
Geometry Question Generator: Question and
Solution Generation, Validation and User

Evaluation

Rahul Singhal and Martin Henz

School of Computing
National University of Singapore (NUS)

Singapore
rahulsinghal@nus.edu.sg

henz@soc.nus.edu.sg

Abstract. Current massively open online courses (MOOCs) are pro-
viding several technical challenges for educators. One of these challenges
is automated generation of questions, along with the solutions, in or-
der to deal with a large number of students. Geometry is an important
part of the high school curriculum. Hence, in this paper, we have fo-
cused on the high school geometry domain. We have proposed a frame-
work that combines a combinatorial approach, pattern matching and
automated deduction to generate and solve geometry problems for high
school mathematics. The system would help teachers to quickly generate
large numbers of questions on a geometry topic and may also support
the setting of standardized tests such as PSLE, GMAT and SAT.
Our novel methodology uses (i) a combinatorial approach for generating
geometric figures from the user input, (ii) a pattern matching approach
for generating questions, and (iii) automated deduction to generate new
questions and solutions. By combining these methods, we are able to
generate questions involving finding or proving relationships between ge-
ometric objects based on a specification of the geometry objects, concepts
and theorems to be covered by the questions. We propose several algo-
rithms to avoid generation of repeated questions and to avoid questions
having redundant information, which increases the effectiveness of our
system. We have tested our generated questions on an existing geometry
question solving software JGEX, verifying the validity of the generated
questions. A survey with the real users such as high school teachers and
students on generated questions and solutions shows that our system is
effective and useful.

Keywords: Automated Deduction, Graph-based Knowledge Represen-
tation, Pattern matching, High school geometry, Axiomatic approach,
Constraint handling rules (CHR)

1 Introduction

Geometry, the study of space and spatial relationships, is an important and
essential branch of the mathematics curriculum at all grade levels. The study

of geometry develops logical reasoning and deductive thinking, which helps us
expand both mentally and mathematically. Children who develop a strong sense
of spatial relationships and who master the concepts and language of geometry
are better prepared to learn number and measurement ideas, as well as other
advanced mathematical topics [13].

Euclidean geometry is a branch of mathematics which deals with the study
of plane and solid figures on the basis of axioms and theorems employed by the
Greek mathematician Euclid. It is important to understand Euclidean geometry
when studying a course because geometry does not follow any set pattern. In
Euclidean geometry, one can only learn the axioms and results proven from these
axioms. The student must apply these axioms with no set pattern or list of steps
for solving such questions. Therefore, a question may have (possibly infinitely)
many solutions. To practice the required problem solving skills, students require
a large number of different types of geometry questions on various concepts.
Generally, textbooks and online sites provide a limited predefined number of
questions for each topic. Once practiced, these questions lose their purpose of
enhancing student thinking. The tedious and error-prone task of generating high-
quality questions challenges the resources of teachers. Hence, there is a need for
software which assists both teachers and students to generate geometry questions
and solutions.

The software can also act as a personalized instructor. It can generate ques-
tions that cover the required topic and meet the required level of student pro-
ficiency. Apart from helping users, the framework of generating questions has
scientific contributions to other research areas, such as Intelligent tutor systems
(ITS) and Massive Online Open Courses (MOOCs).

Various research has been performed in automated deduction of theorems
at high school level in the geometry domain, although none with the goal of
automatic question generation. Instead, they mainly demand users to generate
the question with the help of tools. In addition, they mainly focus on solving
and assessment of the questions. Our survey shows that the currently available
geometry systems, such as JGEX, Geogebra, Cinderella and Sketchpad, are not
able to automatically generate questions of user specified geometry topics.

The aim of this paper is to develop a framework that can be used to gener-
ate geometry questions based on specific inputs, such as geometry objects and
theorems to be involved in their solution. For a given set of geometry objects,
the algorithm can generate a large set of questions along with their solutions.
The solutions will involve user desired theorems directly or indirectly. Hence
the framework can generate questions to test the theorem on various geometry
objects and concepts.

The main contributions of this paper are as follows:

1. Our geometry question generator combines the complementary strengths of
a combinatorial approach, pattern matching and deductive reasoning. It can
generate geometry questions which were not possible previously.

2. A knowledge representation is described for geometry objects and predefined
theorems. This representation helps in applying theorem information within
the generated questions.

3. The system is made more effective by including algorithms for avoidinig
repreated questions and handling redundant data.

4. A substantial evaluation is provided that demonstrates the effectiveness of
our generator. It can generate various categories of the questions covered
in the textbooks and questions asked in SAT and GMAT. A survey is done
with the real users (teachers and students) which shows the usefulness of our
system.

2 Related Work

In this section, we provide a general review of related works. Computational
research in the geometry domain started in the 19th century. However, lack
of question generating in geometry in the literature required a principled ab-
initio approach in our work. Researchers mainly focused on proving geometry
theorems. We are mainly interested in the non-algebraic methods. Non-algebraic
methods for automatic discovery and proof of geometry theorems can be further
divided into three approaches: coordinate-free methods, formal logic methods
and search methods.

2.1 Coordinate-Free Methods

These methods are applicable to constructive geometry statements of equal-
ity. Various methods have been proposed under this category, such as the area
method [12, 3], the full-angle method [2, 18], the complex number method, the
vector method for Euclid plane geometry [2], the volume method for Euclidean
solid geometry [1] and the argument method for non-Euclidean geometry [1].
The area method was further improved and developed into a computerized algo-
rithm [2, 1]. These methods can only be applied in constructive geometry, which
is outside the scope of this paper.

2.2 Formal Logic Methods

Theorems in Tarski’s geometry were proven using Interactive Theorem Prover
(ITP) [10], albeit limited to several trivial theorems. ITP is an interactive the-
orem prover based on the resolution principle, which generates resolution style
proofs that resemble traditional proofs. In 1989, Quaife continued the work of
McCharen with Otter [14]. Otter is an automated theorem prover based on res-
olution. A series of tactics such as Hyper-resolution, UR-resolution, paramod-
ulation, support set and clause weight can improve the resolution efficiency.
In 2003, Meikle and Fleuriot developed Hilbert’s geometry with the theorem
prover Isabelle/Isar [11], an interactive and/or semi-automated theorem prover.
The greatest disadvantage of formal logic methods is their low reasoning effi-
ciency [9], caused by combinatorial explosion of their search space.

2.3 Search Methods

Fundamentally, the search method is used in a rule-based expert system, which
includes a rule database, a fact database and a reasoning engine. The inference
rules stored in the rule database include axioms, theorems, lemmas, formula,
definitions and algebraic operation rules in geometry. Geometric facts stored in
the fact database include geometry predicates such as angle bisector, equidistant
points, parallel lines and perpendicular lines. The reasoning engine deduces new
geometric facts by applying inference rules to the facts database. There are three
ways of performing deduction search, namely forward chaining [19, 18], backward
chaining [18], and bidirectional chaining [4].

In 1995, Chou, Gao, and Zhang described an integration of a deductive
database into the search methods [2, 6, 6, 1]. The deductive database method
can find a fixpoint for a given geometry diagram, containing all properties of
the geometry diagrams that can be deduced using a fixed set of geometry rules.
They effectively controlled the size of the facts database with structural deduc-
tive database techniques.

Each search method has different advantages and disadvantages. Forward
chaining is always feasible, but does not have an explicit reasoning goal. Back-
ward chaining has an explicit reasoning goal, but sometimes lacks feasibility. The
bidirectional chaining method is feasible and has an explicit reasoning goal, but
is hard to implement. We are using forward chaining in our framework as it is
most suited for generating previously unknown quantities.

3 Geometry question specification

Mathematically, a geometry question Q generated by our system can be repre-
sented by a quintuple (Object O, Concept C, Theorem T, Relationship R, Query
type qt) where:

– O ∈ (lines, triangles, square, circle, ...)

– C ∈ (perpendicular, parallel, midpoint, angle-bisector, circumcircle, ...)

– T ∈ (Pythagorean theorem, similarity theorem, ...)

– R ∈ (syntactic, quantitative)

– qt ∈ (syntactic, quantitative)

In order to generate geometry questions, the user has to provide a set of geometry
objects O such as triangles, squares, etc., and a set of concepts C which the user
wants the generated question to cover. Optionally the user may select a set
of theorems T to be tested by the question. The relationship R can be either
syntactic such as perpendicular, parallel, etc., or quantitative such as the length
of an object, the ratio of two quantities etc. The query type qt is the type of
generated question that can be asked to find the hidden relationship which can
be calculated from the given information.

Figure 1 Connection of the components and knowledge representations

4 Framework

Our framework comprises of three major components along with the knowledge
databases used for storing input, geometry figures and a set of predefined the-
orems. Figure 1 shows the connection of these components. The input consists
of geometric objects, concepts and theorems selected by the user. The input is
fed into the first component, Generating Figure (GF). This component is used
for generation of geometric figures from the input. Each figure constitutes a di-
agrammatic schema (DS) [8] and a set of unknown variables representing the
relationship between geometric objects. The geometric figure is passed to the
second component, Generating Facts and Solutions (GFS). This component is
used to find values of the unknown variables representing possible relationships
to be asked by the generated question. GFS makes use of the predefined knowl-
edge database of axioms. It results in the formation of a configuration (Cfg)
containing known values for some relationships between its objects.

A question is considered suitable if it covers the essential information such as
a new fact and a proper reasoning for the generated fact. Currently, the decision
of suitability is taken manually by the user. If the suitability conditions for the
generated configuration (Cfg) are not met then configuration is fed into the last
component, Generating data for the figure (GD). GD assigns values to unknown
variables of relationships. Repeated processing by GD makes the questions gen-
erated from Cfg easier and easier, because the values assigned by GD appear
as given facts in the generated questions. GD makes use of a predefined set of
theorems and makes sure that the assignment results in successful generation
of geometry questions. FC generated from this component is again passed to
GFS component and this loop continues until a question is found which meets
suitability condition.

Figure 2 (a) The figure is generated by using triangle and perpendicular as the
geometry objects using the GF component. (b) The data is generated for (a)
using the GD component. (c) The new fact and its derivation using the GFS
component is generated from the figure shown in (b).

5

4

10

?

(a) (b)

length(B,D,7)
Pythagoras Theorem
length (A,B,10) (Given)
length (A,D,5) (Calculated)

Pythagoras Theorem
length (A,C,5) (Given)
length (D,C,4) (Given)

(c)

Along with these components, two knowledge databases are used in the
framework, namely the Knowledge database for the generated figures (KF)
and the knowledge database for predefined theorems (KT).

4.1 Algorithm

Figure 2 shows the step by step execution of the algorithm. We select the fol-
lowing input in our example.

– Object: triangle and line segment
– Concept: perpendicular
– Theorem: Pythagorean Theorem

In the next subsections, we will describe each knowledge database in detail,
followed by the three components and their interaction with these databases.

4.2 Knowledge Database for the Figure/ Figure Configuration (KF)

KF contains the question figure and configurations using a graph-based knowl-
edge representation. The nodes of our graph represent the geometric objects.
Two nodes can have multiple labeled arcs between them, representing multiple
relationships. In addition, an arc can be bidirectional or unidirectional depend-
ing on the relationship between the nodes. Following the example of the previous
section, Figure 3(a) shows the geometric figure: a triangle ABC is given and AD
is perpendicular to BC. Figure 3b shows its partial representation in a graph
format where we focus on the most important relations. Relationships such as
“equal angle” and “equal length”, which require multiple objects/nodes, are rep-
resented by nodes, e.g. , the relationship “∠ABC” in Figure 3(b). In addition,
nodes of our graph store the value of quantitative relationships. For example,
the node named “Angle ABC” stores the value of an angle and is connected to
the two nodes representing the sides AB and BC.

Figure 3 (a)The geometry figure and (b) Partially drawn knowledge represen-
tation of (a). (c) Representation used for generating data for the given figure.

510
Angle
ABC,
60

C
BA

AB,
10 BC CA,

5

Triangle
ABC

D

Angle
ACB Angle

CAD

HAS

HAS
HAS

CONTAIN

AD
INDIRECTLY HAS

CONTAIN

60

HAS

(a)

(b)

CONTAIN

AB

Output1Input2Input1

AB BC CA

Pythagorean

BC AB AC AC BC

HAS
HAS

HAS

INPUT INPUT

OUTPUT

CONTAIN
CONTAIN

CONTAIN
CONTAIN

CONTAIN CONTAIN

(c)

4.3 Knowledge Database for Predefined Theorems (KT)

KT is a knowledge database which contains the predefined database of theorems
and is used for assigning values to the unknown variables of configurations gener-
ated by the GF component. It uses a graph-based representation similar to KF.
However the difference lies in the timing of generation. In order to use KT in the
algorithm, some properties of theorems need to be known. Each theorem can be
applied to a particular geometry configuration. Each theorem has certain inputs
and outputs corresponding to inputs in the geometry configuration. Hence the
usage of a theorem requires assigning the variables of input and/or output. In
KT, the information of input and output for each theorem is stored along with
the geometric configuration in which the theorem can be applied. Nodes repre-
sent objects whereas arcs represent the input and output relationships. Input
and output are decided offline before the execution of the algorithm and later
used for assigning unknown variables to get a useful question. To illustrate the
process, the Pythagorean Theorem is taken as an example in Figure 3c. Given a
triangle ABC, where ∠ABC is 90◦, Figure 4 partially shows its usage of KT in
generating data. The node representing the side AB has three arcs, two of which
represent an input and one of which represents an output relationship. To use
the side AB as an input, the length of the sides AB and BC or AC need to be
assigned. On the other hand, to use side AB as an output, the length of sides
AC and BC needs to be given. By giving this as input or output, we can be sure
that the Pythagorean Theorem will give a consistent result.

Figure 4 Representation used for generating data for the given figure.

AB

Output1Input2Input1

AB BC CA

Pythagorean

BC AB AC AC BC

HAS
HAS

HAS

INPUT INPUT

OUTPUT

CONTAIN
CONTAIN

CONTAIN
CONTAIN

CONTAIN CONTAIN

4.4 Generating figure configuration from the user input (GF)

This is the first step executed by the framework mentioned in the Section 4.1.
This component generates a figure configuration through the combination of
a predefined number of ways to combine geometric objects. Currently, we are
focusing on triangles and line segments. Hence our algorithm includes combina-
tions in which various triangles and lines can intersect.

Configuration generation involves the addition of geometry objects, con-
cepts and optionally, user-desired theorems. The detailed algorithm is mentioned
here [15].

4.5 Generating facts and solutions from the configuration (GFS)

This component is responsible for finding the values of unknown variables of
the generated figure/configuration from the other components. This component
acts as question generator and solver. The unknown variables whose values have
been found represent the generated questions. The steps that leads to finding the
unknown variables represent the solution. There can be many ways for finding
the values of the unknown variables. In such cases, this component shows all
solutions. For generating new facts, it uses a predefined database of theorems.

All theorems are represented in an axiomatic format. Forward chaining is
used to generate new facts. The rules representation and detailed algorithm is
mentioned here [15].

4.6 Removing the redundant data

Redundant data are values assigned to properties of the geometric objects which
are not required and can be derived from the previously given data and prede-
fined theorems. It may happen that redundant data is provided in the figure
configuration.

Figure 5 Figure explaining redundant case

Figure 5 shows a flow diagram of an algorithm for detecting and removing
redundant data. Figure 6 explains cases with the help of examples. Figure 6a
shows an instance of new configuration without redundant data. In Figure 6b,
the length w is redundant, since, by applying the similarity concept, it can be
derived from the other two lengths, x and y. In addition, the rules used for
generation of w do not previously involve w. However, y is not redundant data,
as, the rules used for generating y implicitly requires y. The length AD can be
calculated via two ways, Pythagorean Theorem and similarity theorem. Both
rules used only initial facts. Hence, both are considered as multiple solutions.
Furthermore, the length AB can be derived from two ways. However, in this
case, w is consider as a redundant data as w can be generated with other initial
facts. Figure 6c shows that w can be obtained from y using the trigonometry
rules or vice versa. Hence, one of them can be considered as a redundant data
and removed.

Figure 6 An example in which redundant data is provided in the given figure.

x y

?

x y

? w

x y

?

w

z

(a) (b)
(c)

Figure 7 Figure explaining isomorphic solution

z

?

y

x

(b)

y

x

z

?

(a)

4.7 Generating New Configurations from an Existing Configuration
(GD)

The basic algorithm involves performing pattern-matching of the generated con-
figuration with the predefined set of rules to check which rule can be applied
in the given configuration. It makes use of predefined set of rules represented
in KR. Each theorem consists of input and output nodes for each variable. De-
pending on the selected variable and corresponding input and output nodes, the
values of unknown relationships are assigned in the configuration. The detailed
algorithm is given in [15].

5 Uniqueness

Uniqueness refers to generate non-repeating and non-isomorphic questions. Rep-
etition refers to the same question. Isomorphic refers to the mirror-image of an
exiting question (see Figure 7). Uniqueness plays an important role in terms of
the effectiveness of our system. We proposed an algorithm to generate unique
question different from all the previously generated questions. The main con-
cept lies in storing all the previously generated configurations and performing
efficient configuration matching to maintain uniqueness.

Figure 8 Figure explaining isomorphic configurations

(a) (c)

AB BC CA

Triangle
ABC

HAS

HAS HAS

AD

INDIRECTLY HAS

(b)

EF

ECAEBD FCDF

CONTAINS CONTAINS

CB AC BA

Triangle
ABC

HAS

HAS HAS

BD

INDIRECTLY HAS

(d)

EF

FBAFAE DCED

CONTAINS CONTAINS

Level 2

Level 1

Providing uniqueness in the question’s figure/configuration

Uniqueness in the figure configuration involves two cases—the generation of the
same figure and the generation of a mirror-image of the previously generated
figure. Algorithm 1 describes an algorithm for providing uniqueness in the gen-
erated questions. The algorithm is based on checking the equality of configura-
tions at each level. We explain the Algorithm 1 with the help of an example.
Figure 8 shows two isomorphic configurations. They have the same number of
nodes and relationship links and types at each level. In addition, the number
of nodes attached to nodes below and above with equal number of relationship
type are the same in both configurations. For example, at level 1, both the figure
configuration have three nodes having “HAS” relationships and two nodes hav-
ing “Indirectly has” relationships. Similarly, at level 2, three nodes are attached
to one node at level 1 via the “Contain” relationship. In addition, two other
nodes are attached to one node at level 1 via the “Contain” relationship. This
equality is same through out each level. Hence, in this case, the algorithm will
return true.

Data: A new geometric figure configuration, existing database of
previously generated figure configurations

Result: True or false depending on the repetition of new figure
configuration with the existing database

1. Check for the number of objects and concepts in the new figure
configuration with the existing database. If not same, terminate with
false else goto next step.

2. Check the number of nodes at each level to be same. If not same,
terminate with false else goto next step.

3. Check the number of relationships at each level to be same. If not
same, terminate with false else goto next step.

4. Check the number of nodes and relationships at each level to be same.
If not same, terminate with false else goto next step.

Algorithm 1: Algorithm for removing repetition in geometry figure

Removing repetition in the question data

This algorithm is used only when the above algorithm declares the two figure
configurations to be isomorphic. The algorithm is nearly same as Algorithm 1,
except, for the additional checking which includes the values of known relation-
ships at each level. Figure 7 shows an example where the two geometric questions
would be considered equal. The figure configurations are considered equal fol-
lowing the Algorithm 1 and the values of known relationships are equal at each
level. For example, AB of (a) with AC of (b) and AC of (a) with AB of (b).

Figure 9 (a-e) Generated questions based on “triangle”, “perpendicular” and
“Pythagorean Theorem” as input. Questions in figure(a-c)can be solved using
Pythagorean Theorem only. However, questions of figure (d) requires similarity
and figure (e) requires trigonometry for finding the unknown value. (f) uses
angle-bisector theorem. (g-h) uses similarity theorem. The details can be seen
here [15]

(c)

a

b

c

?

a

b

?

X + 1

3x -2
X

a b

?

(a) (b) (d)

30

a

b

?

(e)

x

(f)

?

Find
angle BOD

(g)

AD/ DB = 1/ c

Area DBCE = X

Find Area Triangle
ADEArea = ? z

(h)

x

x

Area = y Area
Triangle ADC Triangle ABC

?

6 Implementation

Each component of our tool is implemented independently, using state-of-the-
art languages, libraries and systems. C++ is used for performing calculations
and Python is used for implementation of the algorithms used in GF and GD
components. The algorithm in GFS component is implemented using Constraint
Handling Rules (CHR) [5]. CHR are used for generating new facts from the
axioms and the given facts. In our implementation, we use the CHR library
provided by K.U.Leuven, on top of SWI-Prolog [16]. The theorems used in GFS
component are manually converted in the format used by CHR library. For
implementing knowledge representation KF and KT, the graph database Neo4j
[17] is used. KF knowledge graph is used and modified by all the components and
finally represents the question. Our knowledge databases such KT and predefined
ways of intersection of geometric objects are manually generated and stored
before the questions generation.

Experimental Results

The system can generate geometry questions using the framework described in
Section 4. Currently, our knowledge database of objects contains line segments
and triangles. In addition, we have a predefined set of more than 100 theorems.
The generated questions cover various categories, e.g. similarity. Figure 9 shows

Users Has seen On-
line/Textbook
(in %)

Appropriate-
ness of solution
(in %)

Input used
(in %)

Concept
used (in %)

Quality
(in %)

High school teachers 30 90 99 99 90

College level teachers 80 95 99 99 80

High school students 10 90 99 99 95

College level students 20 85 99 99 90
Table 1. Survey resultss after real user’s testing

various questions generated by our system on selecting “triangle” as object, “per-
pendicular, angle-bisector” as concept and “Pythagorean Theorem” as a theorem
to be covered. The generated questions are tested using the existing geometry
solver tool JGEX [7]. For testing in JGEX, the figure configuration is drawn
manually by the user and the system is asked to prove/find a certain relation-
ship. The tool is able to prove/solve all the questions generated by our system.
Comparing the solutions generated by JGEX with the solutions generated by
our system, we found interesting differences that may stem from different rep-
resentations of geometric knowledge and reasoning techniques and that deserve
further investigation.

Evaluation

A pilot evaluation was conducted in order to estimate the feasibility of the whole
approach and generated questions. We entered 50 rules in the system, which
correspond to specific geometric theorems: Similarity in triangles, Pythagorean
Theorem, and Basic Trigonometry formulas.

Different type of inputs are given on order to generate various different prob-
lems. Objects include right-angle, equilateral, isosceles and scalene triangles.
The covered concepts include triangle perpendicular, median and angle-bisector.
Some of the questions have multiple ways of finding the relationships. The pro-
totype generated large number of problems, some of which were “isomorphic”,
i.e. identical from a pedagogical point of view. All problems were correct, as
manually checked by the authors. Ten of the generated questions were selected
for evaluation, with the aim of covering a wide range of concepts and objects.
The small number of problems was due to evaluator’s limited time availability.

The users of the survey were high school teachers, students and professionals
involved in standardized exams like GMAT and SAT. The selected problems
were given to several experienced High School Mathematics teachers from India,
Singapore and US. Hundreds of students, both high school and college level,
were involved in the survey.

For each problem, the assumptions, known relationships and unknown re-
lationships to be proved/found as well as generated diagrams were given to
the participants. Six survey questions were asked for each generated geometric
question, covering aspects such as the quality and the appropriateness of the
generated solutions. Table 1 shows the questions asked and the statistics of the

user’s response. It can be seen that various teachers have different perception
of the quality of the question to be given in the exam. Similarly the case with
difficulty of the generated question.

The table shows that half of the users considers these questions as new.
However, this depends on the domain knowledge and memory. Several questions
were considered new by almost all users. In addition, most of the users are in
consensus with the usefulness of the generated questions. Furthermore, most of
the users have considered the generated solution of the questions appropriate
for high school mathematics. The options for providing objects and concepts of
generating these questions matches with those actually provided in the system.
Overall, it can be seen that the system is able to fulfill the aim of generating
questions quickly from the given input along with the appropriate answer.

Although the number of participants is very limited and the report of the
above data is somewhat anecdotal, we see an agreement among teachers regard-
ing both diversity and quality for testing. Although these results should by no
means be generalized, they are hopeful initial indicators of the potential valid-
ity of the proposed measures for exercise selection, providing a useful basis for
further justification and/or adjustment.

7 Conclusion

In this paper, we provide a framework for the automatic generation and solving of
questions for high school mathematics, specifically in the geometry domain. Our
system is able to quickly generate large numbers of questions on specific topics.
Such a system will help teachers reduce the time and effort spent on the tedious
and error-prone task of generating questions. Our work aims to develop an au-
tomated geometry question generation system that uses a deductive approach
for finding the relations between mathematical concepts and for generating and
proving these conjectures about concepts.

Future work can be carried in various directions. One of the major work
would be generation of relevant questions via user’s feedback. Other major work
would be generating questions according to the required difficulty level. Another
improvement would be the automation of process of knowledge addition in the
system. Lastly, solutions readability could be improved.

Bibliography

[1] S. C. Chou and X. S. Gao. Handbook of Automated Reasoning. Elsevier
and MIT Press, 2001.

[2] S. C. Chou, X. S. Gao, and J. Z. Zhang. A deductive database approach to
automated geometry theorem proving and discovering. J. Autom. Reason.,
25(3):219–246, October 2000.

[3] S. C. Chou, X. S. Gao, and J. Z. Zhang. Area method and automated
reasoning in affine geometries, 2011.

[4] H. Coelho and L. Pereira. Automated reasoning in geometry theorem prov-
ing with prolog. Journal of Automated Reasoning, 2(4):329–390, 1986.

[5] Thom Frühwirth and Frank Raiser, editors. Constraint Handling Rules:
Compilation, Execution, and Analysis. Books On Demand, March 2011.

[6] X. S. Gao, C. C. Zhu, and Y. Huang. Building Dynamic Mathematical
Models with Geometry Expert, I. Geometric Transformations, Functions
and Plane Curves. In Proceedings of the Third Asian Technology Conference
in Mathematics, 1998.

[7] Xiao-Shan Gao and Qiang Lin. MMP/Geometer—a software package for
automated geometric reasoning. In Franz Winkler, editor, Automated De-
duction in Geometry, volume 2930 of Lecture Notes in Computer Science,
pages 44–66. Springer Berlin Heidelberg, 2004.

[8] Greeno, James G., Magone, and Seth Maria E. Chaiklin. Theory of con-
structions and set in problem solving. Memory and Cognition, 7:445–461,
1979.

[9] Jianguo Jiang and Jingzhong Zhang. A review and prospect of readable
machine proofs for geometry theorems. Journal of Systems Science and
Complexity, 25:802–820, 2012.

[10] J. D. McCharen, R. A. Overbeek, and L. A. Wos. Problems and experiments
for and with automated theorem-proving programs. IEEE Trans. Comput.,
25(8):773–782, August 1976.

[11] L. Meikle and J. Fleuriot. Formalizing Hilbert’s Grundlagen in Isabelle/Isar.
In Theorem Proving in Higher Order Logics, 2003.

[12] J. Narboux. The area method: a recapitulation. Journal of Automated
Reasoning, 48:489–532, 2010.

[13] National Council of Teachers of Mathematics. Curriculum and evaluation
standards for school mathematics, 1989.

[14] A. Quaife. Automated development of Tarski’s geometry. Journal of Auto-
mated Reasoning, 5:97–118, 1989.

[15] Singhal R., Henz M., , and McGee K. Automated generation of geometry
questions for high school mathematics. In Sixth International Conference
on Computer Supported Education. Accepted for publication as full paper,
2013.

[16] Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR System: Im-
plementation and application. In First Workshop on Constraint Handling
Rules, 2004.

[17] C. Vicknair and M. Macias. A Comparison of a Graph Database and a
Relational Database, 2010.

[18] S. Wilson and J. D. Fleuriot. Combining dynamic geometry, automated
geometry theorem proving and diagrammatic proofs. In ETAPS Satellite
Workshop on User Unterfaces for Theorem Provers (UITP), 2005.

[19] J. Z. Zhang, X. S. Gao, and S. C. Chou. The geometric information search
system by forward reasoning. Chinese Journal of Computers, 19(10):721727,
1996.

