang
and Zhang, 2012), caused by combinatorial explosion
of their search space.

2.3 Search Methods

Fundamentally, the search method is used in a rule-
based expert system, which includes a rule database,
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a fact database and a reasoning engine. The infer-
ence rules stored in the rule database include axioms,
theorems, lemmas, formula, definitions and algebraic
operation rules in geometry. Geometric facts stored in
the fact database include geometry predicates such as
angle bisector, equidistant points, parallel lines and
perpendicular lines. The reasoning engine deduces
new geometric facts by applying inference rules to the
facts database. There are three ways of performing
deduction search, namely forward chaining (Zhang
et al., 1996; Wilson and Fleuriot, 2005), backward
chaining (Wilson and Fleuriot, 2005), and bidirec-
tional chaining (Coelho and Pereira, 1986).

Forward chaining starts from the hypotheses and
rules and works towards the conclusion, while back-
ward chaining starts from the conclusion and works
towards the hypotheses through rules, and the bidirec-
tional chaining proceeds in both direction simultane-
ously. In 1975, Nevins proved geometry theorems via
bidirectional chaining (Nevins, 1975), and in 1986,
Coelho and Pereira developed a prover GEOM based
on bidirectional chaining (Coelho and Pereira, 1986).
Unlike Nevins, GEOM implemented backward chain-
ing in the reasoning process and only used forward
chaining to search congruent triangles hidden in the
diagram. In 1995, Chou, Gao, and Zhang described
an integration of a deductive database into the search
methods (Chou et al., 2000; Gao et al., 1998; Gao
et al., 1998; Chou and Gao, 2001). The deductive
database method can find a fixpoint for a given geom-
etry diagram, containing all properties of the geome-
try diagrams that can be deduced using a fixed set of
geometry rules. They effectively controlled the size of
the facts database with structural deductive database
techniques.

Each search method has different advantages and
disadvantages. Forward chaining is always feasible,
but does not have an explicit reasoning goal. Back-
ward chaining has an explicit reasoning goal, but
sometimes lacks feasibility. The bidirectional chain-
ing method is feasible and has an explicit reasoning
goal, but is hard to implement. We are using forward
chaining in our framework as it is most suited for gen-
erating previously unknown quantities.

3 GEOMETRY QUESTION
SPECIFICATION

Mathematically a geometry question Q generated by
our system can be represented by a quintuple (Object
O, Concept C, Theorem T, Relationship R, Query type
qgt) where:

O 2 (lines, triangles, square, circle, ... )
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Figure 1: Connection of these components and knowledge
representations.

C 2 (perpendicular, parallel, midpoint, angle-
bisector, circumcircle...)

T 2 (Pythagorean theorem, similarity theorem,
various triangle-theorems, ...)

R 2 (syntactic, quantitative)
gt 2 (syntactic, quantitative)

In order to generate geometry questions, the user has
to provide a set of geometry objects O such as tri-
angles, squares, etc., and a set of concepts C which
the user wants the generated question to cover. Op-
tionally the user may select a set of theorems T to be
tested by the question. The relationship R can be ei-
ther syntactic such as perpendicular, parallel, etc., or
quantitative such as the length of an object, the ratio
of two quantities etc. The query type gt is the type
of generated question that can be asked to find the
hidden relationship which can be calculated from the
given information.

4 FRAMEWORK

Our framework comprises three major components
along with the knowledge databases used for storing
input, geometry figures and a set of predefined theo-
rems. Figure 1 shows the connection of these compo-
nents. The input consists of geometric objects, con-
cepts and theorems selected by the user. The input is
fed into the first component, Generating Figure (GF).
This component is used for generation of geometric
figures from the input. Each figure constitutes a di-
agrammatic schema (DS) (Greeno et al., 1979) and
a set of unknown variables representing the relation-
ship between geometric objects. The geometric fig-
ure is passed to the second component, Generating
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Figure 2: Flow diagram of the algorithm for generating
questions.

Facts and Solutions (GFS). This component is used
to find values of the unknown variables representing
possible relationships to be asked by the generated
question. GFS makes use of the predefined knowl-
edge database of axioms. It results in the formation
of a configuration (Cfg) containing known values for
some relationships between its objects. New infor-
mation refers to the generation of suitable questions.
A question is considered suitable if it covers the es-
sential information such as a new fact and a proper
reasoning for the generated fact. Currently, the deci-
sion of suitability is taken manually by the user.If the
suitability conditions for the generated configuration
(Cfg) are not met then configuration is fed into the last
component, Generating data for the figure (GD). GD
assigns values to unknown variables of relationships.
Repeated processing by GD makes the questions gen-
erated from Cfg easier and easier, because the values
assigned by GD appear as given facts in the generated
questions. GD makes use of a predefined set of the-

10 5

B C B— 4 ©
(a) (b)
length(B,D,7)
ythagoras Theorem

length (A,B,10) (Given)

length (A,D,5) (Calculated)
Pythagoras Theorem
length (A,C,5) (Given) ©
length (D,C,4) (Given)

Figure 3: (a) The figure is generated by using triangle and
perpendicular as the geometry objects using the GF com-
ponent. (b) The data is generated for (a) using the GD com-
ponent. (c) The new fact and its derivation using the GFS
component is generated from the figure shown in (b).

orems and makes sure that the assignment results in
successful generation of geometry questions. FC gen-
erated from this component is again passed to GFS
component and this loop continues until a question is
found which meets suitability condition.

Along with these components, two knowledge
databases are used in the framework, namely the
Knowledge database for the generated figures (KF)
and the knowledge database for predefined theorems
(KT). KF is generated dynamically during generation
of questions while KT is fixed and can be modified
only after the algorithm terminates. KF is generated
and modified by the GF function, and GD requires
both KF and KT for generating data for the figure.
GFS has a set of axioms but no access to any knowl-
edge databases.

4.1 Algorithm

Figure 2 represents the flowchart describing the al-
gorithm for generating geometric questions. Al-
gorithm 1 describes the flowchart in further detail.
Here, we shall explain Algorithm 1 with the help of
an example. Figure 3 shows the step by step execu-
tion of the algorithm. We select the following input in
our example.

Object: triangle and line segment
Concept: perpendicular
Theorem: Pythagorean Theorem
Number of questions: 1

In the next subsections, we will describe each
knowledge database in detail, followed by the
three components and their interaction with these
databases.
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Data: User selects object(s), concept(s),
theorem(s) and the number of
questions to be generated.

Result: Question with single or multiple

solutions.

1. Generate all possible figures consisting

of geometry objects using GF function
from the given input.

2. Find one figure which has not been
picked earlier. If found, go to next step
else terminate.

3. Save this figure using KF knowledge
database.

4. Assign values to variables of figure
obtained in second step from the
predefined knowledge database of
axioms through GFS function.
Configurations (Cfg) are generated
from this step.

5. Find one Cfg not picked earlier. If
found, goto next step. If not found,
backtracking to step 2.

6. Compare Cfg with the previously
stored figure.

7. If the comparison gives the desired
suitability then the Cfg is declared as a
generated question and the algorithm
stops. If the conditions are not met or
more number of questions are
required, go to the next step.

8. Configuration Cfg obtained from GFS
is fed into the third component to
assign more unknown variables. It
makes use of KT, a predefined
database of theorems.

9. From the configurations obtained from
GD, find a new configuration Cfg
which has not been chosen earlier. If
found, goto step 3. If all configurations
have been chosen earlier, goto step 5.

Algorithm 1: Algorithm for generating geometry
questions.

4.2 Knowledge Database for the Figure/
Figure Configuration (KF)

KF contains the question figure and configurations
using a graph-based knowledge representation. The
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Figure 4: (a)The geometry figure and (b) Partially drawn
knowledge representation of (a).

nodes of our graph represent the geometric objects.
Two nodes can have multiple labeled arcs between
them, representing multiple relationships. In addition,
an arc can be bidirectional or unidirectional depend-
ing on the relationship between the nodes. Follow-
ing the example of the previous section, Figure 4(a)
shows the geometric figure: a triangle ABC is given
and AD is perpendicular to BC. Figure 4b shows its
partial representation in a graph format where we fo-
cus on the most important relations. Relationships
such as “equal angle” and “equal length”, which
require multiple objects/nodes, are represented by
nodes, e.g. , the relationship \ABC”* in Figure 4(b).
In addition, nodes of our graph store the value of
quantitative relationships. For example, the node
named ” Angle ABC ” stores the value of angle and
is connected to the two nodes representing sides AB
and BC.

KF is generated dynamically from the geometry
objects selected by the user. KF is initialized by the
GF component and later modification is done accord-
ing to Algorithm 1 defined in Section 4.1. Modifica-
tion involves creation and deletion of nodes and arcs
between them.

4.3 Knowledge Database for Predefined
Theorems (KT)

KT is a knowledge database which contains the pre-
defined database of theorems. KT is used for assign-
ing values to the unknown variables of configurations
generated by the GF component. KT uses a graph-
based representation similar to KF. However the dif-
ference lies in the timing of generation. Unlike KF,
KT is generated before the system can generate ques-
tions and remains unchanged during the algorithm ex-
ecution. In order to use KT in the algorithm, some
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Pythagorean

Figure 5: Representation used for generating data for the
given figure.

properties of theorems need to be known. Each theo-
rem can be applied to a particular geometry configura-
tion. Each theorem has certain inputs and outputs cor-
responding to inputs in the geometry configuration.
Hence usage of a theorem requires assigning the vari-
ables of input and/or output. In KT, the information of
input and output for each theorem is stored along with
the geometric configuration in which the theorem can
be applied. Nodes represent objects whereas arcs rep-
resent the input and output relationships. Input and
output are decided offline before the execution of the
algorithm and later used for assigning unknown vari-
ables to get a useful question. To illustrate the pro-
cess, the Pythagorean Theorem is taken as an exam-
ple in Figure 5. Given a triangle ABC, where \ABC
is 90 , Figure 5 partially shows its usage of KT in
generating data. The node representing the side AB
has three arcs, two of which represent input and one
of which represents an output relationship. To use the
side AB as an input, the length of the sides AB and
BC or AC needs to be assigned. On the other hand,
to use side AB as an output, the length of sides AC
and BC needs to be given. By giving this as input or
output, we can be sure that the Pythagorean Theorem
will give a consistent result.

Now we are ready to describe the three compo-
nents which will use these knowledge databases to
generate questions and answers.

4.4 Generating Figure from the User
Input (GF)

This is the first step executed by Algorithm 1 de-
scribed in Section 4.1. This component generates a
figure through the combination of a predefined hum-
ber of ways to combine geometric objects. Cur-
rently, we are focusing on triangles and line segments.
Hence our algorithm includes combinations in which
various triangles and lines can intersect. Furthermore,
we are currently limiting our algorithm to the inter-
section of two triangles. Adding more objects may

A A
i ; D
|=3 FC EAC
A E AE
CF F C

A
B 5—C

Figure 7: Some predefined ways a triangle and a line can
intersect.

make the figure more complex, possibly leading to
unusual questions that are not commonly found in
textbooks. However there is no limitation on the in-
tersection of lines and triangles. Figure 6 shows some
of the possible ways of intersection of two triangles,
which have been taken into consideration while gen-
erating questions. Intersection of two triangles in-
cludes various cases such as two triangles sharing
common sides, common part of a side, common ver-
tex. Figure 7 shows the two ways in which a line
can intersect with a triangle. Figure 8 describes the
flowchart for figure generation from the user-desired
input. It includes three functions for adding various
items such as objects, concepts and theorems. These
functions will add their respective items into the gen-
erated DS. For instance, addObject will add a new ob-
ject without removing the old one. Figure 9 shows an
example of adding a new object. Figure 10 shows
the same functions but for concept involvement in the
DS. Similar functions are used for adding theorems,
not discussed here.

The algorithm starts looking for DS in our knowl-
edge database, comprising of the user-desired input.
If DS is not found, then a DS is generated using the
addObiject function, possibly resulting in several DS.
From the collection, a DS is picked and moved to the
next level of adding concepts to it. If each DS has
been picked, our algorithm terminates. The same ap-
proach is applied for concept addition in an existing
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Figure 8: Working of GF component.
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Figure 9: (a) Original figure; (b, c) figures resulting from
calling addObject function which adds one more line to the
configuration.
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Figure 10: (a) Original figure; (b, c) figures resulting from

calling addConcept function which adds one more concept
to the configuration.

DS. However, in case all DS formed after concept ad-
dition have been picked, backtracking is performed
and a new DS is picked from the object-figures. A
similar approach is taken when all theorem-figures
have been picked, where backtracking leads to choos-
ing a new concept-figure from the previously gener-
ated collection.
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Figure 11: Represents the approach used by GFS compo-
nent in finding new facts.

4.5 Generating Facts and Solutions
from the Configuration (GFS)

This component is responsible for finding the val-
ues of unknown variables of the generated fig-
ure/configuration from the other two components.
This component acts as question generator and solver.
The unknown variables whose values have been found
represent the generated questions. The steps that
leads to finding the unknown variables represent the
solution. There can be many ways for finding the
values of the unknown variables. In such cases, this
component shows all solutions. For generating new
facts, it uses a predefined database of theorems. The
difference between the theorem database of this com-
ponent and the previous two components lies in the
representation of theorems. In GFS, each theorem is
represented in the form of an axiom, while GQ and
GF represent theorems in the form of KT and KF, re-
spectively. In addition, GS includes a few basic al-
gebraic theorems, such as (a+b)? = a? + b? + 2ab,
which are not present in KT and KF. Such algebraic
theorems are used inside the axiom system for solving
and generating questions which involve algebra.

School Mathematics Study Group (SMSG) ax-
iomatic system is used, which is a combination of
Birkhoff’s and Hilbert’s axiom (Francis, 2002) sys-
tem. Figure 11 shows the flow diagram of this ap-
proach. A fixpoint is a state in which no new facts—in
our case, no new assignment of unknown variables—
can be deduced from the given facts (Chou et al.,
2011). For reaching a fixpoint, forward chaining is
used to infer new facts from given facts and rules. The
rules used by our system are described in Prolog as
follows:

Q(x;ns) : Pr(x;ng):Pe(X;nk) (1)
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length(B,C,10)

Apollonius Theorem

length (A, B, 8)

length (A, C, 6)

length (A, F, 5)
Pythagoras Theorem
length (A, E, 4)
length (F, E, 3)

(Given)
(Given)
(Calculated)

(Given)
(Given)

(b)
Figure 12: (a)A question and its solution(b) involving mea-
surement of geometry objects which can be solved with our
rules.

which means

SX[(PLOn) ™M B(GnK)) D QGns)] - (2)

where n1;::;ng and ng represent numeric values. This
representation results in the storage of the integer/real
value of the geometry object in last argument of the
predicate. With the help of new rules, we can now
represent the facts related to dimensions of the ge-
ometric objects. Hence this representation of rules
can generate geometric questions, which involve mea-
surements of the geometric objects.

In addition, we have added predefined algebraic
functions which can be used in rules. One instance of
our new rule is shown in Equation 3. The predicate
sq denotes the square function, which computes the
square of a and stores its value in b.

sq(a;b) @)

Figure 12 shows an example which can be solved by
our rules. Given a triangle ABC, AE ? BC, AB = 8,
AC =6, AE = 4, FE = 3. our goal is to find the
length of BC. Figure 12(b) provides a solution of
this question with the help of our new rules. In ad-
dition, these rules help to represent the basic theo-
rems which involve measurement values such as the
Pythagorean theorem, the Triangle Inequality theo-
rem and the side/angle ratio theorem in a triangle.
Hence it is possible to generate geometric questions
based on the above mentioned theorems. For instance,
the Pythagorean theorem can be represented in the

following way:
diff(X;C;0) : Triangle(a;b;c);sq(a;A);sq(b;B);
sq(c;C);sum(A; B; X):
(4)

A trivial question which requires the Pythagorean the-
orem for solving would be as follows. Given a right
angle triangle and any two sides of the triangle, the
goal is to find the third side.

Similarly, the Triangle Inequality Theorem can be
represented in the following way:

lessthan(X;0) :  Triangle(a; b;c); length(a; A);
length(b; B); length(c;C); (5)
sum(A; B; 2); diff(Z;C; X):

A trivial question from this theorem would be as fol-
lows. Given the length of any two sides of a triangle,
our goal is to find the maximum value of the third side.

4.6 Generating New Configurations
from an Existing Configuration
(GD)

Figure 13 explains the algorithm in the form of a
flowchart. It starts with searching for user-selected
theorems. In case the user has not chosen any theo-
rem, a theorem is selected from the predefined knowl-
edge database of theorems. However, our algorithm
terminates when all theorems have been selected once
for a given configuration. After the theorem selection,
pattern matching on the theorem figure is performed.
If a matching pattern is found, a set of input and/or
output values are assigned to the chosen pattern. As-
signment is done with the help of a predefined set of
theorems. In case the pattern is not found, a new the-
orem is chosen from KT and the whole process is re-
peated until we get the desired configuration.
Depending on the requirements, several theorems
can be involved in a given configuration. In addition,
it is possible to use a single theorem multiple times.
The method requires the concept of using the output
of one theorem as the input of another one. In this
way we can have all possible combinations of prede-
fined theorems. Figure 14 shows an instance of as-
signing unknown variables. Figure 14b represents the
new data assigned to Figure 14a. It is generated with
the help of applying Pythagoras Theorem in triangle
ABE. The output is changed from BE to AE. Output
is considered the length of side calculated using the
Pythagoras Theorem from a given input. The input
and output for the Pythagoras Theorem is taken us-
ing KT. Figure 14c is generated by adding more data
in Figure 14a. New data is assigned by applying the
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Figure 13: Working of GD algorithm.
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Figure 14: (a) A figure and data is assigned to few geometry
objects. (b) Output of calling the changeData function. (c)
Result obtained by calling the addData function on (a).

Pythagoras Theorem in the triangle ADC. The theo-
rem requires two sides as input to generate one output.
Hence length of side EC is given.

In the above algorithm, it may happen that redun-
dant data is provided in the figure. Redundant data
refers to the values assigned to properties of some of
the geometric objects which are not required and can
be derived from the previously given data and prede-
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Figure 15: An example in which redundant data is provided
in the given figure.

A A Area = yArea

Triangle ADC  Triangle ABC

(b)

length (B,D,kSinx)  (Calculated)
Trigonometry
perp (A,D,D,B)

length (B,A, k)
Similarity property
similarTriangle (D,A,C,A,B,C) (Calculated) .
length (A.C.2) (Given) length (A,B,k) ~ (Calculated in (c))
areaRatio (D.A,CAB.C,1y) (Given) angle (B,AA,D.x) (Given)
(c) (d)
maxLength(B,C,sqroot(z? + k?))
Inequality in trigonometry
length (D,B,kSinx) (Calculated in (d))
ength (C,D,zCosx)  (Calculated)
Trigonometry
perp (A,D,D,C) (Given) (e)
length (A,C,z) (Given)
angle (A,C,C,D,x) (Given)

Figure 16: (a) The figure is generated by using triangle and
perpendicular as the geometry objects using the GF com-
ponent. (b) The data is generated for (a) using the GD com-
ponent such that the two triangles ADC and ADB become
similar. (c, d, ) The new fact and its derivation using the
GFS component is generated from the figure shown in (b).

(Calculated)

fined theorems. Figure 15 explains this situation with
the help of an example. In this figure, one data item is
redundant and any one of the length values can be re-
moved, since, by applying the similarity concept, the
third length can be derived from the other two lengths.
This type of reasoning may lead to an increase of the
difficulty level of the generated questions. This rea-
soning is added with the help of GFS, which is de-
scribed in Section 4.5.

Figure 13 contains non-deterministic decisions at
various steps. The non-deterministic selection of op-
tions can be avoided by adding more heuristics such
as fixing the number and types of theorems to be in-
volved.

5 FURTHER EXAMPLES

This section explains our framework through more
examples covering various concepts and geometric
theorems.
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5.1 First Example

The input given in this question generation task is as
follows

Obiject: triangle and line segment

Concept: perpendicular

Theorem: similarity, trigonometry and Inequality
Number of questions: 1

The input given in the first example covers the con-
cept of perpendicular lines. The generated questions
are required to make use of theorems involving simi-
larity of triangles, trigonometry and inequality. Fig-
ure 16 shows the step by step execution of the algo-
rithm for the given input. Figure 16a generates a con-
figuration involving triangle and perpendicular ge-
ometry objects using the GF component. This figure
is generated by non-deterministically selecting a way
of generating perpendicular lines in a triangle from
our predefined database.

Figure 16b is generated using GD component with
the help of KT in the figure 16a. There are various
ways of making two triangles similar. Firstly, this
component performs pattern matching to find the suit-
able ways of making two triangles similar in the ex-
isting figure. Later, non-deterministically, it picks one
way of making triangles similar and generates data ac-
cordingly. Now GD component assigns data using the
trigonometry rules stored in the database. Currently,
the database is limited to the basic trigonometry rules
related to the sides and angles of a triangle. For exam-
ple, ”sin2q = 2sinqcosq” trigonometry rule does not
includes any sides and angles in a triangle. Hence, it
is not included in our database.

Figure 16¢ shows the new facts and the their rea-
soning generated using the GFS component. The new
fact is the new question and the reasoning is the solu-
tion of the generated question.

5.2 Second Example

The input given in this question generation task is as
follows

Obiject: triangle and line segment

Concept: parallel line

Theorem: similarity and ratio of length of sides
Number of questions: 1

The input given in the second example covers the con-
cept of parallel line. The generated questions are re-
quired to make use of theorems involving similarity
and ratio of length of sides of a triangle. Figure 17
shows the step by step execution of the algorithm for

AD/DB=1/c

Area DBCE = X

Find Area Triangle
ADE

©
(a) (b)
area (AD,E, X/((c+1)?- 1)) (Calculated)
L[?rea (D,B,E,C, X) (Given)
tioArea (A,D,E,D,B,E,C,1, (c+1)?-1)
T_[Algebra
ratioArea (A,D,E,A,B,C,1, (c+1)?) (Calculated)
similarity theorem
similarTriangle (A,D,E, A, B,C) (Calculated)
ratioLength (A,D,A,B,1,c+1) (Calculated)
Algebra (©)
ratioLength (A,D,D,B,1,c) (Given)

Figure 17: (a) The figure is generated by using triangle and
parallel line as the geometry objects using the GF compo-
nent. (b) The data involving ratio of length of sides is gener-
ated for (a) using the GD component. (c) The new fact and
its derivation using the GFS component is generated from
the figure shown in (b).

the given input. Figure 17a generates a configuration
involving triangle and parallel line geometry objects
using the GF component. Before generating similar-
ity of two triangles, it finds similar triangles in the
existing configuration. It can be seen that the existing
configurations has similar triangles ADE and ABC.
Hence, there is no need to generate similar triangles.
Application of similarity theorem results in the gener-
ation of ratios of sides of length of two triangles. Fig-
ure 17b is generated using GD component with the
help of KT knowledge database. Figure 17¢ shows
the new facts and the their reasoning generated using
the GFS component. The new fact is the new ques-
tion and the reasoning is the solution of the generated
question.

5.3 Third Example

The input given in this question generation task is as
follows

Obiject: triangle and line segment
Concept: perpendicular and angle bisector
Theorem: Sum of angle in a triangle
Number of questions: 1

The input given in the third example covers the con-
cept of angle-bisector. The generated questions are
required to make use of theorems about sum of an-
gles in a triangle. Figure 18 shows the step by step
execution of the algorithm for the given input. Fig-
ure 18a generates a configuration involving triangle
and perpendicular geometry objects using the GF
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angle (B,0,0,D, 45 + (x/2)) (Calculated)
angle sum property
perp (D,A,D,B) (Given)
angle (D,B,BE,C, 45- (x/2))  (Calculated)
angleBisector (B,E,C,B,A) (Given)
angle (A,B,B,C, 90-x ) (Calculated)
angle sum property
perp (AD, D,C) (Given)
angle (E,C,C,D,x) (Given)

(© @

Figure 18: (a) The figure is generated by using triangle and
perpendicular as the geometry objects using the GF compo-
nent. (b) Angle-bisector is added to (a) using the GF com-
ponent.(c) The data involving angles in a triangle is gener-
ated for (b) using the GD component. (d) The new fact and
its derivation using the GFS component is generated from
the figure shown in (c).

component. Figure 18b generates a new configura-
tion from (a) involving angle-bisector geometry ob-
ject. This figure is generated by non-deterministically
selecting a way of generating angle-bisector in a trian-
gle. The decision of generating perpendicular before
angle-bisector is taken randomly. Figure 18c is gener-
ated using GD component with the help of KT knowI-
edge database. There are many triangles in the exist-
ing configuration. Hence, there are various ways of
assigning data to satisfy angle-sum property in these
triangles. GD component picks one triangle and gen-
erates the data accordingly. Figure 18d shows the new
facts and the their reasoning generated using the GFS
component. The new fact is the new question and the
reasoning is the solution of the generated question.

6 IMPLEMENTATION

Each component of our tool is implemented inde-
pendently, using state-of-the-art libraries and systems.
Various programming languages are used in the sys-
tem. C++ is used for performing calculations and
Python is used for implementation of the algorithms
used in GF and GD components. The algorithm
in GFS component is implemented using Constraint
Handling Rules (CHR) (Friihwirth and Raiser, 2011).
CHR are used for generating new facts from the ax-
ioms and the given facts. In our implementation, we
use the CHR library provided by K.U.Leuven, on top
of SWI-Prolog (Schrijvers and Demoen, 2004). The
theorems used in GFS component are manually con-
verted in the format used by CHR library. For im-
plementing knowledge representation KF and KT, the
graph database Neo4j (Vicknair and Macias, 2010) is
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C? D*® C

(d) (e)

Figure 19: Generated questions based on "triangle”, "per-
pendicular” and "Pythagorean Theorem” as input. Ques-
tions in figure(a-c)can be solved using Pythagorean Theo-
rem only. However, questions of figure (d) requires sim-
ilarity and figure (e) requires trigonometry for finding the
unknown value.

used. KF knowledge graph is used and modified by
all the components and finally represents the ques-
tion. Our knowledge databases such KT and prede-
fined ways of intersection of geometric objects are
manually generated and stored before the questions
generation.

6.1 Experimental Results

The system can generate geometry questions using
the framework described in Section 4. Currently, our
knowledge database of objects contains line segments
and triangles. In addition, we have a predefined set
of more than 100 theorems. The generated questions
cover five categories, e.g. similarity. Figure 19 shows
various questions generated by our system on select-
ing “triangle” as object, ”perpendicular” as concept
and "Pythagorean Theorem” as a theorem to be cov-
ered. The generated questions are tested using the
existing geometry solver tool JGEX (Gao and Lin,
2004). For testing in JGEX, the figure configuration
is drawn manually by the user and the system is asked
to prove/find a certain relationship. The tool is able to
prove/solve all the questions generated by our system.
Comparing the solutions generated by JGEX with the
solutions generated by our system, we found interest-
ing differences that may stem from different represen-
tations of geometric knowledge and reasoning tech-
niques and that deserve further investigation.
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7 CONCLUSION

In this paper, we provide a framework for the auto-
matic generation and solving of questions for high
school mathematics, specifically in the geometry do-
main. Our system is able to quickly generate large
numbers of questions on specific topics. Such a sys-
tem will help teachers reduce the time and effort
spent on the tedious and error-prone task of gener-
ating questions. Our work aims to develop an auto-
mated geometry question generation system that uses
a deductive approach for finding the relations between
mathematical concepts and for generating and prov-
ing these conjectures about concepts.

Future work can be carried in various directions.
An experiment needs to be performed in which the
generated problems would be placed in front of teach-
ers and let them guess which problem is from a text-
book and which one was generated from our algo-
rithm. Other major work would be generating ques-
tions according to the required difficulty level. An-
other improvement would be the addition of knowl-
edge by the user. Lastly, a GUI should be developed
in order to make it usable for teachers, students and
testers.
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