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A central learning objective of introductory programming courses is a thorough understanding of environments
that arise when programs written in modern programming languages run. An awareness is arising in the CS-
Ed community that a mental model based on a runtime stack does not do justice to languages that combine
lexical scoping with first-class functions. As a result, debugging and visualization tools designed around
a runtime stack are not suitable for this family of languages, which includes Python, JavaScript, Ruby, Lua,
Java, and Scheme. As a suitable mental model for environments in these languages, the classical programming
textbook “Structure and Interpretation of Computer Programs” (SICP) introduced the environment model of
computation using diagrammatic graphics. The SICP authors Hal Abelson and Gerald Jay Sussman designed
the environment model to represent the runtime data structures required for executing programs written in such
languages while blending out all forms of control. In this paper, we describe a novel tool for automatically and
interactively visualizing the execution environments of programs written in the targeted language family. After
introducing the environment model in detail, we highlight the main challenges for its automatic and interactive
visualization. We outline the architecture of the tool and its integration into a web-based environment for
learning the structure and interpretation of computer programs and conclude with an analysis of the tool’s
impact based on feedback from 69 course facilitators in Academic Year 2021/22.

1 INTRODUCTION

Environment structures evolve during the interpreta-
tion of programs written in languages with lexical
scoping and first-class functions, such as all modern
scripting languages (Python, JavaScript, Ruby, Lua,
etc). A thorough understanding of environment struc-
tures is typically a central learning objective of an in-
troductory computer science course that uses such a
language. The textbook Structure and Interpretation
of Computer Programs (SICP, (Abelson and Suss-
man, 1996)) introduced the environment model as a
pedagogical tool. Chapter 3 of SICP explains the ap-
plication of functions in programs of lexically-scoped
languages with first-class functions informally, fol-
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lowed by an implementation in a metacircular eval-
uator in Chapter 4. The application of functions plays
a central role; SICP Section 3.2.1 gives the following
high-level explanation.

To evaluate a [function] application, evalu-
ate the subexpressions of the application, [and
then] apply the value of the [function] subex-
pression to the values of the argument subex-
pressions.

The evaluation of expressions in programs of these
languages must be carried out with respect to an envi-
ronment that keeps track of the values that program
names refer to. Assignment to a name is then ex-
plained as an operation that destructively changes the
value that the name refers to in the environment.
While teaching a first-semester computer science
course using the JavaScript adaptation of SICP (Abel-
son and Sussman, 2022) (SICP JS) at the National
University of Singapore (NUS), we saw the need for a
visualization tool that illustrates the evaluation of pro-
grams in the presence of lexical scoping and first-class
functions. A review of recent related work in Sec-



tion [2| reveals that in current tools for visualizing the
execution of programs, a runtime stack plays a cen-
tral role. We argue that environment structures in our
target languages do not follow a stack discipline, and
therefore conventional stack-based debugging and vi-
sualization tools are not suitable in the context of our
course. In response to our teaching needs, we have
developed a novel environment model visualization
tool and integrated it in Source Academy (Ander-
son et al., 2023)), a web-based environment for learn-
ing the structure and interpretation of computer pro-
grams. Section [3| reviews the environment model in
detail, using examples from SICP Chapter 3. Sec-
tion ] shows how our visualizer displays the environ-
ments of example programs. Section [3] describes the
main implementation challenges for interactive visu-
alization of environments. In Section [6] we outline
the architecture of the tool and its integration into
Source Academy. In Section [/ we provide a quanti-
tative analysis of the benefits of using an environment
model visualizer, based on a survey of 69 tutors who
used the tool in Academic Year 2021/22.

2 RELATED WORK

Integrated development environments typically pro-
vide extensive debugging tools for analyzing the run-
time behavior of programs; examples are Microsoft
Visual Studio (Microsoft, 2023) for a wide variety
of programming languages, and IntelliJ] IDEA (Jet-
Brains, 2023) for Java, Kotlin, Groovy and other lan-
guages whose implementations use the Java Virtual
Machine. Leading web browsers such as Google
Chrome and Mozilla Firefox provide support for de-
bugging JavaScript programs (Google, 2023 Mozilla,
2023). Python Tutor (Guo, 2021} provides a visual-
ization of the execution of Python programs. These
tools are based on a runtime control stack as their cen-
tral mental model. Clements and Krishnamurthi point
out the limitations of this approach for the target lan-
guage family in (Clements and Krishnamurthi, 2022):

The premise of this paper is that the tradi-
tional depiction of the stack, as a sequence of
self-contained frames, is insufficient and po-
tentially misleading, mirroring and even cre-
ating troubling misconceptions.

Indeed, none of these tools clearly explains the re-
lationships between environment frames and function
values (closures) that unfold when programs use func-
tions a first-class values. Therefore using them in a
large first-year course that aims to cover first-class
functions would be of questionable merit. Instructors
and facilitators would need to spend precious time on

explaining the differences between a suitable model
for environments and the representations in the tool.
Clements and Krishnamurthi (Clements and Krish-
namurthi, 2022)) don’t provide a tool for visualizing
environments but study alternative pedagogical ap-
proaches using Snap! blocks (Harvey and Monig,
2010) that are manually arranged by learners.

Related to this work is the concept of a notional
machine, which is an abstraction of a computer that
explains the execution of programs as a step-by-step
process. In his dissertation (Sorva, 2012), Sorva
points out that learners inevitably construct notional
machines for program execution and argues that they
benefit from being deliberately introduced to ped-
agogically sound notional machines. The disserta-
tion and (Sorva, 2013) contain in-depth discussions of
notional machines, program visualization tools, and
their pedagogical value, but do not cover lexically
scoped languages with first-class functions.

The substitution model of SICP Chapter 1 can
be seen as a notional machine for program execu-
tion, and interactive tools such as the Racket Step-
per (Racket team, 2021) and the Source Academy
stepper (Henz et al., 2021) can be seen as inter-
active visualizations of such a notional machine.
Substitution-based program visualization tools are
limited to purely functional programs (no assignment)
and provide a rather low level of abstraction.

Related to the visualization of data structures
covered in Section M is the Racket data visual-
izer (Rosenthal, 2019) and the IntelliJ plugin Java Vi-
sualizer (Lipsitz, 2019), but these tools are not de-
signed to present their data visualization in the con-
text of environments.

Landin’s SECD machine (Landin, 1964) intro-
duced environments as a data structure for keep
track of name bindings during the interpretation of
expressions in the call-by-value lambda calculus.
While minimalistic in the covered language features,
the SECD machine contains the essential ingredi-
ents of the targeted language family and could be
extended into a notional machine for this family.
Danvy (Danvy, 2004) systematically explores SECD
variants, and compilation-based variants have served
as inspiration for implementations of functional pro-
gramming languages and their correctness proofs,
most recently in (Kunze et al., 2018]).

3 THE ENVIRONMENT MODEL

In the environment model of evaluation, a function
is a pair consisting of some code and a pointer to an
environment. Functions are created by evaluating a
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return x * X;
parameters: X

body: return x * x;
Figure 1: Environment created by evaluating square (5) in

the program environment. [In the diagrams, := indicates a
JavaScript constant and : a JavaScript constant.]

lambda expression, which produces a function whose
code is obtained from the text of the lambda expres-
sion and whose environment is the environment in
which the lambda expression was evaluated to pro-
duce the function. SICP JS illustrates the concept in
Section 3.2.1 using the square function as an example:

For example, ...
const square = x => x * Xx;

... evaluates x => x * x and binds square
to the resulting value, all in the program envi-
ronment. Figure [1| shows the result of evalu-
ating this declaration statement. ... The func-
tion object is a pair whose code specifies that
the function has one parameter, namely x, and
a function body return x * x;. The envi-
ronment part of the function is a pointer to the
program environment, since that is the envi-
ronment in which the lambda expression was
evaluated to produce the function. A new
binding, which associates the function object
with the name square, has been added to the
program frame.

Function application leads to the evaluation of the
function body in an environment that extends the
function’s environment with a binding of the parame-
ter x to the argument 5, as depicted in Figure[} Using
amake_withdraw function

function make_withdraw (balance) {
return amount => {

if (balance >= amount) {
balance = balance - amount;
return balance;

} else {
return "insufficient "

+ "funds";

SICP JS explains the evaluation of programs with lo-
cal state in Section 3.2.3 as follows.

The interesting part of the computation
happens when we apply the function
make_withdraw to an argument:

const Wl = make_withdraw (100);

We begin, as usual, by setting up an envi-
ronment E1 in which the parameter balance
is bound to the argument 100.  Within
this environment, we evaluate the body of
make_withdraw, namely the return statement
whose return expression is a lambda expres-
sion. The evaluation of this lambda expression
constructs a new function object, whose code
is as specified by the lambda expression and
whose environment is E1, the environment in
which the lambda expression was evaluated to
produce the function...

The application of account W1 to the amount 50

W1 (50);
// result: 50

leads to the environment structure of Figure [2] Note
that the application of W1 in the program environment
leads to an extension of E1, which at that point is only
accessible through the function object to which Wl
refers. The example “Closures Outlive Stack Frames”
in Section 4 of (Clements and Krishnamurthi, 2022
mirrors this example to illustrate that environments
do not follow a stack discipline. The first frame of E1
outlives the function call that created it and serves as
enclosing environment for calls of W1.

The environment model as presented here is mini-
mal in the sense that all components of runtime struc-
tures are forced to be present by the semantics of
the language. Lexical scoping forces environment
frames to refer to their parent frames, and function
values (closures) to carry the environment in which
they were created.

4 THE VISUALIZATION TOOL

Figure [3] shows how the visualizer displays the en-
vironments of Figure 2] The visualizer is integrated
in Source Academy (Anderson et al., 2023), a web-
based system for supporting the teaching of courses
that use SICP JS. The learners enter their programs
in the editor on the left. Before program execution,
a “Run” button in place of “Resume”—indicated by
Arrow l—Iets learners execute their programs and
view the results. Note the circle in the beginning of



make_withdraw:= ...

program
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El—*[ balance: 100 ]

Here is the balance
that will be changed
by the assignment

parameters: amount
body: ...

[ amount: 50 ]

if (balance >= amount) {
balance = balance - amount;
return balance;

} else {

}

return "insufficient funds";

Figure 2: Environments created by applying the function object W1.

line 11, which represents the breakpoint added by the
learner to pause program execution just before the line
is reached. When a program encounters a breakpoint,
the environment visualizer displays the environment
structures that have been created before the line in
which the breakpoint appears. The “Run” button turns
into a “Resume” button. A “Stop Debugger” button
aborts program execution, indicated by Arrow 2.

The runtime representation of data structures typ-
ically poses challenges to learners, especially in the
presence of first-class functions. Figure 4] shows how
the environment model visualizer displays the appli-
cation of a map function to a three-element list, which
is made up of pairs whose components are accessed
with the functions head and tail.

const square = X => x * x;
const map =
(f, xs) => is_null (xs)
? null
pair (f (head (xs)),
map (f, tail(xs)));
const ys = map (square, list (2,3,4);

The figure shows the situation after pressing ‘“Re-
sume” once, so we see the state at the beginning of
the first recursive call of map.

The tool is integrated in the latest release of
Source Academy (Source Academy, 2023a), which
also contains an interactive version of SICP JS.
Both are available in the repositories of the Source
Academy GitHub organization (Source Academy,
2023d) under free licences.

S IMPLEMENTATION
CHALLENGES

The most obvious implementation challenge is
posed by the browser-based architecture of Source
Academy. The usual implementation pathway for
JavaScript programs in a browser-based architecture
consists of passing the learner’s JavaScript programs
to the browser’s JavaScript engine. As described
in (Anderson et al., 2021), Source Academy uses
a JavaScript parser to restrict the JavaScript sub-
language available to the learners, and a JavaScript-
to-JavaScript transpiler that improves error messages
and realizes proper tail calls. The challenge for im-
plementing the environment model visualizer in such
a system is the lack of access to the browser’s inter-
nal data structures for representing environments and
to the browser’s runtime environment in order to in-
teractively pause and resume program execution as
a result of setting breakpoints in the program. We
solved these problems by implementing an alterna-
tive implementation pathway for JavaScript programs
that uses an interpreter instead of a transpiler. The
sub-languages approach of the course and Source
Academy facilitates this solution, because only those
aspects of JavaScript that are relevant for SICP JS
need to be implemented by this interpreter.

The second challenge is posed by the need to inter-
actively pause program execution at any breakpoint,
display the environment data structures that have ac-
cumulated up to the breakpoint and resume evaluation
upon pressing “Resume”. This is handled by perva-
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balance = balance - amount;

return balance;
} else {
return
}
i
}

const W1 = make_withdraw(100);

W1(50);

Figure 3: Environment model visualizer, showing the environments of Figure

sively using asynchronous JavaScript functions in the
implementation of the interpreter. An alternative solu-
tion is presented in (Baxter et al., 2018)) which would
have led to transforming the mentioned transpiler into
continuation-passing style. We rejected this option to
keep the transpiler as simple as possible. The inter-
pretation overhead is not critical because the visual-
ized programs are typically short-running.

A third implementation challenge is posed by a
pedagogical aspect of the environment model as pre-
sented in SICP. According to the environment model
diagrams in SICP, environment frames do not “ex-
pire”. Once created, they persist and should be dis-
played even if they are not reachable after resuming
evaluation. It is therefore not sufficient to display the
reachable environment frames from the current frame.
We explored two options of addressing this challenge.
The first option consists of establishing a registry of
environment frames to which any new frame is added
and that is used for the display. The second option

turns environments into a doubly-linked data struc-
ture: Parent frames include references to their child
frames, in addition to the usual parent pointers in
child frames. We chose the second option, because
the visualization can naturally traverse and display the
environment structure starting from the global frame.
Both options obviously keep all environment frames
alive in the heap of the JavaScript runtime system.
This does not pose performance problems because the
environment model visualizer is used only for quite
simple programs.

An important functional requirement is consis-
tency across breakpoints. Once a frame has been
drawn for one breakpoint, its position should not
change when it gets displayed again for further break-
points so that the learner recognizes previously seen
frames by their position on the screen. This constraint
does not allow the visualizer to recompute a globally
optimized layout for environments at each breakpoint.



Figure 4: Environment model visualizer, showing the environments at the beginning of the first recursive call of a map function.

6 ARCHITECTURE OF THE
VISUALIZATION TOOL

The visualization tool is integrated into the Source
Academy (Anderson et al., 2023)), a browser-based
environment for entry-level programming. The sys-
tem is designed and built by students and staff of
NUS, is published under an Apache license
|Academy, 2023b), and is implemented as a React
application (Meta Platforms, Inc., 2023). Source
Academy switches to the JavaScript interpreter de-
scribed in the previous section when at least one
breakpoint is set. Setting a breakpoint inserts a
debugger; statement in the program.

The interpreter is implemented—along with all
other JavaScript-specific system features—in a sepa-
rate Node.js package for browser-independent devel-
opment and testing (Source Academy, 2023c). When-
ever the interpreter meets a debugger; statement,
the current program context is sent to the visualizer.
The visualizer receives the context in the form of the
doubly-linked environment data structure described in
the previous section, which represents all frames cre-
ated so far during the execution of the program. The
data structure is rooted at the global frame.

The visualization is implemented with

Konva.js (Lavrenov, 2023). A Layout class en-

capsulates the canvas and layout calculations. The

singleton Layout instance contains a Grid, which in
turn contains an array of Levels containing frames,
pairs, and function objects, each with their (x, y)
coordinates on the canvas. We investigated published
graph drawing algorithms (for an overview, see (BatH
[tista et al., 1998)) and several publicly available
graph drawing frameworks, but decided to implement
the layout from scratch to provide predictable and
visually pleasing diagrams and meet the consistency
requirement given at the end of Section [3]

7 RESULTS

The environment visualizer was designed and devel-
oped over the past five years by undergraduate stu-
dents at NUS, following the community-based de-
velopment approach described in
2023), and previous versions were integrated into
Source Academy. The instructors of the SICP-based
course at NUS decided that the visualizer needs to be
100% consistent with the textbook, and this consis-
tency was only achieved in 2021. As a result, 2021
was the first year in which the visualizer was used
in class and the students were encouraged to used it
while learning the environment model.

The 2021 course had 667 students and a teach-
ing team of close to 100 staff. Three lecturers man-



34 (50%)

20 21 (30.9%)

1 2 3 4 5

Figure 5: Results of survey question: “The environment
model visualizer [...] helped my students in understand-
ing the environment model of SICP JS. (1 for strongly dis-
agree, 5 for strongly agree)”. Of the 69 corespondents, 68
answered this question.
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Figure 6: Results of survey question: “The environment
model visualizer [...] accelerates the learning process by
letting students interactively explore the the environment
structures that their programs give rise to. (1 for strongly
disagree, 5 for strongly agree)”

aged the course and prepared and delivered the lec-
tures (one two-hour session and one one-hour session
in each of the 13 weeks of the semester). The lectur-
ers and six additional tutors (graduate or senior under-
graduate students) shared the facilitation of a weekly
one-hour recitation session, conducted in groups of
20 to 24 students. A team of 88 undergraduate assis-
tants facilitated weekly 2-hour small-group lab ses-
sions with maximally 8 students per group.

The utility of the visualizer was obvious to the
teaching staff of the course, and therefore A/B testing
was deemed unethical. Instead, to assess the degree
in which the visualizer contributed to the learning and
teaching of the course, we conducted an anonymous
survey among the 88 undergraduate assistants and the
6 tutors. From these 94 facilitators, we received 69
responses (73%).

The first two survey questions asked the facilita-
tors about the degree in which the visualization tool
contributed to the learning of their students. Figure[3]
shows their responses regarding the overall efficacy
of the visualizer, i.e. whether it helped their stu-
dents in understanding the environment model. Of
the responding facilitators, 80.9% agreed or strongly
agreed that it did, and only one disagreed. The sec-
ond question more specifically addressed the speed
of the learning process and the interactive features
of the visualizer. Figure [6] shows that 85.5% agreed
or strongly agreed that the visualizer accelerated the
learning process, one disagreed and one strongly dis-
agreed. From these responses, we conclude that the
visualizer is considered by facilitators to be an effec-

Figure 7: Results of survey question: “The environment
model visualizer [...] helped me as instructor to explain the
environment model. (1 for strongly disagree, 5 for strongly
agree)”

tive tool for learning the environment model of com-
putation.

The last survey question asked the facilitators
whether the tools helped them explain the model. Fig-
ure [7] shows that 62.3% agree or strongly agree that
the visualizer helped them explaining the environ-
ment model in their sessions, whereas 14.4% disagree
or strongly disagree. From these responses, we con-
clude that the visualizer is an effective classroom tool
for teaching the environment model of computation.

8 CONCLUSION AND FUTURE
WORK

Starting from the need for a visual representation of
runtime structures to facilitate the teaching of first-
year computer science courses, we reviewed the en-
vironment model of SICP. We argued that the model
is minimal in the sense that all its components are
forced by the semantics of lexically scoped languages
with first-class functions. We described an interactive
tool for visualizing SICP’s environment model and
its implementation in Source Academy, an environ-
ment designed for supporting the teaching of SICP-
based courses. To our knowledge it is the first in-
teractive tool that graphically represents the environ-
ment structures that arise during the interpretation of
Scheme, JavaScript, and by extension other languages
that share the central characteristics of lexical scoping
and first-class functions, including Python, Ruby, and
Lua.

The environment model as presented in
SICP (Abelson and Sussman, 1996) deliberately
excludes the control aspect of program execution in
order to keep the model simple enough for an intro-
ductory textbook. Thus the environment model and
by extension our environment model visualizer do not
qualify as a notional machine in the sense of (Sorva,
2013)), who argues conclusively that students benefit
from explicit notional machines and their interactive
graphical visualization. In future work, we will
approach the notional-machine challenge posed



by (Clements and Krishnamurthi, 2022) for the
targeted language family with the environment model
of SICP as the starting point. For this, we will extend
the environment model with control components to
obtain a proper notional machine for languages with
lexical scoping and first-class functions. We hope
that this machine will put us in a position to evolve
our environment model visualizer into a complete,
interactive notional machine visualizer: a tool for the
detailed execution visualization of programs written
in the targeted language family.
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