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Zusammenfassung

Die Programmiersprache Oz verbindet die Paradigmen der imperativen, funk-
tionalen und nebenläufigen Constraint-Programmierung in einem kohärenten
Berechnungsmodell. Oz unterstützt zustandsbehaftete Programmierung, Pro-
grammierung höherer Ordnung mit lexikalischer Bindung und explizite Nebenläu-
figkeit, die mithilfe logischer Variablen synchroniziert werden kann.

In der Softwarepraxis hat sich mit der objekt-orientierten Programmierung ein
weiteres Programmierparadigma etabliert. In der vorliegenden Arbeit beschäftige
ich mich mit der Frage, wie objekt-orientierte Programmierung in geeigneter
Weise in Oz unterstützt werden kann. Ich stelle ein einfaches und doch aus-
drucksstarkes Objektsystem vor, belege seine Benutzbarkeit und umreiße seine
effiziente Implementierung.

Ein zentraler Aspekt der Programmiersprache Oz ist ihre Unterstützung
nebenläufiger Berechnung. Infolgedessen nimmt die Untersuchung des Ein-
flusses der Nebenläufigkeit auf das Design des Objektsystems einen besonderen
Rang ein. Ich untersuche die Möglichkeiten, die das Objektsystem bietet, um
nebenläufige objekt-orientierte Programmiertechniken auszudrücken.





Ausführliche Zusammenfassung

Die Programmiersprache Oz verbindet die Paradigmen der imperativen, funk-
tionalen und nebenläufigen Constraint-Programmierung in einem kohärenten
Berechnungsmodell. Oz unterstützt zustandsbehaftete Programmierung, Pro-
grammierung höherer Ordnung mit lexikalischer Bindung und explizite Nebenläu-
figkeit, die mithilfe logischer Variablen synchroniziert werden kann.

In der Softwarepraxis hat sich mit der objekt-orientierten Programmierung ein
weiteres Programmierparadigma etabliert. In der vorliegenden Arbeit beschäftige
ich mich mit der Frage, wie objekt-orientierte Programmierung in geeigneter
Weise in Oz unterstützt werden kann. Ich stelle ein einfaches und doch aus-
drucksstarkes Objektsystem vor, belege seine Benutzbarkeit und umreiße seine
effiziente Implementierung.

Ein zentraler Aspekt der Programmiersprache Oz ist ihre Unterstützung
nebenläufiger Berechnung. Infolgedessen nimmt die Untersuchung des Ein-
flusses der Nebenläufigkeit auf das Design des Objektsystems einen besonderen
Rang ein. Ich untersuche die Möglichkeiten, die das Objektsystem bietet, um
nebenläufige objekt-orientierte Programmiertechniken auszudrücken.

Die Dissertation bietet die erste ausführliche Behandlung objekt-orientierter
Programmierung in einem Berechnungsmodell, das Zustand mit explizit neben-
läufiger Constraint-Programmierung verbindet. Programmiersprache Oz eröffnet
durch zustandsbehaftete Programmierung und Programmierung höherer Ordnung
Möglichkeiten, die weit über die bisherigen Ansätze für Objekte in nebenläufigen
Constraint-Sprachen hinausgehen. Programmiertechniken aus imperativer und
funktionaler Programmierung können zur Integration objekt-orientierter Program-
mierung genutzt werden. Daher bestehen wesentliche Beiträge der Dissertation
aus der̈Ubertragung und Anpassung solcher Techniken in das Berechnungsmodell
von Oz. Die Beiträge der Dissertation liegen in den Bereichen des Sprachdesigns,
der nebenläufigen Programmierung und der Implementierung von Programmier-
sprachen.

Sprachdesign.Der zentrale Beitrag der Dissertation besteht in der Entwick-
lung eines einfachen und doch ausdrucksmächtigen Modells zur objekt-
orientierten Programmierung in einer Constraint-Sprache höherer Ord-
nung mit expliziter Nebenläufigkeit. Durch zustandsbehaftete Program-
mierung eröffnet sich die Möglichkeit, konventionelle objekt-orientierte
Programmierung in ein solches Programmiermodell zu integrieren. Objekt-
orientierte Programmiertechniken aus zustandsbehafteter funktionaler Pro-



grammierung werden an die Kontroll- und Datenstrukturen von Oz ange-
paßt.

Die direkte Unterstützung von Namen in Oz bietet - zusammen mit
der lexikalischen Bindung von Programmbezeichnern - die Möglichkeit,
wichtige objekt-orientierte Konzepte wie private Attribute und Methoden
direkt auszudrücken. Bisher wurden diese Konzepte in objekt-orientierten
Sprachen durch ad-hoc Konstruktionen realiziert.

Nebenl̈aufige Programmierung. Ich zeige, daß die Kombination von logischen
Variablen mit Zustand mächtige Ausdrucksmittel zur nebenläufigen Pro-
grammierung bietet. Diese Mittel benutze ich, um hohe Programmierab-
straktionen wie etwa “thread-reentrant locking” auszudrücken.

Allen bisher benutzten Modellen zur objekt-orientierten Programmierung in
nebenläufigen Constraint-Sprachen liegt das Konzept des aktiven Objektes
zugrunde. Ich stelle diesem das Konzept des passiven Objektes gegenüber
und biete starke Evidenz für diëUberlegenheit des letzteren als Basis für
nebenläufige Objekte.

Praktisch keine konventionelle objekt-orientierte Sprache bietet Botschaften
als emanzipierte Datenstrukturen. Ich zeige, daß emanzipierte Botschaften
eine einfache Integration aktiver Objekte auf der Basis passiver Objekte
erlaubt und daher eine wichtige Komponente für nebenläufige objekt-
orientierte Programmierung darstellt.

Ich stelle ein Meta-Objekt-Protokoll für Oz vor, das eine flexible Expe-
rimentierplattform zur nebenläufigen objekt-orientierten Programmierung
bietet.

Implementierung von Programmiersprachen. Ich gebe die erste detaillierte
Beschreibung an, wie objekt-orientierte Programmierung in eine existieren-
de Abstrakte Maschine einer nicht-objekt-orientierten Sprache effizient in-
tegriert werden kann. Ich zeige, daß die Performanz moderner objekt-
orientierter Programmiersysteme durch einige chirurgische Eingriffe in eine
solche Abstrakte Maschine erreicht werden kann.

Eine neue Technik wird vorgestellt, mit deren Hilfe emanzipierte Botschaf-
ten implementiert werden können, ohne daß ein Performanzverlust entsteht,
wenn diese nicht benutzt werden. Diese Technik ist wesentlich für die Prak-
tikalität der Darstellung aktiver Objekte auf der Basis passiver Objekte.



Abstract

The programming language Oz integrates the paradigms of imperative, functional
and concurrent constraint programming in a computational framework of unprece-
dented breadth, featuring stateful programming through cells, lexically scoped
higher-order programming, and explicit concurrency synchronized by logic vari-
ables.

Object-oriented programming is another paradigm that provides a set of con-
cepts useful in software practice. In this thesis we address the question how
object-oriented programming can be suitably supported in Oz. As a lexically
scoped higher-order language, Oz can express a wide range of object-oriented
concepts. We present a simple yet expressive object system, demonstrate its us-
ability and outline an efficient implementation. A central aspect of Oz is its sup-
port for concurrent computation. We examine the impact of concurrency on the
design of an object system and explore the use of objects in concurrent program-
ming.
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Preface

Research is a dynamic and interactive activity which thrives in an environment that
fosters exchange of ideas and intense collaboration between researchers. I found
such an environment in the Programming Systems Lab in Saarbrücken. It was
the cooperation with the enthusiastic, knowledgeable and cooperative researchers
of this lab that lead to the findings reported in this thesis. To say that without
them this work would not have been possible would miss the point. This istheir
workas well as it is mine. Such a research environment ridicules the stereotypical
notion of the lone searcher for truth who entrenches himself in his ivory tower and
comes back with a thesis. I gladly present the results of a collaborative effort to
the public.

I was fortunate to be supervised by Gert Smolka, whose work laid the base
for this thesis, and whose tireless striving for simplicity as a chief goal ofscien-
tific endeavor was truly inspiring. Ralf Scheidhauer implemented the emulator
support and contributed several ideas to the implementation of the object sys-
tem. Christian Schulte contributed countless ideas to the design of Objects in Oz.
Jörg Würtz helped lay the base for the initial design of Objects in Oz. Christian
Schulte and Konstantin Popov were the first object-oriented programmers in Oz
and shared their programming experience with me. Martin Müller and Michael
Mehl contributed concurrent programming examples. Michael Mehl helped with
comments and suggestions and shared his experience with object-oriented pro-
gramming with me. Martin Müller and Joachim Niehren shared their knowledge
concerning a few fundamental aspects that I discuss in passing. Denys Duchier
contributed an elegant syntactic detail. I thank Seif Haridi for several fruitful dis-
cussions on the design of Objects in Oz. My office mates Jörg Würtz and Joachim
Walser sent out good vibes and were fun to work with. Leif Kornstaedt, Kelly
Reedy, Ralf Scheidhauer, Christian Schulte, Gert Smolka and Joachim Walser
commented on earlier versions of this thesis. Of course any mistakes thatare still
in it have been added by meafter they looked at it and thus are entirely due to
my ignorance. The following people provided advice and assistance for the per-
formance measurements in Section 8.6: Hubert Baumeister, Seif Haridi, Michael
Mehl, Tobias Müller, Jérôme Vouillon, Peter Van Roy, and Joachim Walser.

This thesis is a self-contained monograph on object-oriented programming in
the programming language Oz. Previous papers on this topic [SHW93, HSW93,
HS94, SHW95] document various intermediate stages of development. Their
technical content underwent heavy revision and thus they are now of interest
mostly as precursors of the present work.

Central reported techniques rely on several features of the underlying pro-
gramming language that are not unique by themselves, but need to becombined
in a single language. These features include higher-order programming, stateful
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programming, thread-level concurrency and synchronization with logic variables.
Obviously it would have been hard to make all these buzzwords fit in the title of
this dissertation. On the other hand, Oz is currently the only language that com-
bines these features. So at the moment the title “Objects in Oz” is quite fitting. I
do hope, however, that this work can help motivate the integration of these fea-
tures in other languages. It would not be the worst fate of this dissertation if it
could contribute to making its own title obsolete.

This thesis reports on work I carried out at the Programming Systems Lab in
Saarbrücken from January 1992 to May 1997. From January 1992 to March 1996,
I was employed by DFKI (German Research Center for Artificial Intelligence) and
funded by the Bundesminister für Bildung, Wissenschaft, Forschung und Tech-
nologie (Hydra, ITW 9105). From April 1996 to July 1997, I was employed by
the Sonderforschungsbereich 318, Ressourcenadaptive kognitive Prozesse (Spe-
cial Research Division Resource-Adaptive Cognitive Processes) of the Universität
des Saarlandes, Saarbrücken, Germany.

Martin Henz
Saarbrücken, Germany
May 1997
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�Then you must go to the City of Emeralds.

Perhaps Oz will help you.�

�Where is this city?� asked Dorothy.

�It is exactly in the center of the country, and

is ruled by Oz, the Great Wizard I told you

of.�

�Is he a good man?� inquired the girl anx-

iously.

�He is a good Wizard. Whether he is a man or

not I cannot tell, for I have never seen him.�

�How can I get there?� asked Dorothy.

�You must walk. It is a long journey, through

a country that is sometimes pleasant and

sometimes dark and terrible. However, I will

use all the magic arts I know of to keep you

from harm.�

Chapter: The Council with the Munchkins



Chapter 1

Introduction

1.1 Area of Research

Software construction is an inherently complex task. Sources for this complex-
ity are the complexity of the application domains and of the software develop-
ment process on one hand, and the flexibility that programming provides on the
other hand. Complex software can only be constructed successfully if the pro-
cess is guided by powerful abstractions in all phases of the software development
process. Our focus is on programming rather than analysis, design or mainte-
nance, and thus our central aim is to provide powerfulprogrammingabstractions.
High-level programming languages have been and are being developed that aim
at providing such abstractions. Object-oriented programming languages aim at
mastering complexity by centering computation around data items and operations
on them. For many applications, object-oriented programming languages provide
an attractive set of programming abstractions.

Many applications are naturally composed of autonomous entities that progress
concurrently towards performing an overall task. Instead of leaving the program-
mer with the tedious task of splitting up sequential control to serve these au-
tonomous entities, modern programming languages provide the programmer with
high-level concurrent abstractions that allow to spawn and synchronize concurrent
computation.

The programming language Oz supports concurrent computation in a pro-
gramming framework of unprecedented breadth. Oz integrates (dynamically
typed) functional programming, central aspects of logic and concurrent constraint
programming with thread-level concurrency. The questions that we are addressing
in this thesis are how object-oriented programming can be supported in Oz, how
object-oriented programming can be integrated in an implementation of Oz, and

1
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how concurrent programming interacts with objects.

1.2 Programming Language Design

Any programming language should be simple, expressive, and effi-
cient... Sverker Janson in [Jan94]

Programming languages are tools used by programmers to solve problems on a
computer. The fact that they are used by humans implies that they should be
simple; as with any good tool, the programmer should be able to concentrate on
the problem rather than be distracted by a complicated tool. The language should
beexpressiveenough to offer a range of programming abstractions to support the
modeling of the application area at hand. Simplicity and expressivity are often
in conflict with each other. A language designer striving for expressivity may
add more and more features, thus sacrificing simplicity, and a designer striving
for simplicity may deliberately leave out features that would come in handy to
express problem solutions.

A third dimension that a language designer needs to keep in mind isefficient
execution of programs on the target computers. There are potential conflicts of ef-
ficiency with both simplicity and expressivity. For example, assembly languages
allow to write efficient programs but fail to provide expressive programmingab-
stractions, and languages with automatic memory management provide simplicity
potentially at the expense of efficiency-compromising garbage collections.

As systems become more and more complex, a fourth dimension comes into
play. Large programs can only be manageable if the impact of local changes can
be limited. The language designer is faced with the question to what extentse-
curity can be guaranteed without negative impact on the other design issues. For
example, safe static type systems enforce a security from runtime errors poten-
tially at the expense of expressivity in a sense that meaningful programs might be
rejected. Dynamic type checking supports security by allowing to localize runtime
errors at the expense of efficiency.

To summarize, we depict the situation of the language designer in Figure 1.1
as a extension of Janson’s triangle [Jan94]. During this presentation, we will
frequently be forced to take our stand in this area of conflict.

The language design process is often presented as a cycle. Starting with an
applicationdomain, alanguageis designed in which the problems in the domain
can be solved. The language is implemented yielding asystemwith which the
applications can be solved. Experience with these applications leads to refining
the language design and so on. In practice, however, the temporal and causal
dependencies in this process are complex and elusive. Feedback goes from the
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implementation to the language (e.g. revisions of constructs that cannot be im-
plemented efficiently), from the language to the envisioned applications (e.g. new
application domains become tractable or envisioned applications are recognized
as intractable), and from the applications to the implementation (e.g. critical effi-
ciency issues are detected that need new implementation techniques). Figure1.2
depicts the language design cycle.

1.3 Object-oriented Programming

Object-oriented programmingis a method of programming in which several pro-
gramming concepts are combined in a particular manner. Not all of these concepts
of programming have been developed in the context of object-oriented program-
ming; rather it is their particularintegrationin a coherent programming method
that is specific to object-oriented programming. This programming method pre-
scribes organizing software into classes each of which describe the behavior of
encapsulated data structures, called theirinstancesor justobjects. Classes define
the set of operations calledmethodsthat can beinvokedon their instances.

Often, a class contains many methods and many classes share common behav-
ior. To structure the functionality of classes and to avoid duplication of methods,
object-oriented programming allows forinheritanceof classes such that a class
can be defined as an incremental modification of one other class (single inher-
itance) or several other classes (multiple inheritance). These other classes are
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Figure 1.2Language Design Cycle
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calledsuperclassesof the newly definedsubclass.
Many programming languages allow to program in accordance with the

object-oriented programming method. What distinguishesobject-oriented pro-
gramming languagesfrom other programming languages is that they provide
semantic and syntactic facilities that make it particularly convenient to use this
method, or evenforcethe programmer to do so.

1.4 Concurrency

Sequential execution lies at the heart of conventional programming languages.
The programmer’s instructions are executed in strict sequential order. How-
ever, many applications such as interactive systems can be decomposed intoau-
tonomous entities that do not lend themselves naturally to an overall sequential or-
der. Sequential programs for such applications typically use complex and artificial
control structures to schedule and interleave activities (e.g. event loops in graphics
libraries). Instead, the programmer should think of such computational activity as
being naturally concurrent. To this goal modern programming languages provide
for spawning new sequential threads of control that can be executed concurrently.

Concurrency adds another dimension to the complexity of software; a new
range of concerns needs to be considered. For example, an I/O device may be
constructed such that it must carry out a sequence of actions in a specified or-
der to function properly. Several user processes operating on the same device
concurrently will cause havoc. We call this synchronization requirementmutual
exclusion. Many more such synchronization requirements have been identified in
concurrent programming practice.

Striving for generality, different approaches to synchronization problems are
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compared andabstractionsare developed that provide generic solutions. A par-
ticularly attractive concept is to provide for synchronization upon availability of
data. This idea was underlying the data flow languages [Den74] and the concept
of futures [BH77, Hal85] in functional programming. A more expressive and flex-
ible idiom for data-driven synchronization is provided by the logic variable that
will play a central role in our work.

1.5 Objects and Concurrency

A significant part of software development today uses object-oriented analysis,
design and programming methods. Concurrency is crucial in many of these ap-
plications. Thus the question how object-oriented programming and concurrency
interact is an important one.

It is often claimed that the success of object-oriented programming lies inthe
fact that concepts familiar in modeling physical systems can be fruitfully putto
work in developing software. The analogy of software objects to physical objects
is often helpful to the programmer. If we carry this analogy further, it is tempting
to attribute certain patterns of concurrent behavior to software objects. After all,
physical objects also exist in a concurrent environment.1 Indeed, it is often useful
to equip objects with patterns of concurrent behavior. One such a pattern is the
active object, which is an object with associated computational resources that
are used for operations on the object. Another pattern is theconcurrent passive
object, which is an object without computational resources that guarantees that
concurrently issued operations on it respect synchronization requirements such as
mutual exclusion.

What is questionable however is toenforcea certain concurrency pattern on
an object-oriented language. It is argued by Stroustrup [WL96] that an integra-
tion of concurrency in an object model necessarily favors one particular model for
concurrent objects at the expense of other reasonable models. Therefore concur-
rency and objects should be kept separate in language design. In the course of
the development of Objects in Oz, this argument became painfully clear. A con-
currency model for objects was fixed at an early stage and carried along through
various changes of the underlying language. Relatively late, this model was found
inappropriate and the validity of Stroustrup’s argument became apparent.

Instead of fixing one particular concurrent object model, the goal should be
to provide easy-to-use abstractions for a wide variety of concurrent behavior of
objects, ranging from purely sequential objects to active objects. Indeed, we shall

1As Kahn [Kah96] points out “programs typically model the world and theworld is concurrent.
Sequential programming languages provide a world in which only one thing can happen at a time.
This is a very strange world.”
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argue that the programming language Oz provides a unique set of techniques to
define such abstractions.

1.6 Concurrent Logic Programming

Logic programming developed as a procedural interpretation of Horn clause
logic [Kow74] and as a specialized computation framework for natural language
processing [CKPR73] around 1972. The first and most widely used logic pro-
gramming language is Prolog, which uses SLD-resolution over constructor terms
as its main computational principle. From the programmer’s point of view, the
logic variable plays a central role in Prolog. Logic variables can refer to val-
ues of which only partial or no information is known. Constraint logic program-
ming [JM94, BC93] is a generalization of logic programming in which resolution
is used as operational core for reasoning not only over constructor terms but over
domains as diverse as infinite trees and intervals of real numbers. Constraintlogic
programming over finite domains developed efficient techniques for solving a va-
riety of combinatorial problems.

Concurrent logic programming [Sha89] originated with the Relational Lan-
guage [CG81] and is based on the observation that the logic variable can be used
to synchronize concurrent computation. For this purpose, SLD-resolution was
replaced by a new computation model based on the notion of committed choice.

Soon it was realized by Shapiro and Takeuchi [ST83] that concurrent logic lan-
guages can express active objects using message streams. Shapiro and Takeuchi
also point out the power and elegance of the logic variable for synchronization.
Syntactic considerations led to the development of a number of object-oriented ex-
tensions to concurrent logic languages, such as Vulcan [KTMB87], A’UM [YC88]
and Polka [Dav89]. In these languages, many-to-one communication is realized
with stream merging, which causes inefficiency and is conceptually problematic.
Janson, Montelius and Haridi [JMH93] introduced a dedicated language primi-
tive calledport for efficient many-to-one communication in concurrent logic lan-
guages.

1.7 The Language Oz

Concurrent constraint programming [Mah87, Sar93] (ccp) generalized concurrent
logic programming and constraint logic programming in a uniform computational
framework. ccp introduces elegant notions of communication and synchroniza-
tion based on constraints. A computational agent may add information to the store
(tell) and wait for the arrival of a specified information in the store (ask). Janson



1.8. THE DEVELOPMENT OF OBJECTS IN OZ 7

presents theccp language AKL [Jan94], which demonstrates that a practical pro-
gramming system was possible in which concurrency and problem solving can
fruitfully coexist.

Like AKL, the development of Oz [Smo95, ST97] was driven by the goal
to provide a multi-paradigm programming framework. Already in Smolka’s ini-
tial vision [Smo91] that led to the development of Oz, object-oriented program-
ming was considered a “major objective”. Rather than viewing object-oriented
programming as a convenient extension of the language, it was treated as a cen-
tral design issue. A rigorous pursuit of this goal led to crucial design decisions.
The first step beyond AKL was to marry concurrent constraint programming with
lexically scoped first class procedures, notions that are inherent in lambda cal-
culus and were introduced to programming languages through Algol [N+63] and
Lisp.2 This step opened the stage for new research directions as diverse as inno-
vative problem solving engines and novel approaches to transparently distributed
computation. For object-oriented programming, this had the consequence that a
plethora of techniques from functional programming became available that rely
on lexically scoped higher-order programming. Higher-order programming cut a
restraining rope attaching Oz to its heritage from concurrent logic programming.

Being initially conceived without search, a novel programming abstrac-
tion [SS94] has been integrated to allow for a wide variety of search engines. As
constraint domains, record constraints [ST94, RMS96] generalizing constructor
trees, and finite domain constraints [SSW94] are provided.

Motivated by object-oriented programming,cells were integrated. From the
perspective of functional and constraint programming, cells introduced the basic
ingredient of imperative programming to the language. In summary, Oz can be
seen as a unified programming framework subsuming imperative programming,
lexically scoped higher-order functional programming and central aspects of con-
current constraint programming. Based on an abstract machine for Oz [MSS95],
DFKI Oz [ST97] provides for a robust and efficient implementation.

1.8 The Development of Objects in Oz

Initial experiments with active objects led to the conclusion that while being a use-
ful programming idiom they cannot serve as the base for a practical object system.
A communication primitive calledconstraint communication—inspired by Mil-
ner’sπ calculus [Mil93]—was introduced to implement passive objects [HSW93].

2While Lisp’s first-class procedures predate Algol, lexical scoping found its way into (then
Common) Lisp from Algol via Scheme [SS75] as late as 1980. Steele and Gabriel [SG93] give an
excellent account of the evolution of the Lisp family of programming languages.
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Later, it was realized that while equally expressive, the notion of a cellprovides a
much simpler foundation for passive objects in Oz [SHW95].

Complementing the exploration of object-oriented concepts in Oz, a class-
based object-oriented syntax extension was developed and implemented. A for-
tunate early development in Oz was the integration of records in the computation
model [ST94], since records are the congenial data structure for various elements
of an object model such as state, classes, and messages.

Initially, Oz was conceived as a language with fine-grained concurrency much
in the tradition of concurrent logic programming. Most language constructs had
the ability of spawning concurrent computation. Experience with larger programs
such as the Oz Browser [Pop95] and the Oz Explorer [Sch97] suggested that this
was not desirable as it made concurrency difficult to control. Thus, the more
conventionalexplicit concurrencywas adopted. The programmer can spawn new
threads of computation, and unless he does so, a program runs sequentially. How-
ever, in contrast to other concurrent thread-based languages, synchronization is
governed by data flow through logic variables.

The object system followed this development. For implicit concurrency, it was
regarded as necessary to provide a standard synchronization mechanism for pas-
sive objects at the expense of fixing a particular concurrency model for objects.
As central synchronization mechanism, a monitor semantics was chosen. Con-
current applications of objects was synchronized such that mutual exclusion of
code that operated on the object’s state was guaranteed [SHW95]. Negative con-
sequences became apparent. General enforcement of mutual exclusion was per-
ceived as overly restrictive, imposing the understanding of a complex semantics
on the programmer and even leading to subtle programming errors in “sequential”
programs.

The shift to explicit concurrency allowed to drop the monitor semantics for
objects, because the programmer is in control of the created concurrency. In our
experience, a coarse-grained concurrent structure is appropriate for many applica-
tions; large parts of the application can run entirely sequentially and communicate
and synchronize each other using small concurrent interfaces. Given a clear de-
sign of these interfaces, the synchronization issues can be identified and solved.
This situation allows to decouple Objects in Oz from concurrency issues, such
that they are optimally suited for sequential programming. For programming of
concurrent interfaces, we provide suitable object-oriented abstractions for com-
munication and synchronization.

Without cells, the synchronization mechanisms provided by Oz are not suf-
ficiently expressive to deal with more than the simplest synchronization tasks in
concurrent programming. However, the cell complements the logic variable ide-
ally in this respect, leading to elegant solutions to a wide variety of synchroniza-
tion abstractions. This observation is used to provide high-level synchronization
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idioms with and for Objects in Oz.

Oz and Small Oz

The aim of this thesis is to reveal the concepts underlying Objects in Oz. To focus
on this task, we simplify Oz in aspects that are not relevant to object-oriented pro-
gramming, resulting in a language calledSmall Oz. Oz and Small Oz are so close
that every Small Oz program that occurs in this thesis is a working Oz program
(tested on DFKI Oz 2.0 and available at [Hen97a]). Whenever the difference be-
tween Oz and Small Oz is irrelevant, we simply talk about Oz instead of Small
Oz. However, we shall explain where and why Small Oz differs from Oz. By
Oz, we refer to the language Oz 2 as defined in [ST97]. The precursor of Oz 2 is
called Oz 1 and is briefly discussed in Chapter 11.

1.9 Contributions

This thesis represents the first in-depth treatment of object-oriented programming
in thread-based concurrent constraint programming with state. Although there
has been considerable work in object-oriented concurrent logic programming,
the programming language Oz opens up concurrent constraint programming to
a wide range of techniques well known in imperative and functional program-
ming. Consequently, several central contributions of this work consist of extend-
ing and adapting these techniques to thread-based concurrent constraint program-
ming. Contributions have been made in the areas of programming language de-
sign, concurrent programming and programming language implementation.

Language Design

Conventional Object-Oriented Programming for Concurrent Constraint
Programming. The central contribution of this thesis lies in the develop-
ment of a simple yet expressive model for object-oriented programming in
the thread-based higher-order concurrent constraint language Oz. For the
first time, conventional object-oriented programming becomes available in
the framework of concurrent constraint programming. To this aim, object-
oriented programming techniques in particular from stateful functional pro-
gramming are adapted to the available data and control structure and syntax
of Oz.

Names for Privacy. We contribute the discovery that names together with lexi-
cal scoping can express important object-oriented concepts such as private
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attributes and methods and protected methods. These techniques have pre-
viously been realized in object-oriented languages by ad-hoc constructions.

Concurrent Programming

Synchronization with Logic Variables and State. We contribute the realization
that logic variables together with an appropriate notion of mutable state
provide a wide variety of synchronization techniques. We use the result-
ing constructs to define high-level concurrent object-oriented programming
abstractions such as thread-reentrant locking.

Active vs Passive Objects for Concurrent Constraint Programming. Active
objects have provided the underlying model for object-oriented program-
ming in all previous concurrent (constraint) logic languages. While being a
useful programming concept, we provide strong evidence that active objects
are inferior to passive objects as the underlying object-oriented concept.

First-class Messages for Active Objects.Virtually no conventional object-orien-
ted language provides first-class messages. We show that first-class mes-
sages allow a simple integration of active objects in conventional object-
oriented programming with thread-level concurrency. Comparing with ef-
forts of other object-oriented languages for supporting active objects, we
conclude that first-class messages are the congenial programming concept
for active objects on the base of passive objects.

A Concurrent Meta-Object Protocol. We describe a meta-object protocol for
Oz that can serve as a flexible platform for experimentation with alternative
and additional synchronization mechanisms for objects in Oz.

Implementation Technology

Integrating Objects in an Abstract Machine. We give the first detailed account
of how object-oriented programming concepts can be efficiently supported
by an abstract machine implementing a non-object-oriented language. We
show that the performance of state-of-the-art object-oriented programming
systems can be attained with few surgical modifications of such an abstract
machine.

Implementing First-Class Messages.A novel technique is presented that allows
to implement an object system based on first-class messages without run-
time or memory overhead if first-class messages are not used. This tech-
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nique is crucial for the practicality of realizing active objects on the baseof
passive objects.

1.10 Outline

This thesis is organized in three parts, each consisting of three or four chapters.
Figure 1.3 depicts the dependencies of the chapters and may be helpful for the
reader to navigate through the thesis.

Part I sets the stage by introducing object-oriented programming and the lan-
guage Small Oz. Chapter 2 provides an overview of issues in object-oriented
and concurrent programming language design. We put object-oriented program-
ming in a broader context of knowledge representation and software development
and explain basic object-oriented abstractions such as like late binding and in-
heritance. We emphasize the role of logic variables in concurrent programming.
Chapter 3 presents a duly simplified version of Oz that serves as the computational
framework for this thesis. Chapter 4 takes first steps towards objects inOz by cast-
ing two classical approaches to object-oriented programming in the framework of
Oz.

Part II describes sequential object-oriented programming in Oz. In Chapter 5
we introduce the basic features of the Oz Object System and discuss the design
decision taken. In Chapter 6 we present advanced features of the Oz Object Sys-
tem such as multiple inheritance, private identifiers, and first-classing. We present
a semantic foundation for this object system in the form of a reduction to Small
Oz in Chapter 7. In Chapter 8, we outline and evaluate a realistic implementation
of the object system.

Part III treats concurrency issues in the framework of objects in Oz. In Chap-
ter 9, we employ logic variables and cells to solve a variety of synchronization
problems in concurrent programming. We show how reentrant locks, a common
synchronization construct for concurrent objects, are integrated in the object sys-
tem for Small Oz. In Chapter 10, we define programming abstractions for active
objects. Chapter 11 discusses the design issues for objects in alternative concur-
rency models. In Chapter 12, we give a meta-object protocol that allows to use
object-oriented programming to experiment with the concurrent aspects of ob-
jects.
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Part I

Setting the Stage

This part sets the stage for Objects in Oz. Chapter 2 introduces the main concepts
of object-oriented programming. Issues in the design of object-oriented languages
are addressed and major object-oriented languages are compared. Chapter 3 in-
troduces a sub-language of Oz called Small Oz that will be used throughout the
thesis. We show in Chapter 4 that Small Oz can readily express established models
of objects in functional and concurrent logic programming.

13



�Who are you?� asked the Scarecrow when

he had stretched himself and yawned. �And

where are you going?�

�My name is Dorothy,� said the girl, �and I am

going to the Emerald City, to ask the Great

Oz to send me back to Kansas.�

�Where is the Emerald City?� he inquired.

�And who is Oz?�

�Why, don't you know?� she returned, in sur-

prise.

�No, indeed. I don't know anything. You see,

I am stu�ed, so I have no brains at all,� he

answered sadly.

�Oh,� said Dorothy, �I'm awfully sorry for

you.�

�Do you think,� he asked, �if I go to the Emer-

ald City with you, that Oz would give me

some brains?�

Chapter: How Dorothy Saved the Scarecrow



Chapter 2

Issues in Object-Oriented Language
Design

My guess is that object-oriented programming will be in the 1980s
what structured programming was in the 1970s. Everyone will be in
favor of it. Every manufacturer will promote his products as support-
ing it. Every manager will pay lip service to it. Every programmer
will practice it (differently). And no one will know just what it is.

Tim Rentsch in [Ren82]

In this chapter we explore essential aspects of object-oriented programming lan-
guages in a top-down approach. Section 2.1 gives a view of object-oriented
programming from the perspective of knowledge representation and argues that
object-oriented programming supports a number of important abstraction princi-
ples. Section 2.2 covers aspects of software development. Here the notions of
late binding, inheritance and encapsulation play a central role. Section 2.3 in-
troduces central issues of concurrent programming as relevant to object-oriented
programming.

2.1 Knowledge Representation View

Software is used to solve problems in given domains. To this aim, software ex-
presses properties of entities, their relationship and interaction in a language ac-
cessible to automatic treatment such as compilation to processor instructions. The
complexity of a given domain of application must be matched by the expressiv-
ity of the language in use. To understand a complex problem it is necessary to
view it from different angles provided byabstraction principles. An often quoted

15
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hallmark of object-oriented programming is its support for the knowledge repre-
sentation principles ofclassification, aggregationandspecialization[Tai96].

Classification This principle aims at grouping things together into classes such
that common properties of the members can be identified. For example, it is useful
to classify all individual participants of a road traffic scenario asvehiclesthat have
properties like size, speed and direction of movement. Collectively, the instances
of a class form the extensionof that class. Object-oriented languages provide
support for classification by allowing to define classes that describe the properties
of their instances.

Aggregation This principle allows to form new concepts as collections of other
concepts. For example, vehicles such as semitrucks are entities composed of parts
such as cabin and trailer, each of these again being composed of wheels, axles, etc.
In programming, aggregation is achieved by compound data structures that are
calledobjectsin the framework of object-oriented programming. The components
are calledattributesand can be referred to byattribute identifiers. During the
lifetime of an object, attributes may change but usually the object structure, i.e.
the names through which attributes are accessible, is fixed.

Specialization This principle allows to describe a concept as a more specific
version of another concept. A conceptCs can be regarded as a specialization
of another conceptC if the extension ofCs is a subset of the extension ofC.
This relationship is often calledis-a in the context of object-oriented program-
ming [Ped89]. For example, concepts such as “car” and “truck” can be seen as
specializations of the concept “vehicle”. In object-oriented programming, spe-
cialization can be achieved by defining classes as specialized versionsof other
classes usinginheritance. A classCs that inherits from another classC is called
its subclass andC is called superclass ofCs. However, inheritance as provided by
most object-oriented programming languages is more general than specialization.
In particular, properties of a superclass can be overridden by a subclass. Weshall
see in Section 2.2.5 that the identification of inheritance with specialization is the
source of much confusion in object-oriented programming.

When it comes to the design of a particular formalism such as an object-
oriented programming language, interactions between these abstractions emerge.
For example, the principle of aggregation suggests that classes describe the at-
tributes of their instances and that these attributes are inherited.
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Figure 2.1Control Flow in Procedural Languages (time centered)
P1 P2 P3

control

time

2.2 Software Development View

Over the years, a host of object-oriented analysis and design methods have been
proposed (for overviews of this field see [Boo94, C+93]). Usually issues like
classification, aggregation and specialization play a central role in object-oriented
analysis. The objects involved in a computation are identified and their properties
are described. These issues can be characterized as static. Dynamic aspects come
into play when the functionality of these objects is designed.

2.2.1 Focusing on Objects

In conventional programming languages, procedures are a central means to struc-
ture functionality. At runtime, control can be passed from one procedure to an-
other by procedure application. The resulting control flow in conventional lan-
guages is depicted in Figure 2.1. Many languages allow to structure procedures
according to their functionality, leading to the concept of modules.

A central idea behind object-oriented programming is that such structuring
can be effectively guided by thedatainvolved in the computation. At any point in
time there is one dedicated data objecton which the respective procedure is car-
ried out. Thiscurrentobject is referred to asself. In object-oriented programming,
procedures are calledmethods. The invocation of a method can either change self
to another object or leave it the same. In the former case, we say that the object
is applied to a message (object application); often this is calledmessage send-
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Figure 2.2Control Flow in Object-Oriented Languages (time centered)
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ing.1 The latter case can be achieved either by a special case of object application,
calledself application, or bymethod application; we shall discuss these two pos-
sibilities later in this section. In all cases, the operation leads to execution of a
corresponding method. The resulting refinement of the procedural control flow
is depicted in Figure 2.2. It is convenient to group the methods that operate on a
certain kind of object intoclasses. Classes are modules containing methods that
all operate on the same kind of objects, which are called itsinstances.

Each instance of a class carries its own identity distinguishing it from all other
objects. We call this approach to equalitytoken equalityas opposed to structural
equality which defines two objects to be equal if they have the same structure and
all their components are equal.

1The term “object application” used throughout the thesis is adopted fromfunctional program-
ming where objects are often represented as procedures [AS96] (procedural datastructures). We
refrain from using the term “message sending” since message sending has a conflicting connota-
tion in concurrent programming (asynchronous communication).
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2.2.2 Polymorphism and Object Application

It is useful to group the values that can be referred to by identifiers intotypes.
With respect to a given type structure, an identifier occurrence ispolymorphic,
if it can refer to values of different type at different points in time. Cardelli and
Wegner [CW85] distinguish between two ways an operation can be applied to
a polymorphic identifier occurrence. Either the operation can be performed uni-
formly on all values of the different types (e.g. you can compute the length of a list
regardless of the type of its elements), or different operations will be performed
for different types (an additionx+ y works differently if x andy are integers or
floats). Operations of the former kind are calleduniversally polymorphicand the
latter ad-hoc polymorphic. Both kinds of polymorphism play a central role in
object-oriented programming.

Object-oriented languages handle both kinds of polymorphism by usinglate
binding for object application. Late binding introduces an indirection between
the object application and execution of the corresponding method. An object
is applied to a message which consists of amethod identifierand further argu-
ments. The method identifier and the class of the object being applied determine
the method to be executed. Thus the class provides a mapping from method iden-
tifiers to methods. The other arguments are simply passed as arguments to the
method. Figure 2.3 depicts the execution of an object application (using Java
notation).

The object-oriented extension of Lisp, CLOS [Ste90], generalizes this scheme
and allows all arguments to be considered for determining the method, which is
therefore calledmultimethod. Late binding supports universal and ad-hoc poly-
morphism, since application of objects of different classes can lead to execution
of the same or different methods as we shall see.

Polymorphism can be the source of programming errors, because the program-
mer may not be fully aware of the argument types of identifiers. Statically typed
programming languages limit the polymorphism before the program gets executed
by refusing programs that violate certain typing rules at compile time. Statically
typed object-oriented languages usually introduce a type for every class. Poly-
morphism is restricted along the inheritance relation. Often the programmercan
rely on the following invariant. If an identifier may hold instances of a classC, it
may also hold instances of a class that inherits fromC. This invariant is impor-
tant in practice and is a central issue in defining type systems for object-oriented
languages [PS94].
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Figure 2.3Execution of Object Application
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2.2.3 Code Reuse

Often during development and maintenance of software, new functionality needs
to be provided in addition to supporting old functionality. For example, a window
system may provide for simple windows. In the next version of the software,
labeled windows need to be supported in addition to simple windows. Without
inheritance, the programmer can either “copy-and-modify” the code, or introduce
case statements where the two kinds of windows must be distinguished. Both
schemes lead to a proliferation of code, but not of programming productivity.
Inheritance allows to reuse code more elegantly (but at the expense of certain
intricacies as we shall see).

Conservative Extension

Let us first consider the possibility of code reuse by conservatively adding
functionality. In order to provide for labeled windows, we define the class
LabeledWindow by inheriting from Window and adding methods such as
setLabel anddrawLabel . Instances ofLabeledWindow provide all function-
ality that instances ofWindow provide and in addition more specialized behav-
ior related to their label. Thus, the classLabeledWindow is a specialization of
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Window. Late binding provides the mechanism with which instances of the sub-
class can access the functionality of the superclass.

Non-conservative Extension

Most object-oriented languages provide for overriding inherited methods in sub-
classes by declaring that a method identifier refers to a new method in the sub-
class instead of an inherited method with the same identifier. An invocation of
an instance of the subclass using this identifier will lead to execution of the new
method.

As an example, let us assume that the classWindow supports a method
redraw that displays the content that the window currently holds. In our class
LabeledWindow , we would like to redefine the methodredraw such that it also
displays the current label of the window.

Overriding is a powerful and potentially dangerous tool in the hands of the
programmer. It is powerful since it allows to reuse code and radically changeit
along the way. It is dangerous, because the code being reused may not be prepared
for the change. Overriding is the issue where an object-oriented language departs
from the idea that inheritance models specialization, because in the presence of
overriding, a superclass does not necessarily characterize properties of instances
of subclasses. Overriding is a heatedly debated feature of object-oriented pro-
gramming. Taivalsaari [Tai96] gives an excellent introduction to the literature in
this field.

2.2.4 Late and Early Binding

Broadly speaking, the history of software development is the history
of ever-later binding time.Encyclopedia of Computer Science [RR93]

Late Binding

We saw that object-oriented programming allows a subclass to override a method
inherited from a superclass. An application of an instance of the overriding class
will result in a call to the new method. We saw in Section 2.2.1 that—apart from
defining interfaces to objects—methods are used for structuring functionality sim-
ilar to procedures in procedural languages. A method may pass control to another
method without changing self. One problem emerges here. What happens to the
calls to the overridden method issued by methods in the superclass? For example,
a methoddeiconify defined inWindow may call the methodredraw that we
override inLabeledWindow . In a framework in which methods call each other
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directly, the old method will remain in use by methods of the superclass, thus
contradicting the user’s intention to completely replace it by the new method.

A particular usage of late binding can solve this problem. If we arrange that
self is applied to the messageredraw in the deiconify method ofWindow
instead of calling the method directly, late binding will lead to executionof the
new methodredraw . If we insist on using late binding for every call of the
method in the superclass, we can completely override it in a subclass. With self
application, a programmer can open his code for change. On the other hand, self
application in combination with overriding can make programs considerably more
complex because it is not fixed by the programmer which code is being executed
as result of the application. As Coleman and others [C+93] note “the increased
re-usability of class hierarchies must be balanced against the higher complexity of
such hierarchies” and later “on the one hand, [inheritance] enables developers to
make extensive use of existing components when coping with new requirements;
conversely, clients can be exposed to a source of instability that discouragesthem
from depending on a hierarchy of classes”.

Early Binding

Late binding enforces the use of the method given by the class of the object being
applied. Often, this is too restrictive. Consider the frequent case that an overriding
method needs to call the overridden method. The use of late binding here would
instead call the overriding method! Instead a mechanism is needed to call the
overridden method directly. The classical idiom for this situation is the “super”
call, which calls the method of the direct predecessor of the class that definesthe
method in which the call appears. A super call in a given method always callsthe
same method and thus implementsearly binding. The term “early binding” refers
to the fact that the class, whose method matches the method identifier is known at
the time of definition of the method in which the call occurs. A generalization of
the super call is a construct that directly calls the method of a given class;we call
thismethod application.

Early binding can be used to ensure the execution of a particular method. The
programmer can limit the flexibility of designers of derived classes, and thusrely
on stronger invariants. In practice, early binding is often used for efficiency rea-
sons. Some object-oriented languages such as SIMULA [DN66] and C++ [Str87]
treat early binding as the default and require special user annotations such as “vir-
tual” for methods that may be overridden by descendant classes.
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Figure 2.4Control Flow in Procedural Languages (state centered)
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We saw that object application changes the current self, self application does not
change self and both use late binding, whereas method application uses early bind-
ing. We contrast this somewhat sophisticated control flow to the control flow in
other procedural languages, which is depicted in Figure 2.4. In these languages,
control flows from one procedure to the next through procedure call, with the
possibility to pass parameters along.

The control flow in object-oriented languages is depicted in Figure 2.5.
Method application corresponds to procedure application. General object applica-
tion sets self and uses late binding whereas self application does not change self,
but also uses late binding.

2.2.5 Encapsulation

Software consists of different parts that interact with each other. Encapsulation al-
lows to confine this interaction to a specified interface. No interactionbetween the
parts is possible unless this interface is used. Encapsulation is crucial to software
development for several reasons:

Independent development.After the interfaces have been defined, different pro-
grammers can design and implement the individual parts.

Structure. Encapsulation forces a structure on the software that is often benefi-
cial for implementation and maintenance.

Change. The definition of interfaces can be done according to the expected rate
of change. If the interfaces are stable over time, but the individual parts
change frequently, then the encapsulation supports maintainability.
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Figure 2.5Control Flow in Object-Oriented Languages (state centered)
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Encapsulation allows to view aspects of one part of a software asinternal and of
no significance to other parts. As Ingalls remarks [Ing78] “No part of a complex
system should depend on the internal details of any other part.”

Encapsulation for Attributes and Methods

Methods often enjoy privileged access to the current object. We say the
method isinside the current object andoutsideall other objects. For example,
Smalltalk [GR83] generally allows access to attributes of only the current object.
Other languages allow to restrict the visibility of attributes statically. C++ [Str87]
and Java [AG96] allow to declare attributes asprivatein which case they can only
be accessed within the class in which the attribute was declared, orprotectedin
which case they can be accessed additionally in all classes that inheritfrom this
class (in Java additionally within the package of this class).

Object-oriented languages provide access to the current object such that it can
be passed around in messages and stored in the state. For the current object the
keywordthis was introduced by SIMULA and adopted by Beta [KMMPN83],
C++ [Str87], and Java [AG96]. Smalltalk usesself . Other languages force
(CLOS [Ste90]) or allow (Objective Caml [RV97]) user variables to playthe role
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of self.
The languages C++ and Java allow to statically restrict the visibilityof meth-

ods similar to attributes. Object and method application can be limited bydeclar-
ing methods private or protected. Private methods can be accessed only within the
defining class and protected methods additionally in all classes that inherit from
it.

2.3 Objects and Concurrency

In practice, many applications naturally exhibit a concurrent structure. The ques-
tion arises how concurrency and object-oriented concepts interact. The primary
abstractions underlying object-oriented programming have been designed in a se-
quential context. Unfortunately, a number of problems arise when these abstrac-
tions are carried over to a concurrent setting. This situation gave rise tothe re-
search area of concurrent object-oriented programming. From the perspective of
programming languages, the main issues in concurrency are

� how the programmer can create concurrent computation and

� how different concurrent activities can communicate and synchronize with
each other.

From the perspective of object-oriented programming, it is tempting to integrate
support for these two issues in the object model.

Integrating the first issue into the object model leads to the concept of an active
object that embodies a concurrent thread of control. This approach is taken to the
extreme by actors languages [Hew77, HB77] where every data item is represented
by an active object. While being conceptually clean, actors make it difficultto
write sequential programs, which limits their applicability in practice. Less rad-
ical is the actors-like language ABCL [YBS86] in which the behavior of active
objects is defined with sequential LISP-like routines—appropriately extended by
concurrent constructs. With the exception of ABCL [TMY93], no practical con-
current language uses active objects as basic notion. On the other hand, we shall
see that the notion of an active object is often useful and can often be expressed
as higher abstractions.

Regarding the second issue, a common task is to achieve mutual exclusion,
i.e. to prevent two concurrent threads from operating on the same object, possi-
bly corrupting its state. It is claimed that general mutual exclusion (sometimes
misleadingly calledatomicityof objects [Löh93, LL94]) is anatural integration
of objects and concurrency [Ame87, Car93]. On the other hand, mutual exclusion
is perceived to be too restrictive in practice [Löh93, WL96]. Our own experience
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showed that while general atomicity can be helpful in a programming context with
massive concurrency, enforced mutual exclusion causes more harm than good in a
coarse-grained concurrent environment. We shall discuss this issue in more detail
in Chapters 9 through 11.

To illustrate that a variety of approaches are conceivable regarding these basic
design decisions we give the following table, in which we group a number of
existing concurrent object-oriented languages according to whether they enforce
active objects and mutual exclusion.

mutual exclusion enforced
no yes

Smalltalk Eiffel [Mey93]
Emerald [BHJL86] Maude [Mes93]
CEiffel [Löh93]no

Java
ABCL Eiffeljj [Car93]
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Polka [Dav89] POOL-T [Ame87]

For an overview of concurrent object-oriented languages consider [AWY93,
Con93].

As varied as the approaches of concurrent object-oriented languages towards
mutual exclusion and activeness are the synchronization mechanisms. The main
means of synchronization of most languages is to equip methods withsynchro-
nization codethat determines when an invocation can proceed. Arguably the
most elegant synchronization mechanism in concurrent programming is provided
by the logic variable. Synchronization is simply achieved through availabilityof
information. Object-oriented extensions of concurrent logic languages like Vul-
can [KTMB87], A’UM [YC88] and Polka [Dav89] use the logic variable as central
synchronization concept.

2.4 Further Issues

Multiple Inheritance

So far, we assumed that a class can inherit only from at most one other class.
We call thissingle inheritance. Many object-oriented programming languages
allow to inherit from and thus merge the functionality of several classes, which
is calledmultiple inheritance. Instead of spanning a tree of classes related by the
inheritance as in single inheritance, multiple inheritance spans a directed graph.
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Obviously, a super call is ambiguous if used in a class derived from several
superclasses. Thus languages with multiple inheritance like C++ and Eiffelhave
to provide the more general method application.

In the context of multiple inheritance, a different possibility of overriding
emerges. Methods with the same identifier may be inherited from classes of which
neither one is ancestor of the other. Some languages resolve such conflicts by
imposing a total ordering on the inheritance graph while others treat them as pro-
gramming errors.

An important programming technique that is provided by multiple inheritance
is to factor out useful functionality into classes that do not inherit from any other
class, so-calledmixin classes. If they are well designed they can greatly contribute
to code sharing and structuring. Particularly popular is the technique to group in-
terface and implementation aspects into separate classes and combine them with
multiple inheritance (Marriage of convenience). A comprehensive study of differ-
ent notions of multiple inheritance is presented in [Sin94].

Structure and State of Objects

Classes define the identifiers through which their attributes can be accessed. Thus
the instances of a class share a common structure. The attributes themselves, how-
ever, are mutable and thus not shared among the instances. Some object-oriented
languages such as CLOS, Objective Caml and SICStus Objects [SIC96] allowto
define initial values of attributes such that instances share attributes at creation
time, while other languages such as Smalltalk, C++ and Java leave initialization
up to initialization methods which are called constructors in C++ and Java.

Attributes can change over time. Sometimes an attribute may not need to
be changed. This knowledge provides strong invariants to the programmer and
compiler. The language Objective Caml allows to declare attributesimmutable
and thus to exploit these invariants.

Several objects can be made to temporarily share attributes by assigning the
same value to them. Smalltalk provides support for permanent sharing within the
extension of a class through class attributes. The same effect can be achieved in
C++ and Java by declaring components asstatic .

Object-based Programming

The term “object-oriented programming” is commonly used for languages that
describe objects by classes which are related via inheritance. A related strand
of research originated from the observation that classes are not needed if objects
are allowed to define methods. Corresponding languages are commonly referred
to asobject-based. Examples for object-based languages are Self [US87] and
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Obliq [Car95]. A consequence of avoiding classes is that the distinction between
methods and attributes is not needed. Instead, we shall just talk aboutproperties.
Common to all object-based languages is the ability toclonean object, i.e. make
a copy of all (or some designated) properties of an object. The clone is distinct
from the original by its new identity. Object-based languages provide means to
extend the functionality of an existing object. Together with cloning this provides
for code reuse without inheritance. Abadi and Cardelli [AC96] give an overview
of object-based programming concepts.

The most striking feature of object-based systems is their simplicity. Weshall
take advantage of this simplicity when we describe first steps towards objects in
Chapter 4 in an object-based setting.

Meta-classes

In order to minimize the number of concepts, it is tempting to view classes as
objects. Operations on classes such as instantiation then can be represented as ob-
ject application. The question arises of which class these classes are aninstance.
Different languages provide different answers to this question, leading to systems
of varying complexity and expressivity. Smalltalk takes the stand that with each
class creation, a new meta-class is implicitly created whose sole instance is the
explicitly created class. Apart from a singularity at the root, the meta-class hier-
archy parallels the ordinary class hierarchy. The main purpose for this setup is
to allow for class methods such as specialized object creation methods and class
variables that are shared among the instances. More flexible is the meta-object
protocol of CLOS in which meta-classes can be explicitly defined, giving rise
to an experimentation platform for object-oriented language design of unprece-
dented expressivity [KdRB91]. Much simpler is the concept of Java, in which
every class is instance of the fixed classClass which provides some debugging
and self-documentation functionality. In Chapter 12, we present a novel flexible
integration of concurrent objects in a meta-object protocol.

Implementation

The most distinguishing feature of object-oriented languages, namely late binding
with inheritance, is also the most critical implementation issue. Implementation
techniques have been developed that allow the programmer to assume fast con-
stant time attribute access and late binding for all practical purposes. Weshall
discuss the implementation issues in object-oriented programming in more detail
in Chapter 8.
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2.5 Historical Notes

The first language that was designed with specific focus on object-oriented pro-
gramming was SIMULA, which was conceived by Dahl and Nygaard to solv-
ing simulation problems [DN66]. With respect to the aggregation facility of
SIMULA, they point out “the similarity between processes [objects] whose ac-
tivity body is a dummy statement, and the record concept” which was introduced
as a programming language construct by Hoare and Wirth [HW66] three months
before in the same journal. The object-oriented abstraction was adopted by Gold-
berg and Kay as the central programming metaphor for Smalltalk-72 [GK76].

In the functional programming community, it was known early on that lexi-
cally scoped higher-order programming with state can model essential aspects of
object-oriented programming. Steele [Ste76] shows that Scheme can implement
“procedural data structures” that are accessed by late binding. Object-oriented ex-
tensions to Lisp such as Flavors [Moo86] and CLOS [Ste90] show that practical
and extremely powerful object systems can be constructed as syntactic extensions
of Lisp.

The developers of C++ [Str87] had to face the problem of integrating object-
oriented concepts in the low-level programming language C. Thus, a syntax-
oriented approach as in object systems for Lisp was not possible. Instead, the
language semantics needed substantial extensions.

Java is an object-oriented language that provides a leaner and more elegant
object model than C++, automatic memory management, a simpler and safer type
system, and integrates a simple and powerful model of concurrency.



�Why do you wish to see Oz?� [the Tin Wood-

man] asked.

�I want him to send me back to Kansas, and

the Scarecrow wants him to put a few brains

into his head,� she replied.

The Tin Woodman appeared to think deeply

for a moment. Then he said:

�Do you suppose Oz could give me a heart?�

�Why, I guess so,� Dorothy answered. �It

would be as easy as to give the Scarecrow

brains.�

�True,� the Tin Woodman returned. �So, if

you will allow me to join your party, I will

also go to the Emerald City and ask Oz to

help me.�

�Come along,� said the Scarecrow heartily,

and Dorothy added that she would be pleased

to have his company. So the Tin Wood-

man shouldered his axe and they all passed

through the forest until they came to the road

that was paved with yellow brick.

Chapter: The Rescue of the Tin Woodman



Chapter 3

Small Oz

In this chapter, we describe the language Small Oz, a simplified version of Oz.
The description follows the Oz Programming Model (OPM) [Smo95], a program-
ming model underlying Oz.1 OPM adds higher-order programming and explicit
concurrency to the framework of concurrent constraint programming and extends
functional programming by introducing data-driven synchronization of concurrent
threads through logic variables.

Section 3.1 describes Basic Oz, a simple thread-based concurrent constraint
language with first-class procedures. Section 3.2 extends Basic Oz by records, a
data structure that will be used heavily throughout the presentation. Section 3.3
introduces imperative programming to Basic Oz in the form of cells. Section3.4
provides convenient syntactic extensions, resulting in Small Oz.

3.1 Basic Oz

Concurrent computation in Small Oz is organized in threads and based on a shared
memory model. All threads of control have access to a sharedstorethrough which
they communicate.

Store

Thread1
: : :

Threadn

Synchronization among threads is provided by a segment of the store called
constraint storewhich is described in Section 3.1.1. In Section 3.1.2, we describe
computation in Basic Oz, and in Section 3.1.3 we illustrate Basic Oz with an
example.

1This presentation differs from OPM in [Smo95] in that aspects that are irrelevant to the topic
of this thesis or that would unnecessarily complicate the presentation areleft out.

31
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3.1.1 Constraint Store

The information in the constraint store can be entered and accessed throughvari-
ables. A variable is a placeholder for values. In Basic Oz, the only possible
values are integers and names. Names are values without any structure. There
are infinitely many names. We denote names by Greek letters such asξ. The
namestrue andfalse represent the boolean values. The nameunit is used as
synchronization token.

At any point in time the constraint store consists of a constraint which is a
finite conjunction ofbasic constraints. Basic constraints have the form:

� x= y, wherex andy are variables.

� x= c, wherex is a variable andc is a value.

We use lower-case italic font for meta-variables, i.e. variables ranging over
other syntactic constructs. If the constraint in the constraint store entailsx = c
for some valuec, we say thatx is bound toc. For example, in a constraint store
with the constraintX= Y^Z = 1 the variableZ is bound to the integer 1, whereas
the variablesX and Y are not bound. We will use the constraint store to syn-
chronize computation by waiting for variables to become bound in the constraint
store. With this setup, synchronization has the property that once a synchroniza-
tion condition becomes met, it remains so forever. This property greatly simplifies
programming concurrent applications and reasoning over concurrent programs.

Basic Oz is designed such that the constraint in the constraint store is always
consistent. This is achieved by fixing the initial constraint store to the trivially
satisfiable empty conjunction of basic constraints and limiting the way it canbe
altered totelling a basic constraint. Telling a basic constraintψ to a constraint
store containing a constraintφ results inφ^ψ if φ^ψ is satisfiable, and raises an
exception otherwise.2 If φ^ψ is satisfiable, we say thatψ is consistent with the
constraint store.

For example, to the store in the above example, we may tell the constraint
X= 2, resulting in the constraint store

X= Y^Z = 1^X= 2

Telling the constraintY= 3 to this constraint store raises an exception, since it is
not consistent with the constraint store.

2The exception handling mechanism of Oz is largely independent of an object system and
thus not described in this thesis. Thus “raising an exception” means for our purpose aborting the
program and issuing an error message.
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Figure 3.1Syntax of Basic Oz Statements

S ::= x = e tell statement
I

I

S1 S2 composition
I

I

skip empty statement

I

I

local x in Send declaration

I

I

case x of p then S1 else S2 end conditional
I

I

proc { x y} Send procedure definition
I

I

{ x y} procedure application

I

I

thread Send thread creation

I

I

x = ˜ y I

I

x = y (+ I

I

- I

I

> I

I

>=) z arithmetic statement

e ::= c simple value
I

I

x variable

p ::= c simple pattern

c ::= integerI
I

true I

I

false I

I

unit constant

x;y ::= variable variable

x ::= ε I

I

x x list of variables

3.1.2 Computation

Figure 3.1 describes the syntax of Basic Oz statements. For integers we use the
usual notation. We use the prefix˜ for negative integers. For variables, we allow
sequences of alphanumeric characters starting with an upper case letter. Examples
for variables areX andApply .

Computation in Basic Oz takes place inthreadsthat have access to a shared
storethrough which they synchronize and communicate with each other. The store
has two distinct compartments: theconstraint storeand theprocedure store. The
procedure store contains a mapping from names to procedures. Each element of
the mapping has the formξ : x=S, whereξ is a name by which the constraint store
can refer to the procedure,x are the formal arguments of the procedure andS is its
body.

Computation proceeds when threads arereduced. Each thread maintains a
stack of statements. Reduction is only possible on the topmost statement of the
stack. Reduction pops this statement from the stack and can have the following
additional effects:

� New information is told to the store.
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� One or more new statements are pushed on the stack of the reducing thread.

� A new thread is created.

Only one thread can carry out a reduction at a time; this policy is calledinter-
leaving semantics. Interleaving restricts but does not preclude parallel implemen-
tation.

A statement can be either unsynchronized or synchronized. Reduction of an
unsynchronized statement does not depend on the constraint store. Reduction of a
synchronized statement can only proceed, if the constraint store contains sufficient
information. Reduction of threads is fair in a sense that if reduction of a thread
can proceed, it will eventually do so.

Tell statement. A tell statement of the formx = c or x = y is unsynchronized.
Its reduction results in telling the corresponding basic constraint to the con-
straint store.

Composition. A composition of the formS1 S2 is unsynchronized. Its reduction
pushesS1 andS2 on the stack of the reducing thread such thatS1 is on top of
S2. From now on, when we talk about “pushing statements” we mean “on
the stack of the reducing thread”.

Empty Statement. An empty statementskip reduces without effect.

Declaration. A declaration statement of the form

local x in Send

is unsynchronized. Reduction chooses a fresh variableu (i.e. a variable that
is not used so far) and pushes the statementS[u=x]. The statementS[u=x]
is obtained from the statementSby replacing every free occurrence of the
variablex with u. Declaration introduces a new variablex whose scope is
restricted to this statement.

Conditional. A conditional statement of the form

case x of c then S1 else S2 end

is synchronized. It can only reduce ifx gets bound. We say that the state-
ment is synchronizedon x. If x gets bound to the valuec, reduction pushes
S1, and otherwise, reduction pushesS2. Using the metaphor of concurrent
constraint programming, we call this operationask.
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Procedure Definition. A procedure definition of the form

proc { x y} Send

is unsynchronized. Reduction chooses a fresh nameξ, adds the pairξ :
y=S to the procedure store, and pushes the statementx = ξ. Note that the
property of the procedure store to contain a mapping remains unchanged
sinceξ is a fresh name. The variablesy are the formal arguments of the
newly defined procedurex.

Procedure Application. An application of the form

{ x y}

is synchronized onx. The variablex must be bound to a nameξ for which
there is an entryξ : z=S in the procedure store such that the length ofz is
equal to the length ofy. Reduction pushesS[y=z], thus replacing formal by
actual parameters.

Thread Creation. A thread creation

thread Send

is unsynchronized. Reduction creates a new thread with an empty stack and
pushesSon the stack of this thread.

Arithmetic Statement. An arithmetic statement of the form

x = y (+ I

I

- I

I

> I

I

>=) z

is synchronized ony andz. Both must be bound to an integer value, oth-
erwise an exception is raised. We say that the arithmetic statement issyn-
chronized ony andz to beintegers. Reduction pushesx= c with the correct
valuec according to integer arithmetics. The comparisons> and>= return
the boolean valuestrue andfalse . Integer negationx = ˜ y is similar and
synchronizes ony to be an integer.

3.1.3 Example

A program, represented by a statement with no free variables, is executed by creat-
ing a thread whose stack is empty, connected to a store of which all compartments
are empty. The program is pushed on the stack and reduction can start.

For example, consider Program 3.1 in which we allow ourselves to simultane-
ously declare several variables as an obvious extension to declaration. Execution
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Program 3.1An Example for Higher-Order Programming
local MakeAdder AdderOne One Two Result in

proc {MakeAdder X Adder}
proc {Adder Y Z}

Z = X + Y
end

end
One = 1
{MakeAdder One AdderOne}
Two = 2
{AdderOne Two Result}

end

introduces five fresh variables and replaces the free occurrences ofMakeAdder ,
AdderOne , One, Two and Result by them. The reason for introducing these
fresh variables is to prevent capturing. Where there is no danger for capturing as in
this example, we will keep talking about the original variables. Thus,MakeAdder

will refer to the variable that replacedMakeAdder .
At that point, we have a composition of five statements on the stack. Since

composition is unsynchronized and results in pushing of both expressions on the
stack in the obvious order, the associativity of composition does not matter in that
E1 (E2 E3) and(E1 E2) E3 behave equally if we consider the cost of composi-
tion irrelevant.3 Thus we can assume that we have five statements on the stack.
Execution of the first statement

proc {MakeAdder � � �} � � � end

creates a new nameξ, enters the pairξ : X Adder = � � � to the procedure store and
binds the variableMakeAdder to ξ. The second statement

One = 1

will bind One to 1. The third statement

{MakeAdder One AdderOne}

will replace itself on the stack by the body of the procedureMakeAdder where
we replace formal by actual parameters. Thus the top of the stack is now

proc {AdderOne Y Z} Z = One + Y end

Execution bindsAdderOne to the corresponding procedure. The forth statement

Two = 2

bindsTwo to 2. The fifth statement
3In a realistic implementation, composition does not incur reduction steps but is realized by

sequential execution of code.
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Figure 3.2Value Types in OPM

value

record

simple
value

integer

literal

proper
record

atom

name

{AdderOne Two Result}

applies the procedureAdderOne and after execution of the addition the variable
Result becomes bound to 3.

Note that the variableX is statically bound by the formal argument of the pro-
cedureMakeAdder and thus exemplifies lexically scoped higher-order program-
ming.

3.2 Atoms and Records

We extend Basic Oz in order to provide a richer set of data structures by adding
atoms and records and define convenient relationships of these types with names
and integers.

3.2.1 Atoms and Records in the Constraint Store

Figure 3.2 displays the final hierarchy of values types in Small Oz.
A literal is either an atom or a name. Atoms are symbolic values that have

an identity made up of a sequence of characters. To distinguish atoms from other
syntactic entities, we require that they are enclosed in quotes´ , which can be
omitted if the sequence consists only of alphanumeric characters starting with a
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lower case letter. Examples for atoms arepaul and´ | ´ . A simple valueis either
a literal or an integer. Given a literall , n pairwise distinct simple valuesf1; � � � ; fn,
andn valuesv1; � � � ;vn, n� 0, a record is an unordered tree of the form

l

v1 vn

f1 fn
� � �

We call l the label, f1; � � � ; fn the features, andv1; � � � ;vn thefieldsof the record.
The features of a record are required to be pairwise distinct so that they identify
the fields of the record. We say thatvi is the field at feature fi . Records with no
features are identified with their label and thus are literals, whereasother records
are calledproper records. The set of all features of a record is called itsarity.

We extend the notion of a basic constraint to allow for records.

� x = l(c1 : x1; � � � ;cn : xn), wherex and xi are variables,l is a literal and
c1; � � � ;cn are pairwise distinct simple values.

The constraint in the constraint store represents a first-order formula of a structure
with equality that can express records. Such a structure is given in [ST94] along
with efficient algorithms for entailment, disentailment and satisfiability.

If the constraint in the store entails9x1 � � �xn : x = l(c1 : x1; � � � ;cn : xn) for
somen, some literall and some simple valuesc1; � � � ;cn, we say thatx is bound
to a record with labell and featuresc1; � � � ;cn. Note that the variablesxi are not
necessarily bound. Being a bit sloppy in terminology, we call the variablexi to be
the field ofx at featureci , even ifxi is not bound yet.

Thus, variables may refer to partial information on records. For example, in a
constraint store with the constraint

V= f (a : X;b : Y)^X= 1

the variableV is bound to a record, whose field at featurea is the integer1, and
whose field at featureb is not known yet. Nonetheless, we can callY the field ofV
at featureb since any value that may become the field at featureb can be referred
to by Y.

3.2.2 Operations on Records

Figure 3.3 describes the extension of the syntax of Basic Oz for records and atoms.
For several operations on records we overload the syntax of procedure application
instead of inventing a new syntactic construct for each of them. Making them
indistinguishable from procedure application is justifiable since the programmer
does not care if an operation is defined by the language semantics or by a standard
library.
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Figure 3.3Syntax Extension for Records

S ::= � � �

I

I

x = y==z equality test
I

I

x = y. z field selection
I

I

{Label x y} label access
I

I

{HasFeature x y z} feature test
I

I

{AdjoinAt x y z v} record adjunction
I

I

{NewNamex} name creation

e ::= � � �

I

I

x( x1: y1 � � �xn: yn) record

p ::= � � �

I

I

x( x1: y1 � � �xn: yn) record pattern

c ::= � � �

I

I

atom atom

Tell statement. A tell statement of the formy=x( x1: y1 � � �xn: yn) is synchronized
onx to be a literal and onx1; � � � ;xn to be pairwise distinct simple values. If
the variablex is bound to the literall andx1; � � � ;xn to the pairwise distinct
simple valuesc1; � � � ;cn, respectively, the tell statement results in telling the
basic constrainty=l ( c1: y1; � � � ;cn: yn) .

Conditional. A conditional statement of the form

case x of y( x1: y1 � � �xn: yn)
then S1 else S2 end

is synchronized onx, and ony to be a literal that we calll and onx1; � � � ;xn

to be simple values that we callc1; � � � ;cn, respectively. Ifx is bound to a
record with labell and featuresc1; � � � ;cn, then reduction pushes

y1=x. x1 � � � yn = x. xn S1

Otherwise, reduction pushesS2.

Equality Test. An equality test of the formx = y==z is synchronized. If the equal-
ity of y andz is entailed by the constraint store, reduction pushesx = true ,
and if the equality ofy andz is disentailed, reduction pushesx = false . Re-
duction suspends until equality ofy andz is either entailed or disentailed.
Note that for records, the equality test implements structural equality. Two
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records are equal if and only if they have the same label, the same features
and their fields at corresponding features are all equal.

Field Selection. A field selection of the formx = y. z is synchronized onz to be a
simple valuec andy to be a record with a variablev at featurec. Reduction
pushesx = v.

Label Access.A label access of the form{Label x y} is synchronized onx to
be a record. Reduction pushesy = l , wherel is the label ofx.

Feature Test. A feature test of the form{HasFeature x y z} is synchronized on
x to be a record andy to be a simple value that we callc. Reduction pushes
z = true if x has the featurec, and reduction pushesz = false if it does
not.

Record Adjunction. Record adjunction of the form{AdjoinAt x y z v} is syn-
chronized onx to be a record andy to be a simple value that we callc. If x
gets bound to a recordl(c1 : x1; � � � ;cn : xn) such thatci = c for somei, then
reduction pushesv = l ( c: x1 � � �ci : z� � �cn: xn) . Otherwise (ifx gets bound
to a recordl(c1 : x1; � � � ;cn : xn) such thatc 6= ci for all i), reduction pushes
v = l ( c: x1 � � �cn: xn c: z) .

Name Creation. A name creation of the form{NewNamex} is unsynchronized.
Reduction chooses a fresh nameξ and pushesx = ξ.

3.2.3 Example

Consider Program 3.2. After declaring all variables in line%1, most of them are
bound in line%2 with a tell statement. The variableF gets bound to a new name
via name creation. The tell statement in line%3 is synchronized onF, A and
B. Since they are all bound to literals, computation can proceed, bindingX to a
record. Similarly,AdjoinAt bindsZ to a record. Finally, the conditional in line

Program 3.2Example for Record Construction
local A B C F One Two Three X Y Z B1 B2 in %1

A=a B=b C=c {NewName F} One=1 Two=2 Three=3 %2
X = F(A:One B:Two) %3
{AdjoinAt X C Y Z} %4
case Z of F(A:U B:V C:W) %5
then Three=Z.C else skip end %6

end
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Figure 3.4Syntax Extension for Cells

S ::= {NewCell x y} cell creation
I

I

{Exchange x y z} cell exchange

%5 can reduce sinceZ, F, A, B andC are bound. SinceZ has labelF and features
A, B andC, field selection in line%6 will bind Y to 3.

3.3 Cells

Obviously a notion of state is needed in order to express sequential object-oriented
programming. In Small Oz as we described it so far, only a very weak notion of
state is supported. For instance, there seems to be no way to write procedures
Access andAssign such that the program fragment

{Access C X}
{Assign C Y}
{Access C Z}

results in binding different values toX andZ. It is argued in the functional and
logic programming communities that stateless computation facilitates program-
ming and reasoning about programming.

However, even in these communities it is recognized that stateful program-
ming is sometimes necessary and often practical. The most primitive form of
state is a read/write memorycell, that can hold a variable and be updated to hold a
different one. We provide for cells in Small Oz by introducing a new compartment
in the store similar to the procedure store that contains a mapping from names to
variables. Each element of the mapping has the formξ : x, whereξ is a name by
which the constraint store can refer to the cell, andx is thecurrent contentof the
cell. Figure 3.4 shows the new statements providing for cell creation and update
in the form of an exchange operation.

Cell Creation. A cell creation of the form{NewCell x y} is unsynchronized.
Reduction chooses a fresh nameξ, adds the pairξ : x to the cell store, and
pushes the statementy= ξ. Note that the property of the cell store to contain
a mapping remains unchanged sinceξ is a fresh name.

Cell Exchange. A cell exchange of the form

{Exchange x y z}
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is synchronized onx to be a nameξ for which there is an entryξ : v in the
cell store. Reduction changes the entry forξ in the cell store toξ : z and
pushesy= v.

Note that interleaving semantics is of particular importance forExchange .
It guarantees that after two concurrent exchange operations{Exchange C X1

Y1} and{Exchange C X2 Y2} , eitherX1 = Y2 or X2 = Y1 holds.
UsingExchange we can define the more usual operations to access the current

value of a cell and assign the cell to a new value in the form of the procedures
Access andAssign .

proc {Access C X}
{Exchange C X X}

end
proc {Assign C X}

{Exchange C _ X}
end

Thus, the program

C = {NewCell One}
{Access C X}
{Assign C Two}
{Access C Y}

will bind X to the value ofOne andY to the value ofTwo.

3.4 Syntactic Extensions

Small Oz provides a rich computational framework, but is syntactically rather
poor. We add some syntactic extensions that are usually calledsyntactic sugar
because they make programs more palatable without adding anything substantial.

3.4.1 Declaration

In the following, we will employ an interactive style of programming. We want
to execute programs in which we refer to variables of previously entered pro-
grams. This is not possible so far, since the scope of variables is always statically
restricted either by the bodylocal or the body of a procedure for formal argu-
ments. For interactive programming, we allow for declaration with open ended
scope as in

declare X in
X = 1
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In subsequent programs, we can now refer toX as in

declare Y in
Y = X + 1

Here we used the integer 1 in an arithmetic statement. Generally, we allow the use
of expressionsewithin statements by requiring that a corresponding tell statement
precedes it. Thus the above program is an abbreviation for

declare Y in
local One in

One = 1
Y = X + One

end

Every program that is entered in an interactive Oz session runs in its own
thread. Thus new information and computation tasks can be entered and run con-
currently to ongoing computation.

3.4.2 Lists and Tuples

Lists are data structures that we will heavily use in the following. A listis either
empty or consists of a head and a tail, where the tail is also a list. As a convention,
we use the atomnil for the empty list. Records label´ | ´ and the features1 and
2 represent non-empty lists, where the field at feature 1 is the head and the field at
feature 2 the tail of the list. For example, in

declare X in
local Y Z V W
in

X = ´ | ´ (1:Y 2:Z)
Y = a
Z = ´ | ´ (1:V 2:W)
V = b
W = nil

end

the variableX is bound to a list with heada and tailZ, which in turn is bound to a
list with headb and tailnil . Using nesting of expressions, we may also write

declare X in
X = ´ | ´ (1:a 2: ´ | ´ (1:b 2:nil))

Such records with integers from 1 throughn as features can be abbreviated by
omitting the features as in

declare X in
X = ´ | ´ (a ´ | ´ (b nil))
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Lists enjoy particular syntactic support through infix notation as in

declare X in
X = a | b | nil

We will often employ an alternative syntax for lists with known length asin

declare X in
X = [a b]

3.4.3 Functional Syntax

As an example, consider the simple task of generating a new listYs from a given
list l by applying a given procedureF to every element ofl . Program 3.3 im-
plements this task in the form of a procedureMap. Using a case statement,Map
dispatches over the form ofXs, and in case it is a nonempty list, it introduces
new variablesY andYr , bindsMap’s last argumentYs to Y|Yr , callsF and itself
recursively. We can apply this mapping procedure to compute the list of squares

Program 3.3A Mapping Procedure in Oz
proc {Map Xs F Ys}

case Xs of X|Xr
then

local Y Yr in
Ys = Y|Yr
{F X Y}
{Map Xr F Yr}

end
else

Ys = Xs
end

end

of the elements of a list as in

declare Squares Square in
proc {Square X Y} Y = X * X end
{Map [1 2 3 4] Square Squares}

In this usage, the last argumentYs of Map is an output argument in a sense that the
application binds it to a value. It contributes to the readability of such procedures
when we suppress this argument and write it in functional notation (syntactically
realizing the correspondence to functional programming mentioned before) as in

fun {Map Xs F}
case Xs of X|Xr
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then {F X}|{Map Xr F}
else Xs
end

end

The syntaxfun � � � end is a purely syntactic abbreviation for procedure defini-
tion and is not to be confused with mathematical functions.

We can carry functional nesting further by allowing to nest procedure defini-
tions similar to lambda abstractions in functional programming as in

declare
Squares={Map [1 2 3 4]

fun {$ X} X * X end }

Note that the$ symbol indicates where the omitted auxiliary variable is inserted
in the nested statement. In the course of this presentation, we will introduce more
syntactic variations when convenient. An introduction to the syntax of Oz is given
in [Smo97], and a formal description in [Hen97b].

3.5 Small Oz in Context

Functional vs Relational Setup.A functional program is an expression that is
evaluated as computation proceeds. The syntax of Oz on the other hand is
statement-oriented. The execution of statements performs operations on the
store such as binding a variable. Functional syntax is introduced by simple
syntactic transformation to statements using auxiliary variables. In practice,
there is often a strong correspondence between “functional” Oz programs
and their counterpart in eager functional languages. Niehren [Nie94] ex-
plores the formal relationship between a sub-language of Basic Oz with
corresponding programming models of functional programming.

Conditionals. Compared to otherccp languages, the conditional presented here
provides a rather weak control construct. Control primitives in otherccp
languages like committed-choice or atomic test-and-set are interesting by
themselves, however they do not seem to have much to contribute to object-
oriented programming. Their ability to implement many-to-one communi-
cation of active objects is problematic as we will see in Chapter 10. Note
that the language Oz provides a much richer set of control constructs than
Small Oz, including committed-choice with deep guards and guarded dis-
junction.

Records. Every high-level programming language supports compound values of
one sort or the other. Examples range from pairing (Scheme), over un-
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labeled tuples (Erlang) to labeled tuples (Prolog). The records supported
by Oz generalize over tuples by allowing any set of simple values as arity
whereas tuples are confined to continuous integer domains starting at one.

Usually records are not labeled (Pascal, SML). The reason for labeled
records of Oz is largely a historic one.4 For us labeled records come in ex-
tremely handy, since they are the ideal first-class message. The label literal
serves as method name and the fields of the record represent the arguments
neatly identified by features.

The down side of records of course is their complexity. The simplest way to
express a pair is by a record with two fields. The label and arity are redun-
dant, and the removal of such overhead complicates the implementation.

Records in Oz provide an operation that allows to obtain a list of all features
of a given record. Small Oz does not provide such an operation since it
would force us to introducechunksfor object encapsulation as explained in
Section 2.2.5 which would make this presentation considerably more com-
plex.

Procedures as First-class Values.One of the key innovations of Oz is to intro-
duce lexically scoped higher-order functional programming into a concur-
rent constraint language which allows to present it as a generalization of
(dynamically typed) functional programming. This enables us to use object-
oriented programming techniques that rely on higher-order programming.

Cells. Small Oz follows the tradition of some functional and logic languages in
that there is a clear distinction between stateless and stateful computation.
Stateless programs provide strong invariants to the programmer especially
in concurrent programming. Cells serve as the entry point to stateful com-
putation similar to references in SML and mutable terms in SICStus Prolog.

Cells do not belong to the standard language constructs ofccp. On the
contrary, cells are antagonistic to the spirit in which concurrent logic pro-
gramming was conceived in that they destroy the declarative nature of com-
putation by introducing state. In our view, this criticism is not justified in
the context of object-oriented programming, since state lies at the heart of
objects. All approaches to objects in concurrent logic programming there-
fore eventually introduced state in one form or the other. We argue that
in this situation, state should be introduced as simply and as orthogonally
as possible, and exactly this is done by the cell. Cells will allow us in a
straightforward way to express sequential object-oriented programming in

4The initial idea of records in Oz was to extend Prolog’s labeled tuples toprovide for richer
structure [ST94].
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Chapter 7. Incidentally, cells in combination with the logic variable pro-
vide elegant formulations of a wide variety of synchronization mechanisms
that we will explore in Chapter 9. In Chapter 10 we will discuss alternative
synchronization constructs from concurrent logic programming.

Atomic exchange is a popular idiom in concurrent programming. Usually
operating systems libraries for multi-threaded programming provide atomic
exchange in the form of a swap operation. In Multilisp [Hal85] atomic
exchange plays a central role.

Typing. Oz is a dynamically typed language. Wrong argument types lead to run-
time errors. An argument for dynamic typing as opposed to static typing as
in SML or Haskell is simplicity of language design. In fact, the definition of
suitable type systems for concurrent higher-order languages with state and
logic variables is a challenge of its own. For us, a practical advantage of
dynamic typing is the ability to adopt known techniques for object-oriented
programming in dynamically typed languages such as Scheme, and the re-
lief not having to integrate the resulting object system into a static type sys-
tem, which would incur another set of interesting research questions [PS94].

Threads. In contrast to languages with fine-grained concurrency such as concur-
rent logic languages [Sha89] or the actors model of computation [Hew77,
HB77], the concurrency model of Oz is more in line with conventional
programming languages that extend sequential computation with coarse
grained concurrency. The first language that provides language-level access
to concurrency is SIMULA [DN66]. Thread level concurrency similar to
Oz can be found in other object-oriented languages like Smalltalk [GR83]
and Java [AG96].

Synchronization. Logic variables serve as the main synchronization concept
in all concurrent logic languages. Logic variables are acknowledged for
providing a simple and effective mechanism for data-driven synchroniza-
tion [Bal91]. Chapter 9 examines the expressivity of logic variables to-
gether with cells. As opposed to thread-level concurrency, most concurrent
logic languages adhere to a model of fine-grained concurrency that we shall
discuss in Chapter 11. Besides Oz, the only language that combines thread-
level concurrency with logic variables is PCN [FOT92].

The concept of afuture used in the functional programming community
comes close to synchronization of threads with logic variables. Baker and
Hewitt [BH77] give the first clear account (and earlier sources) of this con-
cept. In their computational setup an expressionecan immediately evaluate
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to a future. A new process is devoted to evaluatee and thus “make the fu-
ture’s value available”. Processes that need the future’s value suspend on its
availability. Futures have been adopted as the main synchronization mech-
anism in Multilisp [Hal85] in the form of the construct(future e) which
returns a future and evaluates the expressione in a new thread. Logic vari-
ables generalize over futures in the following way. A logic variable can be
created independently of the computation of its value. Thus the variable can
be passed around and it is decided at runtime which thread binds it, whereas
a future is statically tied to an expression that computes its value.

Logic variables allow synchronization through the availability of informa-
tion similar to data flow languages [Den74]. In Oz, data-driven synchro-
nization is embedded in a more traditional computation model with explicit
concurrency. As with futures, logic variables generalize data flow variables
in that their direction of data flow is not statically determined.





�I am going to the Great Oz to ask him to give

me some [brains],� remarked the Scarecrow,

�for my head is stu�ed with straw.�

�And I am going to ask him to give me a

heart,� said the Woodman.

�And I am going to ask him to send Toto and

me back to Kansas,� added Dorothy.

�Do you think Oz could give me courage?�

asked the Cowardly Lion.

�Just as easily as he could give me brains,�

said the Scarecrow.

�Or give me a heart,� said the Tin Woodman.

�Or send me back to Kansas,� said Dorothy.

�Then, if you don't mind, I'll go with you,�

said the Lion, �for my life is simply unbearable

without a bit of courage.�

Chapter: The Cowardly Lion



Chapter 4

First Steps towards Objects

In this chapter, we present two established models for object-oriented program-
ming. The first model represents sequential objects as procedural data structuresin
stateful programming with lexical scoping. The second model shows how active
objects are modeled in concurrent logic programming languages. These models
give first insights to the range of possible concepts available for object-oriented
programming in Oz. They also serve as programming examples to deepen the
comprehension of Oz and as a base for discussions in following chapters.

4.1 Objects in Functional Programming with State

4.1.1 Procedural Data Structures

It was observed by Steele [Ste76] that a higher-order functional language with
state can model objects in the form of “procedural data structures”. Abelson and
Sussman [AS96] exemplify this approach, emphasizing the capability of lexical
scoping to realize encapsulation. In this section, we follow the presentationby
Abelson and Sussman and transpose the ideas to Oz.

As an example, consider Program 4.1 which defines a procedureTransaction
that has access to a cell initialized with100 which is bound to the local variable
BC. The procedureTransaction can be applied to anAmount which leads to
adding it to the current content ofBC, resulting inNewBalance . If NewBalance

is greater than or equal to0, the cellBCis updated toNewBalance and otherwise
an error message is issued. The procedureTransaction represents a stateful
data structure in a sense that holds an integer data item and its behavior changes
over time. For example, after a first application{Transaction ˜75} , the cell
BC is updated to25. After another identical application, an error message is is-
sued. The state ofTransaction is encapsulated in that it is accessible by calling
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52 CHAPTER 4. FIRST STEPS TOWARDS OBJECTS

Program 4.1A Stateful Procedure
local

BC={NewCell 100}
in

proc {Transaction Amount}
NewBalance={Access BC}+Amount

in
case NewBalance>=0
then {Assign BC NewBalance}
else {Show "insufficient funds"}
end

end
end

Transaction . This encapsulation is achieved by lexical scoping; the scope of
the variableBC is limited to the procedureTransaction . Furthermore, we can
say thatTransaction holds the cellBCas a component and thus provides for ag-
gregation. We can easily see that further cells can be added to implement different
components of the data structure.

4.1.2 Classification

We can provide for a rudimentary form of classification by abstraction of Pro-
gram 4.1 in a procedure as in shown Program 4.2.

Program 4.2Generating Stateful Procedures
fun {MakeTransaction InitialBalance}

BC={NewCell InitialBalance}
in

proc {$ Amount}
NewBalance={Access BC}+Amount

in
case NewBalance>=0
then {Assign BC NewBalance}
else {Show "insufficient funds"}
end

end
end

Every call toMakeTransaction now creates a new cell initialized with the
argumentInitialBalance along with a procedure that has exclusive access to
the cell. Now we can create instances of our transaction scheme as in



4.1. OBJECTS IN FUNCTIONAL PROGRAMMING WITH STATE 53

Program 4.3Generating Stateful Procedures with Late Binding
fun {MakeAccount Balance}

BC={NewCell Balance}
proc {Transaction Amount}

NewBalance={Access BC}+Amount
in

case NewBalance>=0
then {Assign BC NewBalance}
else {Show "insufficient funds"}
end

end
proc {GetBalance ?B}

B={Access BC}
end

in
proc {$ M}

case M
of transaction then Transaction
elseof getBalance then GetBalance
else {Show "message not understood"}
end

end
end

T1={MakeTransaction 100}
T2={MakeTransaction 200}

that manage their state independently from each other. We can say that the proce-
dureMakeTransaction provides a classification of data structures and thatT1
andT2 result from instantiating this classification.

4.1.3 Late Binding

Extending the idea of representing data as stateful procedures, Program 4.3
demonstrates how late binding can be incorporated. Like the procedure
MakeTransaction in Program 4.1, the procedureMakeAccount creates a
new cell bound to the local variableBC. This cell is accessible by the pro-
ceduresTransaction and GetBalance . The unary procedure returned by
MakeAccount accepts atomsM of the form transaction and getBalance .
The question mark in front of the formal argumentB in procedureGetBalance
is a comment indicating an output argument, i.e. an argument that is going to be
bound in the body of the procedure.
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Consider the following application ofMakeAccount .

Account={MakeAccount 100}

Applying Account to the atomtransaction returns a procedure that can be
applied to an amount, resulting in updating the cell encapsulated byAccount .

T={Account transaction}
{T ˜75}

Similarly, we can access the current balance ofAccount by

B={{Account getBalance}}

Note the use of functional nesting in procedure position. We say that the procedure
Account represents an object which accepts messages of the formtransaction
andgetBalance . EachAccount object has associated with it two procedures
that operate on its state. Such procedures, we call methods. Due to lexical scoping,
these methods are not accessible outside ofMakeAccount . Thus the procedure
MakeAccount defines the interface of its instances in the form of a mapping from
atoms to procedures. Every operation onAccount objects has to go through this
indirection, which is called late binding.

With respect to inheritance, Abelson and Sussman ([AS96], page 200) opine
that “a variety of inadequate ontological theories have been embodied in a plethora
of correspondingly inadequate programming languages” by which they presum-
ably mean the intricacies of overriding and late binding in object-oriented pro-
gramming languages. On these grounds they refuse further investigation of inher-
itance.

4.1.4 Delegation-Based Code Reuse

Friedman, Wand and Haynes [FWH92] pick up the thread of Abelson and Suss-
man and note that objects as procedures lend themselves naturally to object-based
programming with code reuse by delegation. As an example, Program 4.4 where
the bank account is extended by a fee that is subtracted for each transaction
(“transposed” from a bounded stack example in Scheme in [FWH92], page 225).

The procedureMakeAccountWithFee takes an argumentFee in addition
to Balance . It creates a localAccount object usingMakeAccount from
Program 4.3 and defines a new procedureTransaction that callsAccount ’s
methodtransaction with Fee subtracted from the givenAmount . The object
returned byMakeAccountWithFee returns thisTransaction procedure upon
receipt of the messagetransaction . Other messages are directly delegated
to its regularAccount object. Thus,MakeAccountWithFee reuses the code
of MakeAccount by creating the objectAccount to which all messages except
transaction are delegated. The newtransaction overrides and reuses the
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Program 4.4Delegation-based Code Reuse with Passive Objects
fun {MakeAccountWithFee Balance Fee}

Account={MakeAccount Balance}
proc {Transaction Amount}

{{Account transaction} Amount-Fee}
end

in
proc {$ M}

case M
of transaction then Transaction
else {Account M}
end

end
end

old transaction method. The call{Account transaction} corresponds to
a super call in object-oriented languages.

4.1.5 Discussion

We have seen that objects with encapsulated state and late binding can be ex-
pressed in Small Oz in a simple way. Delegation-based code reuse can be sup-
ported. It is remarkable that statically scoped higher-order programming with
state suffices for these programming abstractions. Apart from atoms that are
needed for late binding, no other data structures such as records were employed.
However, observe the following deficiencies of the approach presented so far.

� For every object, a new procedure (closure) is created for every method
identifier that this object can receive, which incurs a considerable memory
overhead.

� Attributes of inherited “classes” are not accessible in “subclasses”. There-
fore, public attributes need to be modeled by methods.

� Each object needs as many auxiliar objects as there are “classes” from which
its “class” inherits directly or indirectly.

Friedman, Wand and Haynes realize that a different representation lends it-
self more naturally to conventional class-based object-oriented programming, and
thus abandon objects as procedures for their further treatment of object-oriented
programming. Instead of using procedures, they represent objects and classes as
records. We will see in Chapter 7 that our object system is based on the same idea.
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In particular, we shall see a similar implementation of encapsulation through lex-
ical scoping and late binding through a mapping from method identifiers to meth-
ods represented by procedures.

4.2 Objects in Concurrent Logic Programming

In this section we take a radically different approach towards objects. We follow
the lines of Shapiro and Takeuchi [ST83] by representing objects as active entities
that read messages from a stream.

4.2.1 Streams

A stream is a data structure to which new information can be added incrementally.
Programming languages that provide logic variables lend themselves naturally to
a simple implementation of streams. Pairing is usually used for building streams,
leading to a representation of streams as incomplete lists. For example, astream
that holds no information yet can be represented by a variable.

declare Ms

We can add a data item to the stream by bindingMs to a pair.

declare Mr in
Ms = transaction(˜75) | Mr

As pairing constructor, we use records with label´ | ´ and the features1 and2 for
which Oz provides particularly convenient syntax (see Section 3.4.2). The first
entry of the stream istransaction(˜75) and the rest of the stream is accessible
via the new variableMr.

4.2.2 Stream-based Objects

Stream-based active objects process such a stream by continuously reading its
entries.

proc {Account Ms Balance}
case Ms
of M|Mr then {Account Mr {ProcessMessage M Balance}}
else skip
end

end
thread {Account Ms 100} end

Here an active object is implemented by a thread that applies the proce-
dureAccount to the streamMs and an initial balance of100 . The procedure
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Account waits untilMs becomes instantiated to a pair, computes a new balance
from Balance and the first entry of the streamM using the auxiliar procedure
ProcessMessage , and calls itself recursively on the rest of the stream and the
new balance.

The procedureProcessMessage given in Program 4.5 dispatches on the
form of the message and is straightforward.

Program 4.5Processing Messages of Active Objects
fun {ProcessMessage M Balance}

case M
of transaction(Amount)
then

TmpBalance=Balance+Amount
in

case TmpBalance>=0
then TmpBalance
else {Show "insufficient funds"}

Balance
end

elseof getBalance(B)
then

B=Balance
end

end

Our active object will first process the first entrytransaction(˜75) in the
streamMs, leading to a recursive call on the rest of the streamMr and the new
balance25. Observe that the state of the object is represented by the argument of
the recursive call. At this point the thread suspends sinceMr is not bound yet.

We can put a new messagegetBalance(B) on the stream by instantiating
Mr.

declare B Mrr in
Mr = getBalance(B) | Mrr

This will wake up the object’s thread and result in binding the variableB to
25. The next recursive call leads to another suspension. The technique of passing
a logic variable (hereB) along in a message to a stream-based object hoping that
the object will instantiate it is calledincomplete messagesin concurrent logic
programming.

Note that the records on the stream represent messages that are sent asyn-
chronously. From the perspective of the sender, the message sending only con-
sists of adding a constraint to the stream. The computation resulting from it is
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carried out in the thread dedicated to serve the active object. However, the send-
ing thread may decide to suspend on information on variables that were passed in
messages such asB. This way, synchronization between sender and receiver can
be enforced. The logic variable together with synchronized reduction allows to
express data-driven synchronization.

4.2.3 Delegation-Based Code Reuse

As in the previous section, code reuse can be implemented as delegation. We
create an account with fee by

proc {MakeAccountWithFee Ms Balance Fee}
AccountMs
thread {Account AccountMs Balance} end

in
{AccountWithFee Ms Fee AccountMs}

end
thread {MakeAccountWithFee Ms 100 10} end

The procedureMakeAccountWithFee declares a new streamAccountMs
and creates a regularAccount object using the givenBalance . Then the
procedureAccountWithFee is applied to the original streamMs, Fee and
the new streamAccountMs . The procedureAccountWithFee shown in Pro-
gram 4.6 delegates appropriate messages toAccount by putting them on the
streamAccountMs . All messages are passed as they are toAccountMs except
transaction messages, which are manipulated to account for the fee.

Program 4.6Delegation-base Code Reuse with Active Objects
proc {AccountWithFee M|Mr Fee AccountMs}

AccountM|AccountMr=AccountMs
in

case M
of transaction(Amount)
then AccountM=transaction(Amount-Fee)
else AccountM=M
end
{AccountWithFee Mr Fee AccountMr}

end
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4.2.4 Discussion

We argued in Section 2.3 that—while providing a useful programming idiom—
active objects cannot serve as the basic notion of objects. We shall come back
to active stream-based objects in Chapter 10 where we will encapsulate them in a
more expressive abstraction calledserver. An issue that we need to bear in mind is
how messages are represented. In a concurrent setting, it becomes important that
messages are first class values that can be manipulated and—as we saw—stored
in data structures like streams. To be prepared for this possibility, we shall insist
that messages are values in Oz.
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Part II

Object-Oriented Programming

This part concentrates on sequential object-oriented programming in Small Oz.In
Chapter 5 we describe a simple object system for Small Oz. Chapter 6 enriches
this object system with a number of advanced programming techniques. Both
chapters introduce the programming concepts of the object system in their own
right, whereas Chapter 7 sketches a semantic foundation for it by syntactic reduc-
tion of the object-oriented constructs to Small Oz. In Chapter 8, we describe an
implementation of Oz based on an abstract machine, discuss critical issues in the
integration of objects in such an implementation, present a realistic implementa-
tion, and evaluate its performance.
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�Well,� said the [Wizard of Oz], �I will give

you my answer. You have no right to expect

me to send you back to Kansas unless you do

something for me in return. In this country

everyone must pay for everything he gets. If

you wish me to use my magic power to send

you home again you must do something for

me �rst. Help me and I will help you.�

�What must I do?� asked the girl.

�Kill the Wicked Witch of the West,� answered

Oz.

Chapter: The Emerald City of Oz



Chapter 5

Basic Object System

In this chapter we introduce the elementary features of an object system for Small
Oz. We explain how the concepts discussed in Chapter 2 are cast in Small Oz’s
computational framework. We compare individual design decisions with solutions
found in other object-oriented programming languages.

An object-oriented program consists of definitions of classes that describe the
structure and behavior of their instances. When we accept that we conservatively
extend Small Oz by class definition, we face a set of questions that any object-
oriented extension of a programming language has to face. What are the syntactic
and semantic means by which classes are defined? How does the construct mix
with the rest of the language? More specifically, how does the added construct fit
in the scoping rules of the language? These questions will be addressed in this
chapter.

5.1 Classes

As usual in object-oriented programming, we support the definition of a class by a
specialized syntactic construct that describes the properties of its instances. Con-
sider the example in Program 5.1. This class definition defines the classAccount
whose instances have the attributebalance and can be applied to messages with
identifier transaction andgetBalance .

For classes, we add a new type of value to Small Oz. The class definition binds
the variableAccount to a class value. Thus classes underlie the visibility scheme
of lexical scoping.

The classAccount describes objects with an attribute that can be referred to
by the atombalance . We call such atomsattribute identifiers. Note that here we
use the flat name space spanned by Oz atoms. In the next chapter, we shall see
how lexical scoping can be used for attribute identifiers as well.
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Program 5.1A Simple Account Class
class Account

attr balance:0
meth transaction(Amount)

balance <- @balance + Amount
end
meth getBalance(B)

B=@balance
end

end

Class definition is integrated in the compositional syntax of Oz in that it can
appear inside of any other syntactic construct, including procedures and threads
and—conversely—any other syntactic construct can appear within its methods.
This design decision contributes greatly to the expressivity of the object system as
we shall also see in the next chapter.

Methods are defined with a syntax similar to procedure application. Method
heads have the form of records; formal arguments appear as record fields. Thus
the transaction method in Program 5.1 has the formal argumentAmount . The
label of the record is the method identifier. For every class, there is a mapping
from method identifiers to methods. Instances of the classAccount can handle
messages with labeltransaction andgetBalance . Similar to attributes, we
use atoms for method identifiers and shall extend this convention later. The bod-
ies of the methods contain the code to be executed as operations on instances of
Account .

5.2 Objects

The variableA can be bound to anAccount object by applying the object creation
procedureNew.

A = {New Account transaction(100)}

Like classes, objects are values and can be referred to by variables.Objects
are the second (and last) value type that we add to the type system of Small Oz.
Object creation with the procedureNew takes as argument an initial message to
which the new object is applied. The attributebalance has0 as initial value as
indicated in the class definition byattr balance:0 . Application of the initial
message executes the body ofAccount ’s transaction method which consists of
the assignmentbalance <- @balance + Amount .
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As usual in imperative languages, the right hand side of such an assignment is
evaluated before the assignment is carried out; an alternative formulation for the
methodtransaction would have been

meth transaction(Amount)
NewBalance=@balance + Amount

in
balance <- NewBalance

end

Assignment is a statement with the “side effect” of assigning an attribute to a value
whereas attribute access is an expression which evaluates to the current value of
the attribute.

Operations on objects are performed in the form of object application for
which we use the syntax of procedure application.1 Syntactically, messages have
the form of records matching the head of a method defined by the object’s class.
Class and method identifier determine the method to be executed. Object appli-
cation results in applying this method, replacing actual for formal parameters. As
an example, consider the object application

{A getBalance(B)}

The execution of the corresponding method results in bindingB to 100. The
methodgetBalance is the only way to access the current balance ofA. Attributes
are encapsulated.

Objects in Oz are encapsulated data structures. As in any conventional object-
oriented language, object application reduces by pushing the body of the corre-
sponding method on the stack of the current thread. There is no implicit concur-
rency built in the object system. This stands in sharp constrast ot other object
models in concurrent languages. This issue will be further discussed in Part III.

Each new object has its own identity. An equality test with an object that stems
from a different object creation results infalse .

Object creation withNew enforces an initial message. In the case where no
initialization is needed, we must use a dummy method. Such a method is provided
by the classBaseObject which is predefined in the following way.

class BaseObject meth noop skip end end

5.3 Inheritance for Conservative Extension

Program 5.2 shows how the classAccount can be conservatively extended
with a new methodverboseTransaction using inheritance. Instances of

1This syntactic convention stems from the view of objects as procedural data structures as
described in Section 4.1.
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Program 5.2Conservative Extension through Inheritance
class VerboseAccount

from Account
meth verboseTransaction(Amount)

{ self transaction(Amount)}
{Show @balance}

end
end

VerboseAccount inherit fromAccount the attributebalance including its ini-
tial value0 that is referred to in the methodverboseTransaction . In this sense,
the scope of attribute identifiers extends down the inheritance tree. The method
verboseTransaction refers to the inherited methodtransaction through
self application. In methods, the current object can be referred to by the key-
wordself . Late binding is used for accessing the method without changing self.
An object of classVerboseAccount can be considered being of classAccount

since it behaves identically to instances ofAccount with respect to the opera-
tions defined onAccount objects. Thus, we can argue thatVerboseAccount is
a specialization ofAccount .

5.4 Inheritance for Non-Conservative Extension

Conversely, Program 5.3 shows a classAccountWithFee which inherits from
VerboseAccount , but overrides its methodtransaction and thus does not
represent a specialization ofVerboseAccount .

Program 5.3An Account with Fee
class AccountWithFee

attr fee:5
from VerboseAccount
meth transaction(Amount)

VerboseAccount , transaction(Amount-@fee)
end

end

The new methodtransaction refers to the old method via method applica-
tion using the syntaxx, e, which calls the method of classx with method identifier
given bye without changing self. Note that the classx does not have to directly
define the method, but can inherit it as is the case in our example.

In the light of this redefinition, a decision that we took in the definition of
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the methodverboseTransaction in Program 5.2 becomes important. We used
late binding for calling the methodtransaction . The effect is that when an
instance ofAccountWithFee is applied to averboseTransaction message,
the corresponding method ofVerboseAccount will call the newtransaction

method, properly subtracting the fee. Self application inverboseTransaction
means “call whatever the currenttransaction method is”. Had we used method
application inverboseTransaction such as

Account , transaction(Amount)

then applying anAccountWithFee object to averboseTransaction message
would not charge the fee. Note that the choice between late and early binding
is not always this obvious. It takes careful design to provide for safely reusable
classes and often, reusability and efficiency are in conflict with each other.

5.5 Case Study: Sieve of Eratosthenes

In this section, we consider a slightly less trivial example to show how latebinding
realizes polymorphism. Furthermore, we shall use this case study in the perfor-
mance evaluations in Sections 8.6 and 10.4.

We compute prime numbers among the firstn natural numbers with the sieve
of Eratosthenes. To this aim, we send natural numbers starting with 2 in sequence
to a filter object, representing the prime number 2. This filter is the first one of a
growing chain of prime filters, terminated by a special object calledlast. Numbers
i from 2 ton are passed successively through this chain in the form of messages
f (i). This process stops for a given numberi at a given filter representing the
prime numberp, if p is a multiple ofi. When a numberp made it tolast it is
prime, and a new filter forp is appended at the end of the chain right beforelast.

Program 5.4 shows the corresponding Oz program. We define the classes
Filter , whose instances represent the prime filters, andLast , whose instance is
used to terminate the chain. The initial configuration of filters generated by lines
%2 and%3 is depicted in Figure 5.1 (a).

If a filter for prime p is the last one in the chain and receives a numberq that
is not divisible byp, a new prime filter must be created forq. Instead of testing
whether this is the case, we use late binding. The messagef(N) is simply passed
to its neighbor in line%1. If the neighbor happens to be an instance ofLast it
creates a filter forN and inserts it right beforeLast . Figure 5.1 (b) depicts the
configuration before the messagef(6) arrives at filter3.

In this program, we use late binding to realize polymorphism. The expression
@next in line %1 evaluates to an instance of eitherFilter or Last . This is ad-
hoc polymorphism since the operation exhibits different behavior depending on
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Program 5.4Sieve of Eratosthenes
class Filter

attr next: unit prime: unit
meth init(Prime Last)

{Show Prime}
prime <- Prime
next <- Last

end
meth f(N)

case N mod @prime \= 0
then {@next f(N)} %1
else skip end

end
meth setNext(Next)

next <- Next
end

end

class Last
attr previous
meth init(Previous)

previous <- Previous
end
meth f(P)

NewFilter={New Filter init(P self )}
in

{@previous setNext(NewFilter)}
previous <- NewFilter

end
end

TwoFilter={New Filter %2
init(2 {New Last init(TwoFilter)})} %3

%% send requests f(I), i=2..100, to TwoFilter
{For 2 100 1 proc {$ I} {TwoFilter f(I)} end }
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Figure 5.1Configurations of Sieve of Eratosthenes

2 last

(a) Initial Configuration

2 3 5 last

f(6)

(b) Configuration Before Number 6 Enters Filter 3

the class of the object. In statically typed languages, this polymorphism enforces
an inheritance relationship betweenFilter andLast . For comparison, corre-
sponding implementations of this program in C++, CLOS, Java, Objective Caml,
SICStus Prolog Objects and Smalltalk are provided [Hen97a].

5.6 Discussion

We extended the compositional syntax of Oz by a similarly compositional class
definition construct. A consequence is that classes are referred to by variables
and underlie lexical scoping. Object-oriented extensions to languages with lexi-
cal scoping such as CLOS [Ste90] or Objective Caml [RV97] generally make use
of this possibility. Other languages such as Smalltalk [GR83] or SICStus Ob-
jects [SIC96] use a flat name space for classes with the potential danger of “name
space pollution” for classes.

For object creation, our system enforces initial messages by the fact thatNew
takes a message as argument. This may seem overly restrictive, but in practice
most classes rely on initialization methods anyway. We shall give a compelling
argument for initial messages in Chapter 9 in the context of concurrency. For
simplicity, we do not distinguish constructor methods semantically as is done in
C++ and Java.

For simplicity, classes are not objects for which we would need to introduce
another class. Smalltalk uses class objects primarily to provide specialized object
creation methods, and class attributes, i.e. assignable attributes thatare shared
by all instances. Creation methods are made obsolete by initialization methods.
In the next chapter we shall see how all instances of a class can share common
information.
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Syntactically, messages have the form of records. We shall see in the next
chapter that they actuallyare records and how we can exploit this fact.





This made Dorothy so very angry that she

picked up the bucket of water that stood near

and dashed it over the Witch, wetting her

from head to foot.

Instantly the wicked woman gave a loud cry

of fear, and then, as Dorothy looked at her in

wonder, the Witch began to shrink and fall

away.

�See what you have done!� she screamed. �In

a minute I shall melt away.�

�I'm very sorry, indeed,� said Dorothy, who

was truly frightened to see the Witch actually

melting away like brown sugar before her very

eyes.

Chapter: The Search for the Wicked Witch



Chapter 6

Advanced Techniques

This chapter builds upon the simple object system of the previous chapter. We
extend this system by a number of new and useful concepts and explore the ex-
pressivity of the resulting language.

6.1 Features

The attributes of an object can change over its lifetime and thus provide adequate
support for stateful data. However, not all aspects of an object are intended tobe
changed. It is often argued that stateless computation eases program design and
analysis (for a forceful line of argument see [AS96]). The property of an object to
be stateless can be useful in the design of concurrent applications [Lea97]. In our
experience, it can even be helpful to declare which components of an object can
change and which cannot. For this purpose, we introduce—in addition to state-
ful attributes—stateless object components calledfeatures. Features are declared
similarly to attributes, but with the keywordfeat instead ofattr . Inheritance
of features and inheritance of attributes are uniform. The strong correspondence
between object features and record features led to adopting the syntax of record
access for objects. Thus the feature of an objectOat f is accessed byO.f .

Object features are immutable by design and thus enforce a security from
change of object components that are not meant for change. By adding fea-
tures we trade security for simplicity of the language. For example, the attribute
fee of classAccountWithFee in Program 5.3 is initialized with5 and is not
changed by any method. In order to enforce immutability of the fee component
for subclasses ofAccountWithFee , we can declare it as a feature, resulting in
Program 6.1. Within the methodtransaction , the featurefee is accessed by
self .fee . The featurefee can also be accessed from outside of the methods of
AccountWithFee as in
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Program 6.1Use of Object Features in an Account with Fee
class AccountWithFee

feat fee:5
from VerboseAccount
meth transaction(Amount)

VerboseAccount , transaction( Amount- self .fee )
end

end

A={New AccountWithFee transaction(50)}
{Show A.fee}

Due to outside access, object features provide a particularly convenient wayto
create record-like structures. One could argue that outside access violatesthe prin-
ciple of encapsulation. However, external access to stateless components seems to
be less critical from a software development view. In Section 6.5, we shall give a
general technique to protect attributes, methods and features from access outside
of a class or class hierarchy.

Note that object features introduce a second form of aggregation in our object
model. Attributes provide forstatefulaggregation, features forstatelessaggrega-
tion.

6.2 Free Attributes and Features

As described so far the values of features and the initial values of attributes are de-
fined by the corresponding entry in the class. This means that all objects of a class
share the same values for features and initial values for attributes. Sometimes it
is desired instead that a feature or initial attribute value of each instance is inde-
pendent from the other instances. Consider the classFilter in Program 5.4. The
attributeprime is not changed by any method; however, its value is different for
every instance. For such situations, we introduce a mechanism that enforces the
creation of a fresh variable in every new instance for a given attributeor feature.
This variable can then be bound during initialization. Syntactically, this is done
by simply leaving out the value in attribute and feature declaration. Program 6.2
shows an alternative formulation of the classFilter .

Note that there is a difference between leaving a feature unbound in class
definition and declaring it free.

class C feat f1:_ f2
... end

Whereas the variable at featuref1 is shared among all instances ofC, a fresh
variable forf2 is introduced for every instance. Note that the symbol_ stands for
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Program 6.2Using Free Feature and Attribute in Sieve of Eratosthenes
class Filter

attr next
feat prime

meth init(Prime Last)
{Show Prime}
self .prime = Prime
@next = Last

end
meth f(N)

case N mod self .prime \= 0
then {@next f(N)}
else skip end

end
...

end

an anonymous variable; the above class definition is equivalent to

local V in class C feat f1:V f2
... end end

if V does not occur free in the class definition.

6.3 Attribute Exchange

Often access and assignment of an attribute are carried out in sequence. In con-
current programming, it is not guaranteed that no other thread manipulates this
attribute simultaneously and thus corrupts the intended operation on the attribute.
Often more complex synchronization can be avoided if atomicity of access and
assignment is guaranteed. Thus, we introduce an operation for attribute exchange
similar to cell exchange. Syntactically, we achieve attribute exchange byallowing
attribute assignment at expression position in which case it returns the old value
of the attribute. For example, a method that returns and withdraws the current
balance can be written as

meth withdrawAll(?B)
B = balance <- 0

end

We shall see in Chapter 9 that attribute exchange plays a central role in the en-
coding of synchronization techniques. The attribute-related operations of access,
assignment and exchange together are referred to asattribute manipulation.
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Figure 6.1Example of Inheritance Graph
A

A1

B

B1

C

class A � � � end
class B � � � end
class A1 from A � � � end
class B1 from B � � � end
class C from A1 B1 � � � end

6.4 Multiple Inheritance

We argued in Section 2.4 that multiple inheritance is a powerful tool to com-
bine the functionality of classes. We are going to support multiple inheritance
in a permissive manner in the style of the object-oriented Lisp extensions Fla-
vors [Moo86] and CLOS [Ste90] but with a technical improvement.

Classes may inherit from one or several classes appearing after the keyword
from in the class definition. The classes from which a class inherits directly are
called itsparents. If a classD inherits directly or indirectly from another classA,
then we callD descendentof A and we callA ancestorof D. The parent relation
spans a graph of classes. If we add to this graph the linear order between parents
as given in the class definition, we get a new graph that we call theinheritance
graph. For example, the inheritance graph spanned by five classes is depicted in
Figure 6.1.

Class definition suspends until all parents are determined. We require that the
inheritance graph be acyclic; if it contains a cycle, class definition raisesan excep-
tion. So far we follow the inheritance scheme of CLOS [Ste90]. The definition of
CLOS now extends this graph to a linear order using topological sorting. Inheri-
tance proceeds as if there was single inheritance with a class hierarchy represented
by the linearization. Naturally, the linearization is not unique. Thus the semantics
of inheritance in CLOS is essentially defined by the algorithm that implements
it. In particular, methods1 that are defined in classes which are unrelated in the
inheritance graph can override each other, resulting in programming errors that
are subtle and hard to detect. In our example, if the classesA1 andB both define a
methodmand neitherB1 norCoverridem, which methodmis inherited byC? (The

1For simplicity, we only talk about methods in this section. The same of course holds for
attributes and Oz’s object features.
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CLOS algorithm will makeC inherit B’s methodm.) We forbid such situations to
avoid programming errors and give a simple declarative description of inheritance
instead of defining its semantics by giving a particular algorithm for topological
sorting.

Our definition relies on the notion ofclosenessin the inheritance graph. A
classa is closer to a classc than a classb if a lies on a path fromb to c. In our
example, the classB1 is closer toC thanA1, but A1 is not closer toC thanB. To
avoid ambiguities, we require that for every inherited methodm of a classc there
be a classa that defines the method which is closest toc. The classc inherits
a’s methodm. If there is no such a closest class, the class definition raises an
exception. For example, if bothA1 andB define the methodmand neitherB1 nor
C override it, the class definition is illegal. If on the other hand all ofA, B, A1 and
B1 define the methodm, thenB1 is the closest and thusC inheritsB1’s methodm.

Of course since classes in Oz are runtime entities, inheritance is alsoper-
formed at runtime. The programmer needs to keep in mind that illegal use of
inheritance is a source of runtime errors.

Drawbacks of this notion of multiple inheritance are an implementation effort
in system programming and a runtime penalty for class definitions that use multi-
ple inheritance. In our experience both drawbacks are outweighed by the gain in
security.

Other languages are much more restrictive than that. For example, Eif-
fel [Mey92] does not allow any horizontal overriding, but provides the possibility
of renaming identifiers to prepare classes for multiple inheritance. This precludes
certain uses of mixin classes as argued by Schmidt and Omohundro [SO93]. Eiffel
opts here for even more security and against expressivity.

6.5 Privacy

The only kind of encapsulation offered by the object system so far is the encap-
sulation of attributes. In this section we use names in combination with lexical
scoping to implement a variety of encapsulation techniques such as private and
protected identifiers. All other languages provide these encapsulation techniques
by specialized compile time notions.

In Oz, literals can be used as features of records. A literal is eitheran atom or
a name. Similarly, we shall allow names as attribute identifiers, feature identifiers
and method identifiers. The possibility to create unique names together with lexi-
cal scoping gives the programmer full control over the use of these identifiers. For
example, in the following code fragment the user restricts the use of the identifiers
PrivateAttr , PrivateFeat andPrivateMeth to the classExample .
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local
PrivateAttr={NewName}
PrivateFeat={NewName}
PrivateMeth={NewName}

in
class Example

attr !PrivateAttr:0
feat !PrivateFeat:100
meth !PrivateMeth(f:X g:Y)

...
end
...

end
end

Ignore the exclamation marks! for now; their usage becomes clear soon. The
names to which the identifiers are bound are by definition unique and thus can-
not be forged. Thus the featurePrivateFeat of instances ofExample cannot
be accessed outside the scope ofPrivateFeat unless the programmer passes
PrivateFeat to the outside. The methodPrivateMeth is private in the same
sense. The methods of classes that inherit fromExample cannot access the at-
tribute PrivateAttr . However, note that the private identifiers can be passed
around like any other Small Oz value, and can therefore overcome protectionif
the programmer wishes so. For example, if our classExample contains the fol-
lowing method

meth getPrivateFeat($)
PrivateFeat

end
end

the featurePrivateFeat can be accessed from outside the class definition as in

ExampleInstance={New Example noop}
ThePrivateFeat={ExampleInstance getPrivateFeat($)}
ThePrivateValue=ExampleInstance.ThePrivateFeat

Privacy of attributes, features and methods is only guaranteed if the classdefi-
nition makes disciplined use of the corresponding identifiers. In particular, this is
the case, if the private features are only used as usual in field selection,the private
attributes only in attribute manipulation and the private methods only in objectand
method application. Fortunately, this is usually the case and a sufficient condition
could be statically checked by a compiler.

The use of private identifiers increases programming security and should be
made as convenient as possible. Thus we introduce the following convention.
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A variable in the declaring position of an identifier, i.e. after the keywordsfeat ,
attr , andmeth represents a private identifier. The variable is implicitly bound
to a name and its scope limited to the enclosing class definition. Thus the class
Example above can simply be written as

class Example
attr PrivateAttr:0
feat PrivateFeat:100
meth PrivateMeth(f:X g:Y)

...
end
...

end

The exclamation mark can be used to avoid the implicit declaration and binding
of the variable so that the programmer can decide himself how big the scope of
the variable ought to be. This technique is employed by the first of the following
examples that demonstrate the flexibility provided by this notion of privacy.

Friends

The programmer can freely specify the scope of variables that are used as attribute,
feature and method identifiers. This allows to statically group severalclass defini-
tions together and let them share identifiers that are not visible from the outside.

For example the following two classes share the identifiersSharedFeat and
SharedMeth .

local
SharedFeat={NewName}
SharedMeth={NewName}

in
class C1 from BaseObject

feat !SharedFeat
meth !SharedMeth(f:X g:Y)

...
end

end
class C2

attr a
meth useSharedIdentifiers

I1={New C1 noop}
in

a <- I1.SharedFeat
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{I1 SharedMeth(f:1 g:100)}
end

end
end

Note that this protection technique follows directly from the use of names
bound to statically scoped variables and avoids special purpose compile-time con-
cepts such asfriend in C++. Like in C++, the friend relation is neither inherited
nor transitive.

Protected Identifiers

Another use of private identifiers is to restrict the visibility of an identifier to de-
scendant classes. This concept is known asprotected in C++. Note that all
attributes are protected in Small Oz since they are only accessible within methods.
We can extend this protection mechanism from attributes to features and methods
by binding their identifier to an attribute. Then, only classes that inherit thisat-
tribute have access to the protected identifier. For example consider the following
class definitions.

class C1
attr protectedMethod:ProtectedMethod
meth ProtectedMethod(f:X g:Y)

...
end

end
class C2 from C1

attr a
meth m

PM=@protectedMethod
in

{ self PM(f:1 g:100)}
end

end

Note that a syntactic limitation of Oz prevents a more convenient nesting
and forces the introduction of an auxiliary variablePMinstead of simply{ self

@protectedMethod(f:1 g:100)} which is refused by the compiler.
The cost of this implementation of protected identifiers is one attribute per

protected identifier and one indirection through the state for each use of the pro-
tected identifier. Protected identifiers rely on the discipline that the corresponding
attributes are not changed via assignment or attribute exchange.
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6.6 First-Class Messages and Message Patterns

In most object-oriented languages, messages are not first-class citizens in a sense
that they cannot be bound to variables or passed as arguments. In Oz, messages
are represented by records, which are first-class citizens. In this section, we will
exploit this fact.

Sometimes, it depends on a complex computation to which message an object
needs to be applied. Instead of applying the object at several places to a differ-
ent message, we can separate the computation of the message from the object
application as in

{O {ComputeTheMessage}}

Messages can be referred to by variables in object application and similarly in
method application as inC,M.

Often, it is convenient to keep the arity of acceptable messages flexible and
introduce default values for non-specified fields. Most prominent examples are
interfaces to complex services such as window systems, which provide a large set
of different options of which typically only a few are actually used often. Similar
to Lisp, we provide for optional and open arguments for methods.

Optional method arguments are indicated by default values as in

meth announce(source:S destination:D
weight:W<=StandardWeight)

...
end

The message featureweight is optional. If it is omitted,W is bound to
StandardWeight . As in Lisp, any expression can occur after<= which is eval-
uated only if the corresponding feature is omitted.

We also provide for open methods corresponding to the Lisp declaration
&rest . Consider

meth announce(source:S destination:D ...)
...

end

The ellipses indicate that anyannounce message with featuressource and
destination is accepted. Other features are simply ignored. When ellipses
are used we frequently want to be able to refer to the whole message instead of
just ignoring other features. This can be done as in

meth announce(source:S destination:D...)=Announcement
case {HasFeature Announcement weight}
then {CheckWeight Announcement.weight}
else skip end
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...
end

end

Message patterns avoid a proliferation of methods as in Smalltalk, C++ and
Java where for every possible combination of arguments a new method must be
defined. With respect to message patterns we obviously deem the design issue
of expressivity more important than simplicity, since in our experience the gain
in expressivity clearly outweighs the expense of a relatively straightforward and
local extension. We shall discuss implementation aspects of message patternsin
Section 8.5.2.

6.7 Higher-Order Programming with State

Recall that procedures in Oz are first class values, and class definition is fully
compositional. A consequence is that procedures can be created within methods.
Consider the following use of the procedureForAll that provides iteration over
a list.

class C from BaseObject
attr a
meth addAll(Xs)

{ForAll Xs
proc {$ X} a <- @a+X end }

end
...

end

This method adds all elements of a given listXs to the attributea. Note that the
state can be referred to within the embedded procedure. In this example thereis no
doubt to which object the attributea in the procedure refers to since the procedure
is being executed in the same environment in which it is defined.

This changes if dynamically created procedures are exported outside of its
defining method as in

meth getSetPrivate($)
proc {$ X} Private <- X end

end

As enforced by lexical scoping, the attributePrivate refers to the current ob-
ject at the time of procedure definition. Thus the receiver of the procedure can
freely manipulate the value of the attributePrivate , which severely breaks en-
capsulation. This rather pathological possibility that Oz shares with CLOS isa
consequence of compositionality and lexical scoping.
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6.8 Final Classes

The concept of a public method has two aspects. Firstly, the method can be
accessed by any object of a corresponding class, and secondly, the method can
be overridden by inheritance. Sometimes, we want the first without the second.
Consider for example a class that provides a methodvalidatePassword . This
method must be accessible from outside, but we certainly do not want it to be
overridden to

meth validatePassword(P) skip end

For such situations we introduce the concept offinal classes similar to Java. A
final class cannot be inherited and thus its methods cannot be overridden. A class
can be declared to have the final property by writingprop final in its decla-
ration. Java also allows to declare single methods as final; for simplicity we do
without this feature.

6.9 Classes as First-Class Values

Full compositionality of class definition implies that class definition can appear
within procedures, allowing for parameterization of classes. For example, instead
of using an attribute or feature for the fee of our classAccountWithFee (Pro-
grams 5.3 and 6.1), we can parameterize over the class and create a class with a
given fee. Consider Program 6.3. We can create a new instance of this parameter-
ized class as follows.

A={New {MakeClassAccountWithFee 5} transaction(100)}

The application of procedureMakeClassAccountWithFee results in a class
whose methodtransaction has access to the givenFee of 5. From this class,
we create an instance usingNewas usual.

Classes can be parameterized over any of their components such as inherited
classes, attribute or method identifiers, initial values (as in this example) etc.

Program 6.3A Parameterized Class for Account with Fee
fun {MakeClassAccountWithFee Fee}

class $
from VerboseAccount
meth transaction(Amount)

VerboseAccount , transaction(Amount-Fee)
end

end
end
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Program 6.4Calculator
class Calc

attr arg acc equals
meth reset

arg <- 0.0
acc <- 0.0
equals <- class $ meth m($) @arg end end

end
meth equals($)

@equals , m($)
end
meth enter(N)

arg <- N
end
meth add

acc <- @equals,m($)
equals <- class $ meth m($) @acc + @arg end end

end
end

A more elaborate use of first-class classes is adapted from Cardelli [Car94].
Consider Program 6.4. The classCalc defines the behavior of a pocket calculator
with accumulator. The attributearg hold the last number entered by the user (see
methodenter ). The attributeacc holds the left-hand side of any operation to
be applied, and the attributeequals holds the operation to be executed when the
user asks for the current value in the form of a class that defines a corresponding
methodm. For instance the methodadd assigns toequals a method that adds
arg to acc . The following session shows how to useCalc .

C={New Calc reset}
{C enter(3.5)} {C add} {C enter(2.0)}
{Show {C equals($)}}
% ==> 5.5
{C reset} {C enter(3.5)} {C add} {C add}
{Show {C equals($)}}
% ==> 10.5

This example was used by Cardelli to demonstrate the flexibility of the object-
based programming language Obliq. We showed that first-class classes have simi-
lar expressivity albeit with slightly more syntactic effort, since methodsneed to be
wrapped in classes and stored in the attributeequals . In Obliq, the methods of
an object can be directly manipulated. First class methods together with the possi-
bility to directly apply a given method would alleviate this syntactic shortcoming.
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6.10 First Class Attribute Identifiers

A byproduct of first-classing identifiers for privacy is that we can pass attribute
identifiers to methods. In the following example, we combine this feature with
first-class messages. The aim is to providedynamic assignmentas a generic
mechanism. Dynamic assignment [FWH92] allows to execute a procedure un-
der a temporarily changed environment. As such an environment, we consider the
current object’s state and allow to perform self application under a temporarily
changed attribute.

meth dynAssign(Attr NewVal Msg)
OldVal = Attr <- NewVal

in
{ self Msg}
Attr <- OldVal

end

A call of methoddynAssign corresponds to the formdynassign (var exp

body) in [FWH92]. As an example, consider the task to typeset a paragraphP
with a text width that is temporarily set to 110. This can be done within a class
that defines the methodtypeset and the attributetextwidth as follows.

{ self dynAssign(textwidth 110 typeset(P))}

Such situations occur frequently in text processing and thus text processing lan-
guages such as TEX make heavy use of dynamic scoping and dynamic assignment.

6.11 Case Study: N-Queens

To further deepen the understanding of the object system, we undertake a second
case study which allows us to discuss features, local classes, privatemethods, free
features and attributes, defaults in method heads and the final property. Likethe
previous case study, we shall use this one as well for performance evaluation in
Sections 8.6 and 10.4.

Consider the task of placingn queens on ann� n chess board such that no
queen can attack any other according to the rules of chess. Figure 6.2(b) depicts
a solution of the 4-queens problem. The idea for the program is due to Chris
Moss [Mos94] and implements backtracking with forward checking in an object-
oriented setting.

A trivial property of every solution is that each column contains exactly one
queen. Thus, we represent each queen by an object with a fixed attributecolumn
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Program 6.5N-Queens in Small Oz
local

class NullQueen from BaseObject
meth first skip end
meth next {Show ´ no sol ´ } end
meth canAttack(R C $) false end
meth print skip end

end
in

class Queen from BaseObject
prop final
attr row column
feat n neighbor

%% init creates new queen and its
%% neighbor to the left.

meth init(column:C<=N n:N)
self .n = N
self .neighbor = case C>1

then {New Queen
init(column:C-1 n:N)}

else {New NullQueen noop} end
@column = C

end

%% first asks the neighbor for a solution,
%% guesses 1 and goes to testOrAdvance

meth first
{ self .neighbor first}
row <- 1
Queen , testOrAdvance

end

%% if a queen further left can attack, try next

meth TestOrAdvance
case { self .neighbor canAttack(@row @column $)}
then Queen , next
else skip end

end

continued on next page
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continued from previous page

%% canAttack checks if self can attack.
%% If not, it asks if neighbor can attack.

meth canAttack(R C $)
@row==R
orelse R==@row+@column-C
orelse R==@row-@column+C
orelse { self .neighbor canAttack(R C $)}

end

%% if we reached the limit, the neighbor has
%% to change, otherwise try next row

meth next
case @row==self .n then

{ self .neighbor next}
row <- 1

else row <- @row+1 end
Queen , TestOrAdvance

end

meth print
{ self .neighbor print}
{Show @row#@column}

end
end

end

X={New Queen init(n:8)} {X first} {X print}

and a mutable attributerow . Thus the queens can only move vertically. To solve
the problem, we ask the rightmost queen for its first solution. If a queenq receives
such a request, it asks its left neighborl for the first partial solution among the
queens left ofl including l . Thenq places itself in the first row and checks if
this is consistent with the partial solution. If it is,q is done. If not, it moves its
queen one step ahead and checks again. If it reaches the last column, it asks its
left neighbor for the next partial solution and starts all over from the first row.
Program 6.5 shows the Oz program that implements this solution.

Figure 6.2(a) depicts the situation where the third queen tries to place itself
after having asked the second queen for the first partial solution. It reached thetop
without finding consistency with the partial solution to the left. Thus in the next
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Figure 6.2Configurations of the 4-Queens Board
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(b) First Solution

step it will ask its left neighbor for the next solution and start on the bottom again.
After one further unsuccessful attempt, the first solution depicted in Figure 6.2(b)
is found.

Observe that in classQueen every method exceptinit contains a poly-
morphic object application. The classNullQueen is defined local to the class
Queen since it does not need to be accessible from outside. The method
TestOrAdvance is declared private since it is not part of the interface toQueens
objects. The methodinit has an optional argumentcolumn . If it is left out as
in the last line of the program, the variableC is bound to the mandatory argument
n. The numbern and the queen’s neighbor are kept in features as opposed to at-
tributes since they do not change during the lifetime of the objects. We do not turn
the immutable attributecolumn into a feature for syntactic uniformity in methods
like canAttack . This decision arguably reveals a drawback of using different
syntax for constructs that are semantically fairly closely related. All attributes and
features of classQueen are declared free and initialized in the methodsinit and
first . The classQueen is declaredfinal to prevent inheritance. The only op-
eration on the class is instance creation which we use in the last line to solve the
8-queens problem.

6.12 Discussion

In this chapter a number of advanced object-oriented programming techniques
were presented on the base of the simple object system given in the previous
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chapter. Some of them, such as private identifiers, message patterns, and multiple
inheritance, incurred an extension of the simple system. Others such as first-class
classes, identifiers and messages fell out as byproducts of our overall approach.
We showed that in a base language that combines lexically scoped higher-order
programming and names, a powerful object system can be defined with little syn-
tactic effort. Their straightforward semantics were presented informally. The next
chapter will sketch a formal semantic foundation by reduction to the base lan-
guage Small Oz.



�No, you are all wrong,� said the little man

meekly. �I have been making believe.�

�Making believe!� cried Dorothy. �Are you

not a Great Wizard?�

�Hush, my dear,� he said. �Don't speak so

loud, or you will be overheard�and I should

be ruined. I'm supposed to be a Great Wiz-

ard.�

�And aren't you?� she asked.

�Not a bit of it, my dear; I'm just a common

man.�

�You're more than that,� said the Scarecrow,

in a grieved tone; �you're a humbug.�

�Exactly so!� declared the little man, rubbing

his hands together as if it pleased him. �I am

a humbug.�

Chapter: The Discovery of Oz, the Terrible



Chapter 7

Reduction to Small Oz

Small Oz is expressive enough to support the object-oriented abstractions intro-
duced in the previous two chapters. This comes of little surprise since Small Oz
subsumes functional programming and the presented object system is sufficiently
close to existing object systems for functional languages like Flavors [Moo86]
and CLOS, which get by with little or no semantic extension of the base language
Lisp. A secondary issue is then how the syntactic sugar for classes that we could
not resist introducing can be translated to plain Small Oz.

The object-oriented abstractions are provided by a Small Oz program, called
object library. In this chapter, we will sketch this library and the syntactic reduc-
tion of the class syntax to Small Oz. These two components together can be seen
as a simple semantic foundation for Objects in Oz.

The library must be constructed in such a way that the safety conditions intro-
duced in the previous two chapters are met. In particular, programs that use the
library must be protected in the following way.

� Attributes must not be accessible from outside an object,

� private attributes, features, and methods must not be accessible outside their
class definition, and

� insecure multiple inheritance must be prevented.

The user is free to define his own object-oriented abstractions, and—as we have
seen in Chapter 4—Oz provides a wide variety of possibilities in this respect. The
point is that these abstractions should not be allowed to mingle with code that
uses the object system. For example, user programs should not allow to unsafely
manipulate classes and objects provided by standard libraries such as the window
system.

91
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Program 7.1Overall Structure of Object Library
declare MakeClass New ObjectApply MethodApply

AttrAssign AttrAccess AttrExchange in
local

OODesc={NewName} OOAncestors={NewName} � � �

in
fun {MakeClass � � �} � � � end
fun {New � � �} � � � end
proc {ObjectApply � � �} � � � end
proc {MethodApply � � �} � � � end
fun {AttrAssign � � �} � � � end
proc {AttrAccess � � �} � � � end
fun {AttrExchange � � �} � � � end

end

7.1 Class Definition

The obvious approach to reduce class definition to Small Oz is to translate it to
the application of a fixed procedure. The arguments of this procedure can describe
the parents, attributes, features, properties and methods of the class to be defined.
For example, the class definition

class Account
from BaseObject
prop final
attr balance:0
feat fee:2
meth transaction(Amount) � � � end
meth getBalance(B) � � � end

end

is translated to the following application of the procedureMakeClass .1

Account={MakeClass
desc(parents: [BaseObject]

properties: [final]
attributes: [balance#0]
features: [fee#2]
methods: [transaction# proc {$ � � �} � � � end

getBalance # proc {$ � � �} � � � end ])}

1In Oz, a syntactic convention makes sure that the user cannot accidentally redeclare such
implicitly used variables and thus render parts of the object system unusable.
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Program 7.2Class Definition
fun {MakeClass Desc}

case {CheckInheritance Desc}
then aClass(OODesc:Desc

OOAncestors:{TopologicalSort Desc.parents}
OOId:{NewName})

end
end

The procedureMakeClass defines how classes are represented in Small Oz. The
definitions of the procedureMakeClass together withNew for object creation
form the core of the object library. We will introduce other procedures that de-
fine object and method application (ObjectApply , MethodApply ) and attribute
manipulation (AttrAccess , AttrAssign , AttrExchange ).

The recorddesc( � � �) defines all properties of the class, and thus we could use
this record to represent the class. However, in order to meet the safety conditions,
we wrap the class description in another record whose features are names. These
names are bound to the local variablesOODescandOOAncestors whose scope
is limited to the object library. Program 7.1 shows the overall structure ofthe
object library.

Program 7.2 shows the definition of the procedureMakeClass . The only fact
that is known to the user about a classC defined byMakeClass is that it is a
record with the labelaClass . Its features are not known and consequently its
fields cannot be accessed; for every literalF that the user can get a hold of, the
application{HasFeature C F} returnsfalse . Furthermore, any attempt of the
user to forge a class will fail, since all operations on classes results in accessing
one of these fields.

The procedureCheckInheritance is defined locally in the object library
and returnstrue if and only if the following conditions are met.

� None of the parents has thefinal property (Section 6.8), i.e. for no parent
classc the listc.OODesc.props contains the atomfinal ,

� the inheritance graph (Section 6.4) is not cyclic, and

� for any attribute, feature and method defined by any ancestor, there is only
one class that defines it which is closest to the new class (see Section 6.4).

For convenience, we store the list of ancestors under featureOOAncestors in
topological order with respect to the inheritance graph, beginning with the closest
classes. This field will be used by object creation and object and method applica-
tion.
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The featureOOId carries the identity of the created class in the form of a new
name. Thus classes resulting from different class definitions are different.

7.2 Object Creation

We are now able to define the procedureNew that is used for object creation,
shown in Program 7.3. Similar to classes, objects are represented by records.

Program 7.3Library Procedure for Object Creation
fun {New Class Message}

O={MakeInstance Class}
in

{O Message}
O

end

These records are constructed by the procedureMakeInstance .

fun {MakeInstance Class}
{AdjoinList {MakeFeature Class}

[OOState # {MakeState Class}
OOClass # Class
OOId # {NewName}]}

end

The object features are represented by record features such that they can beac-
cessed using field selection. An object of classc thus is constructed by the pro-
cedureMakeFeatures by adjoining all features defined byc’s ancestors to a
record such that features of closer ancestors override features of less close ances-
tors. The state of the object is created byMakeState by adjoining all attributes
using the attribute identifiers as features and cells as fields which are initialized
by the proper value given in the class definition. This state record is adjoined by
MakeInstance to the object at featureOOState . Furthermore, we adjoin to the
object its own class at featureOOClass . BothOOState andOOClass are library
names similar toOODesc. The value of a third featureOOId is a new name. For
example, the record to which the variableA will be bound byA={New Account
noop} is depicted in Figure 7.1, where the variableBC is bound to a cell with
current value0.

The fact that every new instance is equipped with a new name at a feature
OOId implements object identity in the form of token equality. Without this fea-
ture, objects without mutable state would enjoy structural equality, i.e. objects
that have the same features and of which the values at corresponding features are
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Figure 7.1Structure of an Account Object
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equal would be equal. The presence of attributes would even in this case enforce
token equality due to the fact that every new cell comes with a new name. Struc-
tural equality of stateless objects is arguably an attractive alternative to general
token equality. This is approximately the solution to object equality proposed by
Baker [Bak93], who gives an excellent overview of the issue. However, we argue
that encapsulation is improved with a uniform treatment of identity in mutable
and immutable objects.

Free features and attributes (Section 6.2) need special treatment here.They
are marked in their defining class using the nameOOFree. The procedures
MakeFeatures and MakeState create a fresh variable upon encountering
OOFree.

After the object is created, the procedureNew applies it to the initial mes-
sage and returns it. In Section 9.9 we give an argument why we bind the output
argument ofNewafter applying the initial message.

7.3 Methods

The translation scheme for classes hinted at a translation of methods to proce-
dures. Let us take a closer look. In our object model, the method body needs
access to the current object and to the current message. Accordingly, we represent
methods by procedures whose first argument represents the current objectself

and whose second argument the current message. Object and method application
must pass the proper arguments. Object application changesself to the object
being applied by passing that object as first argument to the message. Self appli-
cation (as a special case of object application) and method application pass the
current object as first argument to the method and thus leave self unchanged. The
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formal parameters of the method are bound to the fields of the message by pattern
matching. Thus a method of the form

meth m(a:X b:Y) � � � end

is translated to the procedure

proc {$ Self Message}
case Message
of m(a:X b:Y)
then � � �

end
end

Like for the variableMakeClass , we make sure that the user does not accidentally
redefine the variablesSelf andMessage . For the message patterns described in
Section 6.6 this scheme is suitably modified such that a method of the form

meth announce(source:S
destination:D
weight:W<=StandardWeight ...)=Announce

...
end

is translated to a procedure of the form

proc {$ Self Announce}
local S D Win

S = Announce.source
D = Announce.destination
case {HasFeature Announce weight}
then W = Announce.weight
else W = StandardWeight
end
...

end
end

7.4 Attribute Manipulation

The syntax for accessing the state is translated to applications of the procedures
StateAccess , StateAssign and StateExchange defined by the object li-
brary such that an expression@ebecomes{StateAccess Self e} , a statement
e1 <- e2 becomes{StateAssign Self e1 e2} , and an expressione1 <- e2

becomes{StateExchange Self e1 e2} . Note that the variable occurrences
Self are captured by the formal argument of the closest enclosing method. The
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Program 7.4Library Procedures for State Use
fun {StateAccess Self Attr}

{Access Self.OOState.Attr}
end
proc {StateAssign Self Attr NewVal}

{Assign Self.OOState.Attr NewVal}
end
fun {StateExchange Self Attr NewVal}

{Exchange Self.OOState.Attr $ NewVal}
end

keywordself is also translated to the variableSelf . Attribute manipulation and
the keywordself are not allowed outside of method bodies. Program 7.4 defines
the proceduresStateAccess , StateAssign andStateExchange .

As an example, consider the methodtransaction in Program 5.1 on
page 64. According to our translation scheme, this method is translated to

proc {$ Self Message}
case Message of transaction(Amount)
then {StateAssign Self balance

{StateAccess Self balance} + 1}
end

end

The order of unnesting guarantees the usual semantics of evaluating the right hand
side before carrying out the assignment.

7.5 Object and Method Application

Similar to state use, method application is implicitly applied toself and thus
must occur within method bodies. A method application of the forme1 , e2

is translated to a procedure application{MethodApply Self e1 e2} . As for
state use, the variableSelf is captured by the formal argument of the closest sur-
rounding method. The procedureMethodApply is given in Program 7.5. The
auxiliary procedureLookup first checks if there is a method with the identifier

Program 7.5Library Procedure for Method Application
proc {MethodApply Self Class Message}

{ {Lookup Class {Label Message}}
Self Message }

end
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Program 7.6Library Procedure for Object Application
proc {ObjectApply Object Message}

{ {Lookup Object.OOClass {Label Message}}
Object Message }

end

{Label Message} in the method tableClass.OODesc.methods and if lo-
cal lookup fails, it searches sequentially in the method tables of the elements of
Class.OOAncestors .

Object application is syntactically somewhat complicated due to the decision
to make object application syntactically indistinguishable from procedure appli-
cation. We prevent the user from directly using unary procedure application of
Small Oz, but instead a new operation that we indicate by bold-face braces. Such
an operation{{{P X}}} is translated to the application of the Small Oz application
{UnaryApply P X} where the procedureUnaryApply is defined as follows.

proc {UnaryApply P X}
case {HasFeature P OOClass}
then {ObjectApply P X}
else {P X}
end

end

Note that this procedure definition must be part of the object library so that it has
access toOOClass and that it uses Small Oz’s unary procedure application. A
value represents an object if and only if it has the featureOOClass .

The procedureObjectApply is similar toMethodApply and given in Pro-
gram 7.6. In the following, we shall use application syntax{ x y} in the sense of
{{{ x y}}} .





�I have come for my brains,� remarked the

Scarecrow, a little uneasily.

�Oh, yes; sit down in that chair, please,�

replied Oz. �You must excuse me for taking

your head o�, but I shall have to do it in order

to put your brains in their proper place.�

�That's all right,� said the Scarecrow. �You

are quite welcome to take my head o�, as long

as it will be a better one when you put it on

again.�

So the Wizard unfastened his head and emp-

tied out the straw. Then he entered the back

room and took up a measure of bran, which

he mixed with a great many pins and needles.

Having shaken them together thoroughly, he

�lled the top of the Scarecrow's head with the

mixture and stu�ed the rest of the space with

straw, to hold it in place.

Chapter: The Magic Art of the Great

Humbug



Chapter 8

Implementation

In this chapter, we show how to integrate objects as described in the previous three
chapters efficiently into an implementation of Small Oz. Any implementation of
a high-level programming language has to bridge the gap between high expres-
sivity of complex operations at the source level and low expressivity of simple
operations of the target processor. Instead of compiling directly to instructionsof
the target processor, we use anabstract machine. The instructions of such an ab-
stract machine express the basic operations of the source language, but are simple
enough to allow for a straightforward and efficient interpretation by an implemen-
tation of the machine in software. Often, the even simpler approach of directly
interpreting the high-level language is taken.

Compared to interpretation of high-level source code, abstract machines pro-
vide a clear efficiency advantage. Compared to compilation to native code, ab-
stract machines simplify implementation and increase portability. Furthermore—
as this chapter itself shows—abstract machines support extensibility towards lan-
guage extensions and their concomitant optimizations.

Mehl, Scheidhauer and Schulte [MSS95] describe an abstract machine called
AMOZ of a previous version of Oz. Most features of AMOZ carry over to the im-
plementation of Small Oz. The first three sections introduce the aspects of AMOZ

that are needed for the rest of the chapter. Section 8.1 shows how AMOZ handles
threads, Section 8.2 shows how the data structures of Small Oz are represented,
and Section 8.3 shows how the operational semantics of Oz is mapped to AMOZ.
This presentation puts us in the position to explain in Section 8.4 the consequences
of the design of our object system from the implementation perspective; we iden-
tify several critical issues. In Section 8.5, we address these issues and describe
a realistic implementation of objects in Oz. We describe how a number of im-
plementation techniques for object-oriented languages can be integrated in AMOZ

and show that AMOZ can be adapted to efficiently support first-class messages.
In Section 8.6, we evaluate the performance of the resulting implementation and

101
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Figure 8.1Life Cycle of Threads
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compare it with object systems of other programming languages.

8.1 Threads

The active entities in AMOZ are calledworkers. At each point in time, each worker
serves one single thread by reducing the statements on its stack. This thread we
call running; it is the worker’scurrent thread. The worker monitors its reduction
and preempts the thread after spending a certain amount of runtime on it. Pre-
emption makes running threadsrunnable. If a worker encounters a synchronized
statement whose synchronization condition is not met yet, the thread becomes
suspended. Upon preemption and suspension of a thread, the worker picks up an-
other runnable thread and makes it running. When the synchronization condition
of a suspended thread becomes met, the thread isawokenand becomes runnable.
A thread whose stack is empty becomesterminatedand subject to garbage collec-
tion. Figure 8.1 depicts the life cycle of a thread.

In an implementation with only one worker, interleaving semantics defined in
Section 3.1.2 can be guaranteed by allowing preemption and suspension onlybe-
tweenreductions of statements. In a parallel implementation, the workers must be
carefully designed to enforce interleaving semantics; we are not going to address
these issues here and instead silently assume interleaving semantics forreduction.
The design of a parallel implementation is described by Popov [Pop97].

8.2 Representing the Constraint Store

Recall that basic constraints in Small Oz have one of the following forms:

x= y; x= c; x= l(c1 : x1 � � �cn : xn)
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Figure 8.2Nodes on the Heap

record

hashtable

hashtable imple-
menting mapping
id(a) -> 0
id(b) -> 1
id(c) -> 2

id(f)

X

Z

V

Y

atom

id(a)

X

Z

ref

cell

C

ref

V

V Y

The tell statement can add consistent basic constraints to the constraint store
and synchronized statements must wait until enough information arrives in the
store. The basic constraints and the operations on the store are designed such
that a variable-centered representation is possible. In such a representation, the
store does not represent basic constraints but rather nodes containing constants,
records and references to other nodes. This representation of the store we call
heap. Variables are represented by addresses of nodes on the heap. Figure 8.2
shows a heap segment after executing the program

X=a Y=f(a:X b:Z c:V) V=Y
{NewCell V C}

Each node contains a tag with its type as first entry.1 The variableX, which

1In this presentation, we use tagged nodes. In practice, using a whole word for such a tag can
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is bound to the atoma, is represented by the address of the corresponding atom
node. We can assume that the compiler generates for each atomat a wordid(at)
that uniquely identifies it. The atom node contains this identifier as its second
entry. We can arrange for names to get unique identifiers different from atom
identifiers such that we know whether a given identifier represents an atom or a
name. Name nodes contain a name identifier as second entry and integer nodes
their integer value.2 Nodes corresponding to simple values we callsimple nodes.

The variableY is represented by the address of a record node. For fast field
selection, record nodes contain as second entry the address of a hash table that
maps feature identifiers to indices. Such a hashtable we callindex table. We
can arrange that all records of a given arity share the same index table by using
a hashtable of index tables upon record creation [RMS96]. This optimization
is crucial for our object system, since—as we will see—the attributes (and free
features) of an object are kept in a record and all such records for instancesof a
given class have the same arity. The remaining three entries of the recordrepresent
its fields that can be accessed through the index resulting from hashing with an
offset of three.

The variableV is bound to the variableY. It is represented by the address of a
reference node that contains the address ofY as second entry. The field ofY at fea-
tureb represents the free variableV in the form of a self-referring reference node.
The process of following chains of reference nodes, until such a free variable or a
node with a tag other thanref is encountered, is calleddereferencinga variable.

Instead of having a separate cell store, we add a new kind of node for cells as
shown in Figure 8.2. Their tag iscell and their only field contains the address of
the node representing the current content. Exchange simply writes a new address
in the field and returns the old content of the field.

8.3 The Abstract Machine

A worker reduces the statements on the stack of its current thread. A centralrole is
played by the application statement. To implement procedure application, Small
Oz prescribes to copy procedure bodies from the procedure store onto the heap,
substituting actual for formal arguments. To avoid the copying of any code, we
introduce the usual indirection in the relationship between variables in the code
and the heap. Variables in the code do not directly refer to nodes on the heap,
but are represented by indices into anenvironmentthat in turn holds references to

be avoided by adding the type information to references to nodes (tagged references), as is done
in DFKI Oz 2.0.

2In this implementation, integers are limited to word size. DFKI Oz provides arbitrarily sized
integers using an indirection.
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the heap. Thus by using different environments, several invocations of the same
procedure (in the same or in different threads) can share the same code. Each
thread has access to itscurrent environmentE. We refer to such thread-specific
information asregisters; thusE represents the thread’senvironment register.3 We
refer to the slot in the current environment at indexn by E[n].

Oz code is compiled into a sequence of abstract machine instructions. The
compiler writesabstract machine codein a memory segment calledcode area.
Threads have another register, calledprogram counteror shorterpc, that refers
to the next instruction in the code area to be executed. Consider for example the
synchronized Small Oz statementX = R.A. This instruction may be compiled to
a machine instruction of the form

02 ...
03 SELECT(2,3,1) % field selection using environment slots
04 ...

Here, the compiler decided to use the environment slots2, 3, and1 for the vari-
ablesR, A andX, respectively. When thepcof the current thread of a worker is set
to 03 , this instruction is executed. First, the worker dereferencesE[2] andE[3].
If E[2] or E[3] refer to an unbound variable, the current thread is suspended. To
suspend the thread, the worker first makes sure that binding the variable to a value
checks if the thread can be awoken (details are not important here), and then picks
up another runnable thread. If dereferencingE[2] results in a record noder and
E[3] in a simple nodel , execution can continue; otherwise an exception is raised.
We say that the worker performssynchronized dereferencingof E[2] for a record
noder and ofE[3] for a simple nodel . The record noder is accessed by hashing
for an index in its index table usingid(l) resulting in an addressv. In order to tell
the equality of the corresponding variable withX, the worker dereferencesv and
E[1], and checks if their equality is consistent with the current store. If this isnot
the case, an exception is raised. If it is the case, the worker modifies themsuch
that the heap represents the equality of both variables. This process is known as
unification in logic programming. An implementation in the framework of Oz is
given in [MSS95]. After that,pc is incremented by the size of the instruction, and
the worker continues with the next instruction.

Since procedures are values, they must be represented on the heap. Instead
of representing them by names as in Small Oz, we introduce a new type of node,
calledclosure. Procedure definitions contain code to be executed upon applica-
tion. Thus the closure must have a reference to the corresponding code in the code
area. Variables occurring in the body of procedure definition are either bound in

3A sequential implementation can optimize registers such that they are kept in global variables
of the abstract machine, which saves the indirection through the thread for accessing them.
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Figure 8.3A Closure in the Store
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the body (local variables), or bound by a formal argument of the procedure (ar-
gument variables), or not bound in the procedure definition (free variables). The
free variables are statically scoped and thus the closure must have a reference to
a closure environmentthat maps indices as used in the body of the procedure to
the addresses of nodes of the free variables on the heap. Threads have a register
F that holds a reference to their current closure environment. This closure envi-
ronment implements lexical scoping of non-local variables occurring in procedure
definition.

The first instruction in the body of the procedure allocates a new environment
for local variables. To check whether the arities of procedure application and
definition match, the closure contains the arity of the definition. A closure for a
procedureP defined by

proc {P X Y Z} � � � end

whose body refers to four non-local variables is depicted in Figure 8.3.
The above procedure definition is translated to the following machine code.

05 PROC_DEF(n,07,3,[ v, w, x, y]) % create closure node
06 JUMP(40)
07 � � � % code of body
...
40 � � � % other code
...
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Figure 8.4Machine Code implementing Procedure Application
40 MOVE_TO_A(6,1) % A[1]  E[6]
41 MOVE_TO_A(7,2) % A[2]  E[7]
42 MOVE_TO_A(8,3) % A[3]  E[8]
43 APPLY(5,3) % applyP to 3 arguments
44 ...

The instructionPROC_DEFcreates a closure node on the heap using the code
address07 , the arity 3, and tells the equality of this node withE[n]. The created
closure has a reference to a closure environment containing the variablesE[v],
E[w], E[x], E[y].

In order to provide the procedure body with the actual arguments, the argu-
ments of the application are written to a new set of registers calledargument
registers, and retrieved from there by the body of the procedure. We refer to the
register for then-th argument byA[n]. Consider a procedure application in Small
Oz of the form

{P X1 X2 X3}

Let us assume the compiler decided to use slots 5, 6, 7, 8 in the environment for
the variablesP, X1, X2 andX3, respectively. Then the application is translated to
the code segment given in Figure 8.4.

The instructionsMOVE_TO_Amove the arguments of the procedure from the
environment to the argument registers. For executing the instructionAPPLY, the
worker performs four tasks. The first task consists of synchronized dereferencing
of the first argumentE[5] of APPLY for a closurep with arity 3. Secondly, the
address of the following instruction (pc+1 = 44) is pushed on the stack of the
current thread. Thus the stack of statements in Small Oz is implemented asa stack
of code addresses. Every procedure body is terminated by aRETURNinstruction
that pops the return address from the stack, setspc to this address and the worker
continues with executing the procedure body.4 Thirdly, the worker must set the
F register to the closure environment ofp. Finally, pc is set to the code address
in p and the worker starts executing the procedure body. For pushing the return
address and settingpc to the code address of a procedurep, we say the worker
jumps to p.

Procedures in Oz are first-class values. Often, however, this expressivity is
not used and the procedure to be called is known at compile time. In this case
the worker can do without synchronized dereferencing of the procedure and jump
directly to the closure for which the compiler allocated a heap address. Thus,if
P is declared outside of a procedure, and if the compiler knows thatP is a ternary

4This is also a convenient point to check if the thread must be preempted.
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procedure, it can allocate a heap addressp for it and compile the application to an
instruction of the form

44 APPLY_STATIC( p) % jump to p.

The executing worker can jump directly top without dereferencing through
an environment register. Note that this instruction must be updated appropriately,
when garbage collection changes the address of the closure.

8.4 Implementation Issues

8.4.1 Memory Consumption

A direct implementation according to Chapter 7 results in representing an object
with f features anda attributes on the heap by a record node (one word each for
tag, label and index table address) with the following further entries (one word
each):

� one field entry for each of thef features,

� one field entry at featureOOState for the state. This field refers to a record
with a fields (3+a words), each referring to a cell (2a words), and

� one field entry at featureOOClass referring to the class of the object.

This amounts to a memory consumption of

3+ f +1+3+a+2a+1= f +3a+8 words

per object, assuming that the index tables of all instances are shared.5 Observe in
particular that three words are needed for each attribute which is clearly subopti-
mal.

8.4.2 Messages

Object and method application are performed on messages which are records
whose label is used for method lookup and whose fields represent the method
arguments. We already saw in Section 4.2 that first-class messages are convenient
from the programmer’s point of view. However, their naive implementation re-
sults in allocating a record node on the heap for every message with at leastone

5The DFKI Oz implementation makes sure that all records of a given arity share a single index
table.
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field. The arguments are put in the fields of the new record node. The method
body accesses the record node to extract the method arguments. Considering the
fact that object and method application are the core operations in object-oriented
programs, it is clearly not acceptable to allocate memory for each invocation and
access the heap twice for each argument.

8.4.3 Self

Self is implemented as an additional argument to each method. Furthermore,
attribute manipulation has self as argument. Thus for every object/method appli-
cation and attribute manipulation, self must be loaded into and retrieved from an
argument register. This overhead should be reduced.

8.4.4 Late and Early Binding

The mapping from method identifiers to methods in object and method applica-
tion is done by method lookup in the appropriate class (procedureLookup in
Section 7.5). For simplicity, we encoded method tables as lists. A first improve-
ment is to represent method tables by records. In that case method lookup creates
runtime costs practically linear in the inheritance distance from the class where
lookup starts to the class that holds the method. Even if the method is found in
the first class, the cost of hashing in the method table is significant compared to
ordinary procedure application.

For method application, the situation is particularly unsatisfactory. If theclass
C and labelL of a method applicationC,L( � � �) are statically known, so is the
method that will be called. We want to make use of this information and reduce
the cost in this case to the cost of procedure application.

8.5 A Realistic Implementation

We address these issues by first describing a better memory layout for objects
(Section 8.5.1) and the instructions that operate on this layout. These instructions
form the base for subsequent optimizations such as a technique to avoid allocating
records for messages in many cases (Section 8.5.2), optimized treatment of self
(Section 8.5.3), and optimized late binding (Section 8.5.4). The latter three opti-
mizations are orthogonal to each other; for simplicity of presentation we describe
them independently, rather than combining them with each other as is done in a
real implementation.
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Figure 8.5Memory Layout of Two Objects of the Same Class
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8.5.1 Memory Layout

We introduce a new type of node for objects and modify the representation of
classes. Object nodes contain the address of a record containing the object’s free
features, the address of a record containing its attributes, and the address ofits
class. Figure 8.5 depicts the memory layout of two objects,O1 andO2, of the
same classCwhose definition includesattr a:10 b feat ff1 ff2 uf1:50
uf2:100 .

The attribute record contains references to the values of the attributes rather
than to cells holding the values. Assignment and exchange destructively modify
this record. Note that this optimization is not observable since access, assignment
and exchange are the only operations that have access to the fields of the state
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record. In the feature record, we only keep the free features. The unfree features
are shared among all instances and can be kept in the class. For this purpose,
each class provides a field at featureOOUnfree containing the record of unfree
features.

Thus we end up with a space consumption of four words per object, three
words each for free feature and attribute record, and one word for each of itsa
attributes and itsff free features, resulting in

4+3+3+a+ ff = a+ ff+10 words

per object.6

Sharing of unfree features is crucial for some applications. In fact, it was
adopted as a reaction to unacceptable memory consumption in the Oz Ex-
plorer [Sch97] which makes heavy use of unfree features.

Obviously, with this representation of objects, we cannot use the implemen-
tation of the object-related operations object creation, object/method application,
attribute manipulation and field selection given in Chapter 7. Instead, we compile
these operations to special purpose machine instructions:

Object Creation. An application of the object library procedureMakeInstance
(see Program 7.2) of the form{MakeInstance Class Object} is trans-
lated to a machine instruction

MAKEINSTANCE(n, m)

wheren andm are the environment slots allocated toClass andObject ,
respectively. This instruction creates a new object node with reference to
properly initialized free feature and state records and to the classE[n], and
unifies the object node withE[m].

Object Application. Due to the overloading of the syntax for application with
one argument for both procedure and object application (see Section 7.5),
we need to consider both procedures and objects as functor of a statement
{X Y} . The corresponding machine instruction is

APPLY1(n)

The variableX resides inE[n], andY in A[1]. This instruction performs
synchronized dereferencing ofE[n] for a nodeq and dispatches on the tag
of q. If q is a closure, the instruction behaves likeAPPLY(n,1) . If q is an

6We could further decrease the constant by integrating either the free feature record or the
attribute record in the object node at the expense of implementing an adapted version of record-
like lookup for the object node.
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object node, synchronized dereferencing ofA[1] for a record or literal node
is performed. Using the label of this node, method lookup is performed in
the class ofq, resulting in a closurep. ThenA[1] (the message) is moved to
A[2] andE[n] (the newself ) to A[1], and the worker jumps to the method
p. Recall from the previous chapter that methods are procedures that expect
the new self as first and the message as second argument. Note that this
instruction corresponds to the procedureUnaryApply in Section 7.5.

Method Application. Method application need not be changed. However, we
introduce the following machine instruction for the Small Oz statement
Class,Message so that we can modify it later.

APPLY_METHOD(n)

The variableClass resides inE[n], Self in A[1] and Message in A[2].
The worker performs synchronized dereferencing ofE[n] for a record node
c and ofA[2] for a record or literal nodem. Using the label of this node,
method lookup is performed inc, resulting in a closurep, and the worker
jumps top.

Attribute Manipulation. Attribute accessX = @A, assignmentA <- X and ex-
changeX = A <- Y is translated to the machine instructions

ACCESS(n)
ASSIGN(n)
EXCHANGE(n)

whereA resides inE[n], Self in A[1], X in A[2] andY in A[3] (in case of
exchange). The executing worker performs synchronized dereferencing of
E[n] for a simple nodel . The instructionACCESSperforms field selection
at featurel on the attribute record of the object node referenced byA[1],
similar to SELECTon page 105. The instructionASSIGN writes the ad-
dress inA[2] destructively into the field at featurel of the attribute record.
This is safe sinceACCESS, ASSIGNandEXCHANGEare the only opera-
tions that have access to this record. Destructive record update allows us
to do without a cell for each attribute and save the indirection through the
cell. The instructionEXCHANGEatomically performs field selection like
ACCESSand destructive field update likeASSIGN.

Field Selection. To accommodate field selection of objects we need to modify the
machine instructions for field selection introduced in Section 8.3. Consider
an instruction

SELECT(n, m, l )
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After synchronized dereferencing ofE[n] for a nodeq, the worker dis-
patches on the tag ofq. If q is a record node, the worker proceeds as in
Section 8.3, and ifq is an object node, it selects the free feature record ofq
at the literal referenced byE[m]. If selection is successful, the address of the
result is entered inE[l ]. If this selection is not successful, the worker instead
performs selection on the field of the class ofq at featureOOUnfree .

8.5.2 Messages

Messages are used as first-class values if a variable is used as message in object
or method application or if the method body requires a reference to the message
by using the method patternm=x (see Section 7.3). All other cases of object
and method application we would like to optimize such that no message record
is created on the heap. For this purpose, object/method application as well as
method definition are modified.

The idea of the optimization is to delay the creation of the message on the heap
and pass the method arguments in argument registers, if the message is statically
given in object/method application. Hopefully, the method does not refer to the
message as such but only to its fields. If it does refer to the message, thereis still
time to create the message on the heap; if not, the method arguments are retrieved
from the argument registers as in procedure application.

Method Definition

Recall from Chapter 7 that methods are represented as binary procedures in a
method table of their defining class. We call the corresponding closuresstan-
dard method closures. We introduce a second method table that contains for some
methods aspecial method closure. Methods qualify for such a node if the features
occurring in the method pattern are known to the compiler and if their default
values fulfill certain conditions (see below). For methods that do not qualify, the
special method table contains the nameOONoSpecialMethod under the corre-
sponding method label. Let us first consider methods with only atoms as features,
no defaults or ellipses in their message pattern and which do not refer to the mes-
sage as first-class value. Their special method closures are variants of(procedure)
closures that hold as arity, instead of an integer, an ordered list of identifiers of
their features. Thus, a method definition of the form

meth m(a:X b:Y c:Z) � � � end

results in a special method closure depicted in Figure 8.6.
The bodies of special methods expect the actual arguments corresponding to

the fields of the message pattern in the same order as the arity in the argument
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Figure 8.6A Special Method Closure

spec meth closure

arity

code

environment

[id(a),id(b),id(c)]

registers. We avoid duplicating the body of methods in the code area by making
the standard method call the special method.

Object/Method Application

For this optimization, an object/method application qualifies, if the label and arity
of the message is known to the compiler. This is the case if the message is given
in record syntax as argument to the object, and the features are given as atomsor
integers (we discuss names as features below). Consider an object application of
the form

{Object f(a:X1 b:X2 c:X3)}
: : :

Let us assume the compiler decided to use the environment slots 4, 5, 6 and 7
for the variablesObject , X1, X2 andX3, respectively, andid(a) = 100, id(b) =
101,id(c) = 102, andid(f ) = 105. Then the object application is translated to

00 MOVE_TO_A(4,1) % A[1]  E[4]
01 MOVE_TO_A(5,2) % A[2]  E[5]
02 MOVE_TO_A(6,3) % A[3]  E[6]
03 MOVE_TO_A(7,4) % A[4]  E[7]
04 APPLY_OBJECT(4,105,[100,101,102]) % applyObject with
05 ... % label f and

% arity [a b c]

Like APPLY1, execution ofAPPLY_OBJECT(n, m, a) dispatches on the tag
of the nodeq referenced byE[n]. If q is a closure, the worker must construct a
record node on the heap using labelm, arity a and the firstlength(l) argument
registers as fields. It puts a reference to this node inA[1] and continues like for
APPLY(n,1) . If q is an object node, the worker looks for a method with labelm
in the class ofq and its ancestors. If a special methodsmis found in the ancestor
classc, its arity is compared witha. If they are equal, the worker jumps tosm.
If not, or if special method lookup encounters the nameOONoSpecialMeth , it
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looks up the standard methodsmin c with labelm, creates a record noder on the
heap as above, puts the address ofr in A[2], and jumps to the standard method of
c with labelm.

The instructionAPPLY_METHODis modified similarly.

Methods with Ellipses and Defaults

Recall that method patterns with ellipses allow the actual message to have more
features than mentioned in the pattern (see Section 7.3). Special method clo-
sures for methods with ellipses contain a flag that indicates this. The instructions
APPLY_OBJECTandAPPLY_METHODare modified such that if this flag is set,
the comparison of arities is able to skip features. Along the way, the content of
the argument registers is moved up to fill skipped fields so that they are wherethe
body of the special methods expects them to be.

Recall that a feature with default in method patterns indicates that the actual
message need not have this feature, and if it does not, the default expression is
evaluated instead, and the result is bound to the formal argument. Correspond-
ingly, during comparison of the arities the worker needs to put the default value in
the corresponding argument register if it is left out in the actual message. Thisis
the easiest to implement if the default expression does not incur any computation
and only uses variables not captured within the method. In this case, we can pull
the default expression out of the method pattern and construct a table of defaults
corresponding to the table of special methods.7

Names as Features of Messages

Since the optimization relies on extracting both the arity of messages in ob-
ject/method application and the arity of message patterns in method definition,
it can only be applied when the arity is known at compile time. Thus variables
as features are only allowed if the compiler knows their value. Fortunately, this
is the case when names are used as features, if they are represented by variables
that are declared outside of procedures and bound to names before they are used.
Thus, we can use names to implementprivate message featuressimilar to private
messages, attributes and object features and still enjoy optimized compilation as
described in this section.

7DFKI Oz optimizes methods with defaults if the default is either groundor consists of_ in
which case a special flag is entered in the default table. The default<=_ seems to be a frequent
idiom for optional output arguments.
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Object Creation Revisited

Recall that the procedureNewin Program 7.3 uses the initial message as first-class
value. In order to use this optimization for this message, weinline any application
of the procedureNew(that the compiler knows of), i.e. we replace it statically by
its body. Then the initial message becomes the argument of an object application
and the optimization can work as usual.

Summary

We managed to avoid the creation of record nodes for messages in the ob-
ject/method application, when the following conditions are met:

� The structure of the message record (label and arity) is statically known.

� The method definition does not use the message as first class value.

� The default expression does not incur any computation and only uses vari-
ables not captured within the method.

The cost of this optimization is one additional closure on the heap per method
definition and one extra table for special methods per class. The bodies of standard
and special methods in the code area are shared and thus consume little extra
space.

8.5.3 Self

Since self is used implicitly in method application and attribute manipulation,
passing it in an argument register to these operations turns out to have signifi-
cant cost. In practice, we observe that self is accessed much more oftenthan it
is changed. Thus, we introduce a new register, calledself register, into which
self is put by object application and from which it is retrieved by the other oper-
ations. Before setting the self register, object application saves its current content
to be reinstalled after returning from the body of the corresponding method. This
is done most conveniently by pushing the current self register (properly marked
as such)—in addition topc+ 1—on the stack. The correspondingRETURNin-
struction will reinstall self.8 The instructionsAPPLY_METHOD, ACCESSand

8Note that Oz’s exception mechanism provides a way to leave an object application before the
correspondingRETURNinstruction is executed. An exception handler can be pushed on the stack.
Raising an exception by executing a corresponding statement results in looking for an appropriate
handle down the stack. This has the consequence that the worker must reinstall the values for self
along the way whenever it encounters a saved self register. This way, the handler always uses self
as defined by lexical scoping.
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ASSIGNare modified such that they retrieve self not fromA[1] but from the self
register.

A complication is posed by the possibility to use self (implicitly or explicitly)
within procedure definitions in methods. The semantics of course prescribe static
binding (as exploited in the programming technique described in Section 6.7).
Without precaution, this optimization implements dynamic binding of self, since
the self register of the caller would be used! Thus, the compiler must access
the self register before the procedure definition with a special machine instruc-
tion GET_SELF, bind it to a local variable, and set the self register with another
machine instructionSET_SELF in the body of the procedure. The instruction
SET_SELFpushes the current self on the stack like object application. As an
example, consider the following method.

meth m(P)
...
proc {P X}

a <- 1
end
...

end

This method is translated to the following code.

43 ...
44 GET_SELF(4)
45 PROC_DEF(n,47,1,[4, � � �])
46 JUMP(60)
47 SET_SELF(1) % set self to slot 1 of closure environment
48 ... % code ofP
49 ...

Note that with this technique we delegate the static binding of self to static
binding of free variables of procedures.

8.5.4 Late and Early Binding

A naive implementation, in which object application searches the ancestor hierar-
chy of the receiver’s class for a matching method, incurs a dramatic overhead.
Driesen reports that modern implementations of object-oriented languages are
able to reduce the time spent on handling messages to about 20% of the total run-
time [Dri93a]. In this section, we show how standard implementation techniques
for dynamic binding can be applied in our setting. The first technique employs the
idea of memoization in that the results of previous method lookups are stored in
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descendant classes. The second technique reduces the cost of hashing by storing
lookup results in the machine code and is also used for attribute manipulation and
feature access.

Lookup Caches

If method lookup with a message labelm in a classc fails, the result of the lookup
in the ancestor classes is stored in the method table ofc so that subsequent requests
to look up a method form in c can use the stored method. This technique is
called lookup cacheand is reported to improve the overall performance of an
implementation of the pure object-oriented language Smalltalk by as much as
37% [UP83]. To implement the technique, we use dynamic hash tables for method
tables as opposed to the static hashtables of records.9

In previous versions of Oz, complete method tables were used [SHW95], i.e.
during class creation, a table of all methods was computed by adjunction of all
method tables of inherited classes. With complete method tables, method lookup
consists of a single hashing operation. We experienced a considerable memory
consumption for complete method tables for medium-sized object-oriented pro-
grams. For example, the complete method tables of the standard library of DFKI
Oz 2.0 consumed about 150 kBytes of live memory, with negative impact also
on the runtime of garbage collection. As a reaction, we implemented lookup
caching. Another possibility would have been to investigate memory and runtime
efficient implementation techniques for complete method tables as presented by
Driesen [Dri93b] and Vitek and Horspool [VH94].

Inline Caches

The key to this optimization is the observation that for a particular instruction
for object/method application in the code theobject to which the instruction is
applied may change frequently, but theclassof these objects changes much less
frequently. It is this class that determines which method is applied. Thus the
worker remembers for each call of a machine instruction the classc in which
lookup is performed and the addressmof the resulting method closure on the heap.
If the next execution of the same instruction (by the same or another worker) uses
the same classc for lookup as the previous one, the worker directly jumps tom. It
needs to perform a new lookup only if the class is different. The most convenient

9In Oz, dynamic hashtables are provided by dictionaries. With dictionaries, an implemen-
tation of this lookup mechanism in Oz becomes practical. In fact, the current implementa-
tion accesses the local dictionary directly from the machine instructionsAPPLYMETHODand
APPLYOBJECT, but upon failure falls back on an Oz procedure that implements lookup includ-
ing filling the lookup caches.
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place to storec andm is the instruction itself. Therefore, this technique is called
inline caching. Inline caching has been reported to improve the performance of
an implementation of Smalltalk-80 by 33% [Ung86].

We implement inline caching by adding two wordsc ands to the instruction
for object application (method application similar), resulting in the format

APPLY_OBJECT(n, m, l , c, s)

The wordc is calledclass cacheand is initialized with a value different from
any address of nodes on the heap. For execution, the worker retrieves the classc0

of the object referred to byE[n] and comparesc0 with c. If they are different, it
overwritesc in the instruction byc0, performs the usual method lookup resulting
in a procedure nodes0, overwritess by s0 in the instruction and jumps tos0. If
c0 is equal toc, we can do without the lookup and directly jump tos. Note that
garbage collection invalidates the content of inline caches and thus must reset the
class cache to a value different from any heap address.

We can do even better for a special case of method application. Method ap-
plication in which the variable referring to the class is declared outside of pro-
cedure definition implements static method binding. Such a method application
will always call the same method. We translate such a method application toan
instruction of the form

APPLY_METHOD_STATIC(n)

The first worker that executes this instruction looks up the appropriate method
nodem in the classE[n], and can safely replace the instruction by

APPLY_STATIC(m)

Recall that we introducedAPPLY_STATIC in Section 8.3 as the optimized ver-
sion of procedure call with statically known closure.

The analogous situation for object application is that the variable referring to
the object is declared outside of procedure definition. This case however occurs
rarely and is not worth introducing a special purpose machine instruction.

Note that lookup caches complement inline caches in that they speed up the
lookup time incurred by inline cache misses.

Inline caches avoid hashing in method tables. We use the same idea for at-
tribute manipulation and object feature access. The corresponding instructions
ACCESS, ASSIGNandSELECTget two more words that refer to the class and
the offset by which the corresponding attribute (object feature) can be reachedin
the state record node (free feature record).
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8.6 Performance Evaluation

In this section, we evaluate the performance of objects in DFKI Oz 2.0 [ST97] in
comparison to a number of state-of-the-art object-oriented programming systems.
DFKI Oz 2.0 is an implementation of Oz 2 of which Small Oz is—with slight
variations—a sub-language. DFKI Oz 2.0 is based on an abstract machine along
the lines of AMOZ, realized by a sequential (one worker) byte-code emulator. All
optimization techniques presented in the previous section have been integrated in
DFKI Oz 2.0.

Comparing the performance of implementations of different programming
languages is a rather elusive topic, because different languages encourage the use
of different programming idioms to implement the same algorithm. For example,
pure object-oriented languages use object application for every operation even on
primitive data structures like integers. Non-pure object-oriented languages such
as C++ and Oz provide objects as one of many available data structures. A fair
performance comparison will code the same algorithm in the easiest possible way
in the respective language. For Oz this will result in practice in programs in which
the non-object oriented features of Oz dominate the runtime opening discussions
about the “purity” of the language in terms of object-oriented programming and
the fairness of comparison to other languages. Our aim here is to concentrate on
the central operations of object-oriented programming such as attribute manipu-
lation and late binding.

However, the attempt to measure the performance of individual constructs is
difficult since techniques like procedure inlining and caches lead to dramatically
different behaviour. Instead, we use the algorithms “Sieve of Eratosthenes” and
“N-Queens” described in Sections 5.5 and 6.11 for comparative performance case
studies. In both studies, the object-oriented programming idioms make up a con-
siderable part of computation. In particular, late binding and state use are dom-
inant. Each study provides a different mix of these idioms. We do not claim
that these programs are in any way representative for the use of object-oriented
constructs in the respective languages, so the result can only give a rough idea
on the performance, rather than exact results. We implement the algorithms in
the object-oriented languages and systems given in Table 8.1. The selection was
driven by the wish to cover a wide variety of languages (imperative, functional,
logic) and state-of-the-art systems. We emphasize that we are measuringsystems
and notlanguagesand that we only measured the systems on one single platform.

All measurements have been done on a Sun Sparc 20 (712/128MB) running
Solaris 2.5.1 under low utilization. Occasionally operating system activity dis-
turbes the runtime (memory cache misses etc), resulting in an obviously excep-
tionally large runtime. The reported measurements are the arithmetic mean of 5
“undisturbed” runs in seconds.
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Table 8.1Languages and Systems used for Performance Comparison

Language System
Implementation
Technique

Abbreviation

C++ GNU gcc 2.7 native code C++N
CLOS Allegro CL 4.3 native code CLOSN
Java JOLT Kaffe 0.82 JIT native code JavaN
Java SUN JDK 1.0 emulated byte codeJavaE
Objective Caml Objective Caml 1.03 native code OCamlN
Objective Caml Objective Caml 1.03 emulated byte codeOCamlE
Oz DFKI Oz 2.0 emulated byte codeOzE
Smalltalk VisualWorks 2.0 JIT native code SmalltalkN
SICStus Objects SICStus 3.0 native code PrologN
SICStus Objects SICStus 3.0 emulated byte codePrologE

When taking undisturbed runs, the Coefficient Of Deviation (COV = standard
deviation /arithmetic mean) was always below 2%, which justifies the sample size
of 5. All source programs and further information is available online [Hen97a],
including comments on particular coding decisions in the respective languages.

8.6.1 Sieve of Eratosthenes

We use the algorithm given in Section 5.5. In this application, we have roughly
twice as many attribute accesses as object application. In comparison, attribute
access and object creation are negligible. All object applications use dynamic
binding. If inline caching is used, very few cache misses occur. Compared to the
object operations, little arithmetics is carried out. The performance of thesystems
being studied for computing the prime numbers among the first 20.000 natural
numbers is summarized in Figure 8.2.

8.6.2 N-Queens

We use the algorithm given in Section 5.5. For benchmarking, we solve the 16-
queens problem. We have about 5 times as many attribute accesses as message
sendings, and these two constructs are dominant. Most message sendings use late
binding. The performance of the systems is summarized in Figure 8.3.

An interesting aspect is how much time the programs spend on the arithmetic
part of the problem. This number varies from 0.091 seconds in GNU gcc 2.7 to
3.34 seconds in Java SUN JDK. In Figure 8.4 we subtract a lower bound on the
arithmetic computation time, resulting in a runtime closer to the time spent on
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Table 8.2Performance Figures for “Sieve of Eratosthenes”

System
runtime

in seconds
runtime

/ runtime OzE

C++N 2:60 0:31
OCamlN 2:91 0:34
SmalltalkN 6:05 0:71
OCamlE 6:72 0:80
OzE 8:44 1:00
JavaN 9:43 1:12
JavaE 11:5 1:36
CLOSN 14:0 1:67
PrologN 15:7 1:86
PrologE 25:3 3:00

Table 8.3Performance Figures for “16-Queens”

System
runtime

in seconds
runtime

/ runtime OzE

C++N 0:355 0:059
OCamlN 0:546 0:091
SmalltalkN 1:36 0:23
JavaN 1:68 0:28
OCamlE 3:54 0:59
CLOSN 4:00 0:67
OzE 5:99 1:00
JavaE 6:88 1:15
PrologN 10:2 1:71
PrologE 14:4 2:41
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Table 8.4Performance Figures without Arithmetics for “16-Queens”

System
runtime

arithmetics
in seconds

runtime w/o
arithmetics
in seconds

runtime w/o
arithmetics

/ runtime OzE w/o
arithmetics

C++N 0:091 0:264 0:093
OCamlN 0:218 0:328 0:12
SmalltalkN 0:355 1:00 0:35
JavaN 0:392 1:29 0:45
OCamlE 1:86 1:68 0:59
OzE 3:16 2:84 1:00
JavaE 3:34 3:54 1:25
CLOSN 0:250 3:75 1:32
PrologN 1:41 8:83 3:11
PrologE 2:83 11:6 4:09

object-oriented constructs. We observe that only OzE and OCamlE spend more
time on arithmetics than on object-oriented constructs. This indicates thatobject-
oriented constructs are optimized well relative to arithmetics. On the contrary,
arithmetics in SICStus Prolog is faster than in Oz, but SICStus Prolog spends
most of the runtime in object-oriented constructs. We conjecture that objects in
SICStus Prolog could benefit from the implementation techniques described in
this chapter.

8.6.3 Performance Impact of Individual Optimizations

The impact of the individual optimizations on overall performance is hard to mea-
sure, since in a real implementation the optimizations are heavily intertwined and
cannot be kept separate as neatly as in the above presentation. To a certain extent,
the meta-object protocol described in Chapter 12 allows to undo the optimizations.
Experiments with this system allow an estimation of about one order of magni-
tude in cumulative speedup by the described optimizations. The impact of lookup
tables and inline caches on performance of object-oriented languages are studied
in the literature [UP83, Ung86]. The optimization ofself yields an estimated
speedup factor of 1.2–1.4 for “pure” object-oriented programs like our case stud-
ies. Specific to Objects in Oz is the need to optimize first-class messages. The
speedup of this optimization is impossible to measure in the current implemen-
tation sinceall other optimizations heavily rely on it. Easier to measure is the
benefit in terms of memory consumption. We measured for the sieve program a
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memory consumption of 60.0 MBytes without the optimization compared to 266
kBytes with the optimization. This indicates that for languages with first-class
messages, this optimization is crucial.

8.6.4 Summary of Performance Evaluation

Performance of DFKI Oz 2.0 lies in the range of state-of-the-art byte-code-based
programming systems. Its object system performs well relative to arithmetics.
Considering that most applications spend less time on object-oriented constructs
than the benchmarks used, we conclude that further optimizing the object system
becomes important only if other aspects are significantly improved.

8.7 Historical Notes and Related Work

The first abstract machine for a simple applicative programming language was
Landin’s SECD machine [Lan63], variants of which are used for the imple-
mentation of functional programming languages. Warren’s Abstract Machine
(WAM) [War83] forms the base of many Prolog implementations. For a good
introduction to the WAM consider Aı̈t-Kaci’s tutorial reconstruction [AK91].
AMOZ was developed on the base of the WAM and retained some of its features.

The use of closures appeared with the lexically scoped language Algol. Suss-
man and Steele [SS75] describe environments—which they also call virtual
substitutions—as an implementation technique forβ-reduction in an implemen-
tation of an extendedλ-calculus that became known as Scheme.

The possibility of using complete method tables to implement late binding
was suggested by Steele [Ste76]. Lookup caches are introduced by Conroy and
Pelegri-Lopart [CPL83], and inline caches by Deutsch and Schiffman [DS83],
both in the context of Smalltalk-80 implementations.

As in Oz, the semantics of Smalltalk is based on first-class messages. How-
ever, the language is designed in such a way that the programmer can only get a
hold of the messages upon error. Like in Oz, message creation is generally avoided
in Smalltalk [GR83] and upon error, messages are reconstructed to get the right
debugging behavior. Our optimization of first-class messages is related in spirit to
deforestation[Wad90] in functional programming, where compile-time analysis
is used to eliminate the need to building structures at runtime. In contrastto the
situation in typed functional programming, we must prepare for reconstructing the
structure (message) in case the callee needs it.
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8.8 Discussion

We showed that with a few standard object-oriented implementation techniques
and a careful treatment of first-class messages, we can bring the object system
up to speed comparable to other byte-code-based object-oriented language imple-
mentations. The taken approach can be calledsurgicalsince we kept the general
translation scheme prescribed by the semantics of the object system in the previ-
ous chapter and concentrated on speeding up individual critical aspects. There is
virtually no compiler support for the object system. The compiler does not know
about classes; translation of class definition is (with slight variations)as given in
Chapter 7. We showed that support for objects in the runtime system alone, to-
gether with special treatment of messages, can yield performance comparable to
other state-of-the-art object systems. The programmer can rely on the usual per-
formance assumptions in object-oriented programming, including practically con-
stant time access to attributes, features and methods and no memory consumption
for messages. Performance of these operations relative to other basic operations
in Oz such as arithmetics is acceptable.

An alternative implementation design would have been to provide support for
class definition in the compiler, which would have incurred a significant imple-
mentation effort, but would have provided opportunities for optimization that our
current design misses, as we shall see below.

Our surgical approach on the other hand allowed us flexibility that we found
to be crucial during the design process of Oz, which contained dramatic design
changes that also heavily affected the object system. So far there was no need
to implement even central operations like method lookup or inheritance on the
level of the abstract machine, and instead an easily maintainable high-level Oz
implementation is still in use. The approach allowed us to concentrate on the
performance-critical aspects and keep the implementation effort fairly low.

The following list contains possible further improvements that have not been
pursued, partly because they would have incurred significant changes in the com-
piler or abstract machine, partly because the performance gain is hard to estimate.

Inlining. Method application that uses static binding could be optimized byinlin-
ing the method body in the calling code. For this optimization, the compiler
needs to know which methods a given class has. Classes are first class
citizens in Oz; we must provide for inheritance during compilationwhere
possibleto be able to optimize the case of static binding. When the issue of
inlining is tackled for compiling Oz, inlining of methods should be consid-
ered.

Polymorphic Inline Caches. Hölzle, Chambers and Ungar [HCU91] show that it
can be beneficial to extend the idea of inline caches to remembering several
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of the most common methods in late binding of object/method application.
They call this techniquepolymorphic inline cache. For example, consider
our solution to the n-queens problem in Program 6.5. The application

{ self .neighbor canAttack(@row @column $)}

in methodtestOrAdvance calls the methodcanAttack of classQueen
1330 times and the methodcanAttack of classNullQueen 112 times
during the search for the first solution of the 8-queens problem. Every call
to NullQueen is preceeded and succeeded by a call toQueen. This means
that we have 224 cache misses among 1442 calls, a miss rate of 15.5%.
On the other hand, there are only two possible methods to call. Thus, if
we extend our inline cache to contain two classes and the corresponding
method addresses, we can avoid all cache misses at the expense of at most
two equality tests per object application. This would surely improve runtime
in the application at hand.

Free Variables. Free variables of methods are stored in the closure environment
of the corresponding method closure. Typically methods share a significant
part of these free variables. We could save heap space if we allocate for a
class aclass closure environmentthat can be shared by all methods.10 This
consideration becomes significant in applications where many classes are
created at runtime.

10Steele [Ste76] already pointed out that minimal closures do not necessarily yield maximal
efficiency.



Part III

Objects and Concurrency

This part investigates issues that arise when object-oriented programmingcon-
cepts are used in the framework of concurrent programming. Chapter 9 shows
that logic variables together with cells can express a wide variety of synchroniza-
tion techniques for passive objects. We emphasize the ability to support these
techniques by using object-oriented abstractions. Chapter 10 shows that Objects
in Oz can readily express active objects. Chapter 11 discusses object-oriented
concepts in concurrency models fundamentally different from concurrency by ex-
plicit threads. Chapter 12 presents a concurrent meta-object protocol for Oz.
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The balloon was by this time tugging hard at

the rope that held it to the ground, for the air

within it was hot, and this made it so much

lighter in weight than the air without that it

pulled hard to rise into the sky.

�Come, Dorothy!� cried the Wizard. �Hurry

up, or the balloon will �y away.�

�I can't �nd Toto anywhere,� replied Dorothy,

who did not wish to leave her little dog be-

hind. Toto had run into the crowd to bark at

a kitten, and Dorothy at last found him. She

picked him up and ran towards the balloon.

She was within a few steps of it, and Oz was

holding out his hands to help her into the bas-

ket, when, crack! went the ropes, and the bal-

loon rose into the air without her.

�Come back!� she screamed. �I want to go,

too!�

�I can't come back, my dear,� called Oz from

the basket. �Good-bye!�

Chapter: How the Balloon Was Launched



Chapter 9

Synchronization Techniques

We saw in Chapter 4 that synchronized reduction with logic variables allows for
data-driven synchronization of concurrent threads. In this chapter, we will explore
the expressivity of Oz for more complex synchronization tasks. We start with data-
driven synchronization in Section 9.1. Sections 9.2 through 9.7 show how objects
together with logic variables can encode a variety of increasingly complex syn-
chronization mechanisms. In Section 9.9, we integrate a common synchronization
scheme in our object model. In Sections 9.10 and 9.11, we discuss more general
issues in concurrent object-oriented programming.

9.1 Data-Driven Synchronization

We showed in Chapter 4 how threads can synchronize each other driven by the
availability of data. If both producer and consumer of the data have a reference to
a shared logic variable the producer can tell a basic constraint on the variableand
the consumer can synchronize on the variable with a corresponding conditional.
For example, consider the pairProduce /Consume in Program 9.1.

Program 9.1Producer/Consumer
proc {Produce Xs}

X|Xr=Xs
in

{ProduceItem X}
{Produce Xr}

end

proc {Consume Xs}
case Xs of X|Xr
then

{ConsumeItem X}
{Consume Xr}

end end

We run the proceduresProduce andConsume in different threads.

declare Xs in
thread {Produce Xs} end thread {Consume Xs} end

129
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The producer thread synchronizes the consumer thread by telling a basic con-
straint right before it starts producing the item. Synchronization schemes in which
the producer signals to the consumer that the data is (soon) available is called
push-based[Lea97]. In this example, synchronization is done not on the data be-
ing produced but on the medium holding the data;ConsumeItem may be called
with an unbound variable as argument and thus may need to synchronize on the
data.

If the producer is likely to be faster, apull-basedscheme is a better choice.
Here, the consumer asks the producer for the next item when it is ready for it. In-
terestingly, Program 9.1 can be used for pull-based control flow just by exchang-
ing the roles ofProduceItem andConsumeItem . Then, the consumer signals
to the producer that it is ready for the next item by continuing the list from which
it reads. The producer synchronizes on this list and delivers.

9.2 Mutual Exclusion

Stateless computation poses severe restrictions on the synchronization techniques
that can be encoded. In particular, it seems impossible to express competition
among threads for limited resources as required in mutual exclusion where we
have to prevent that more than one thread executes a code segment at a time. We
shall see in this section how to use cells for this task.

As an example take a double door in a security critical building (e.g. a bank
vault). The figure below depicts the situation. A program to execute a passage of
a person from left to right may look like this.

class Passage
...
meth pass

{ self .first open}
% person can enter
{ self .first close}
{ self .second open}
% person can exit
{ self .second close}

end
end

door
first

door
second

Security
Passage

The safety requirement that never both doors should be open at the same time
can be guaranteed, if no two threads can apply an instance ofPassage concur-
rently to pass messages. Such mutual exclusion conditions occur frequently in
stateful concurrent programming since typically stateful procedures go through
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transient violations of invariants that must be protected from observability by
other threads. We implement mutual exclusion in Program 9.2. An application

Program 9.2Mutual Exclusion
class SafePassage

from Passage
attr token: unit
meth pass

Old New in
Old=token<-New
{Wait Old}
Passage,pass
New=Old

end
end

of a SafePassage object to a messagepass will exchange the value in the at-
tribute token . Atomicity of exchange guarantees that no two threads can get
reference to the same valueOld . Only one thread will be able to getunit out of
token and enter the critical sectionPassage,pass . When the critical section is
left, the tell statementNew=Old will passunit to the next waiting thread. Over
time the exchange statements of different threads will implicitly build up aqueue
of variables of the form

Old1

New1

Old2 Old3 Old4 Old5

New2 New3 New4 New5

unit

Here, the edges represent equality constraints in the store; diagonal edges stem
from exchange operations. The synchronization tokenunit is passed from left
to right. In this example, fivepass requests have been issued, and three of them
have finished their critical section and executed the tell statementOld=New. The
synchronization token is stuck at the fourth request which is currently executing
Passage,pass .
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9.3 Semaphores

The semaphore [Dij68] is the first widely used abstraction for synchronization.
It merges mutual exclusion with the notion of a limited resource. To date, the
semaphore is considered to be an essential albeit low-level synchronizationmech-
anism and is mentioned as a minimal requirement a concurrent programming sys-
tem has to provide [Boo94]. Operating systems with multitasking usually provide
semaphores through library procedures.

A semaphore is an integer valued variableson which the following operations
are defined:

� wait(s) If s> 0 thens is decremented by 1, else the executing thread is
suspended. In this case, we say that the thread suspendson s.

� signal(s) If there are threads that currently suspend ons, one of them is
awoken, otherwise it is incremented by 1.

We require that both operations are atomic, and thats has a non-negative initial
valuen.

Semaphores can solve the mutual exclusion problem above by replacing the
cell by a semaphoresof initial value 1,{Wait Old} by a wait operation onsand
Old=New by a signal operation ons. If s is used in such a way, it can only assume
the values 0 and 1. Such a semaphore is calledbinary. The integer value of the
semaphore allows to express synchronization conditions coupled to a resource.

The semaphore is a higher-level abstraction for synchronization than the logic
variable, since it enables continuous synchronization actions whereas, once a logic
variable is bound, its synchronization capability is exhausted. Nevertheless, we
can implement a semaphore with logic variables by dynamically creating new
variables to refresh the synchronization capability.1 In Program 9.3 we implement
a semaphore class using synchronization with logic variables. A semaphore is
represented by an object with the attributeswaitPointer andsignalPointer .
Their values can be seen as pointers into a list. Initially,waitPointer points to
a list of n unit values, andsignalPointer to the tail of that list. For example,
after

Sem={New Semaphore init(3)}

the attributewaitPointer of Sem holds a list unit | unit | unit |Ur and
the attributesignalPointer holds the unbound variableUr . Application of
Sem to the messagewait advanceswaitPointer and waits for the entry to

1Bill Silverman (quoted by Shapiro [Sha89]) compared the logic variablewith a genie that
grants you a single wish. Of course, the first thing to do when encountering such a genie is to wish
to have two wishes!
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Program 9.3Semaphore Class
class Semaphore

attr waitPointer signalPointer
meth init(N)

@waitPointer = { self listUnit(N $)}
end
meth listUnit(N $)

case N of 0 then @signalPointer
else unit |{ self listUnit(N-1 $)}
end

end
meth wait

W|Wr = waitPointer <- Wr in
{Wait W}

end
meth signal

Sr in
unit |Sr = signalPointer <- Sr

end
end

which it pointed before becoming bound. Application tosignal advances
signalPointer and binds the variable to which it pointed before, possibly
waking up a thread in thewait method. If signalPointer points ahead
of waitPointer , their distance represents the value of the semaphore. If
waitPointer points ahead ofsignalPointer , the value of the semaphore is0

and their distance represents the number of waiting threads.

9.4 Bounded Buffer

The producer/consumer example in Section 9.1 showed that a list can play the role
of a buffer between communicating threads. The producer was not synchronized
and thus the buffer could grow to arbitrary size. Dijkstra showed that semaphores
can expressboundedbuffers [Dij68]. Instead of repeating his implementation, we
show in Program 9.4 how to implement bounded buffers directly and more simply.

The attributesputPointer , getPointer and boundPointer represent
three pointers into a list as depicted in Figure 9.1. The attributeputPointer

points to the position where the next item can be put and the attributegetPointer
points to where the next item can be gotten from. The items in the list hold the
value and two variables on which the methodsput andget synchronize. Fig-
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Figure 9.1Configurations of Bounded Buffer
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Program 9.4Bounded Buffer
class BoundedBuffer

attr putPointer getPointer boundPointer
meth init(N)

@putPointer = @getPointer = { self list(N $)}
end
meth list(N $)

case N of 0 then @boundPointer
else item(val:_ put: unit get:_)|{ self list(N-1 $)}
end

end
meth put(X)

item(val:V put:P get:G)|Pr = putPointer <- Pr
in

{Wait P}
G=unit X=V

end
meth get($)

item(val:V put:_ get:G)|Gr = getPointer <- Gr
item(val:_ put:P get:_)|Br = boundPointer <- Br

in
{Wait G}
P=unit V

end
end

ure 9.1(a) depicts the configuration of a buffer

BB={New BoundedBuffer init(3)}

right after initialization, and Figure 9.1(b) depicts the state ofBBafter

{BB put(1)} {BB put(2)} {BB put(3)}
declare X in {BB get(X)}

Note that the distance betweengetPointer andboundPointer is constant
and represents the size of the buffer. The shaded area in Figure 9.1(b), i.e. the cons
record, the item record and the two synchronization values, is not accessible any-
more and thus subject to garbage collection, whereas the number1 is accessible
via X.
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Program 9.5Readers/Writer Problem
class ReadersWriters

attr token: token(r: unit w: unit )
meth read(Code)

NewR NewW
token(r:OldR w:OldW) = token <- token(r:NewR w:NewW)

in
NewR = OldR % release read token
{Wait OldR} % wait for read token
{Code}
NewW = OldW % release write token

end
meth write(Code)

NewR NewW
token(r:OldR w:OldW) = token <- token(r:NewR w:NewW)

in
{Wait OldW} % wait for write token
{Code}
NewW = OldW % release write token
NewR = OldR % release read token

end
end

9.5 Readers/Writer

In the readers/writer problem [CHP71] several threads compete for a sharedre-
source similar to mutual exclusion. The threads are divided intoreader threads
which are not required to exclude one another, andwriter threads which are re-
quired to exclude every other thread, readers and writers alike. The problem is
an abstraction of access to databases, where there is no danger in having several
threads read concurrently, but writing or changing the data must be done under
mutual exclusion to ensure consistency. Again, instead of using semaphores, we
code the solution directly with logic variables as shown in Program 9.5. The pro-
gram is a refinement of program 9.2 for mutual exclusion. Instead of using a single
value synchronization token, the token is now a record. Theread method waits
for ther field of the synchronization token, whereas thewrite method waits for
its w field. Overlapping of read requests is achieved by releasing the read token
immediately.

Note that we use a record as token in order to be able to simultaneously “ex-
change” both fields. The program gets significantly more complex if only simple
values are used.
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9.6 Time Behavior

Often synchronization conditions occur in combination with time constraints. We
extend Small Oz to provide primitives for soft real time programming as building
blocks for more complex time behavior.

One essential building block is the procedureAlarm . It takes an integerms
as argument.Alarm suspends the current thread for at leastmsmilliseconds and
when the thread is awoken, it returnsunit .

A second essential component is calledsimultaneous waiting.

Simultaneous Waiting. Simultaneous waiting of the form

{WhichFirst x y z}

is synchronized onx or y to be bound, i.e. it reduces if either one of the
variablesx andy get bound. When it reduces there are three possibilities.

� The variablex is bound but noty; thenz = 1 is pushed.

� The variabley is bound but notx; thenz = 2 is pushed.

� Both variables are bound; then either one ofz = 1 and z = 2 is
pushed.

We show with two examples thatAlarm andWhichFirst are versatile build-
ing blocks for time behavior.2

First consider the situation where concurrently produced computational events
trigger graphical output. In order to avoid a too frequent display of the graphical
output (flickering) we are introducing a time slack. An incoming evente1 is not
displayed immediately. Instead, if the next evente2 happens within the time slack,
thene1 is simply ignored. Thus only the last one of a fast sequence of events will
lead to a display.3

The methoddoLazily in classLaziness in Program 9.6 binds the current
value of the attributetoken to unit and replaces it byNewVar. It simultaneously
waits onNewVar and the return value ofAlarm to become bound. IfNewVar

gets bound faster—i.e. the same instance gets applied todoLazily within Slack
milliseconds—thenlazyDisplay ignores the message, and otherwise it executes
Code.

2The procedureAlarm is included in the standard libraries of Oz, whereas the procedure
WhichFirst can be programmed in Oz usingIsDet and==.

3This example originates from the implementation of Ozcar, a debugger forOz developed by
Benjamin Lorenz. In Ozcar, the threads created by a program are displayed in a graphical tool. If
many threads were created in the program being debugged, the resulting graphical output flickered.
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Program 9.6A Class for Laziness
class Laziness

attr token
meth doLazily(Code Slack)

NewVar
in

unit = token <- NewVar
case {WhichFirst NewVar {Alarm Slack}}
of 1 then skip
else {Code}
end

end
end

A second example provides a generic repetition functionality. An instance
of the classRepeat shown in Program 9.7 can be made to repeatedly apply an
Action procedure using the methodgo. The methodgo calls the private method
Go, which implements a loop, which is at every iteration delayed by@DelayTime

milliseconds. The loop is terminated, when the attribute@Stop becomes bound.
This can be done by applying theRepeat object to the messagestop in a con-
current thread or the procedureAction . Note that the methodstop stops allgo

requests that have been issued after the laststop (or, if there was nostop yet,
after object creation).

These two examples show that high-level time dependent abstractions can be
defined using the primitivesAlarm andWhichFirst .

9.7 Locks

Similar to the time abstractionsLaziness andRepeat in the previous section,
we extract the mutual exclusion functionality in Program 9.2 and provide it gener-
ically by the classLock in Program 9.8.

We simply give to the lock as an argument the code to be executed in a critical
section in the form of a nullary procedure. UsingLock , Program 9.2 becomes
much simpler, as shown in Program 9.9.

9.8 Thread-Reentrant Locks

A problem arises when the same thread tries to enter a lock that it alreadyholds.
For example, in Program 9.2 it is reasonable that the doorself .first is pro-
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Program 9.7A Repeater Class
class Repeat

attr
DelayTime: 1000
Stop

meth go(Action)
Repeat,Go(Action)

end
meth stop

unit = Stop <- _
end
meth Go(Action)

S = {Alarm @DelayTime}
in

{Action}
case {WhichFirst S @Stop}
of 1 then Repeat,Go(Action)
else 2 then skip
end

end
end

tected by the same lock as passage, such that the first door cannot be manipulated
in any other way while someone passes the double door. Implementing the door’s
open method by

meth open
{@lck lck( proc {$} � � � end )}

end

will lead to a deadlock, sinceOpenFirst waits for the lock that is never going
to be released becauseOpenFirst is waiting for the lock... This situation led
to the conception ofthread-reentrantlocks that do not require the lock if the
current thread already holds it. The implementation of thread-reentrant locks in
Program 9.10 uses the primitiveThisThread to be able to identify which thread
currently holds the lock.

Thread identification. A thread identification of the form

{ThisThread x}

pushes the statementx = ξ whereξ is a name that uniquely identifies the
reducing thread. Thus, subsequent thread identifications issued by the same
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Program 9.8Lock
class Lock from BaseObject

attr token: unit
meth lck(Code)

New Old = token <- New in
{Wait Old}
{Code}
New = Old

end
end

Program 9.9Mutual Exclusion with Locks
class SafePassage

from Passage
feat lck
meth init

self .lck = {New Lock noop}
end
meth pass

{ self .lck proc {$} Passage , pass end }
end

end

thread always yield the same name, and thread identifications issued by
different threads always yield different names.

The classReentrantLock in Program 9.10 inherits fromLock and redefines
the methodlck such that it immediately executesCode if the current thread al-
ready holds the lock. OtherwiseCode is protected by the inherited methodlck
making sure that the attributelockingThread always refers to the thread that
currently holds it or tounit if it is free.

The necessity for thread identification arises naturally in concurrent program-
ming. Lopez and Lieberherr [LL94] mention this feature as one of the basic con-
structs that a reasonably expressive concurrent language must provide.

The idiom of thread-reentrant locks is so important that we syntactically sup-
port it such that instead of

{L proc {$} � � � end }

the following more pleasing syntax can be used

lock L then � � � end

The procedureNewLock is predefined as
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Program 9.10Reentrant Locks
class ReentrantLock from Lock

attr lockingThread: unit
meth lck(Code)

This={ThisThread}
in

case @lockingThread==This
then {Code}
else Lock , lck( proc {$}

lockingThread <- This
{Code}
lockingThread <- unit

end )
end

end
end

fun {NewLock} {New ReentrantLock noop} end

Note that both in reentrant and non-reentrant locking, the lock does not affect
threads that are created within the lock. The lock is released when the thread that
entered the lock is finished with reduction of the locked statement.

lock
L

then
{P}
thread {Q} end
{R}

end

As soon as reduction of{R} is completed, the lock is released regardless
whether{Q} is finished or not. If we wish to synchronize on{Q} as well, this
needs to be programmed explicitly with an acknowledgment variable as in

lock
L

then
Ack in
{P}
thread {Q} Ack= unit end
{R}
{Wait Ack}

end
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9.9 Objects with Reentrant Locks

In Program 9.9, mutual exclusion was achieved by binding the lock to an object
feature upon initialization and accessing this feature for the lock in the methods.
This idiom—in combination with thread-reentrant locks—is so important that we
decided to support it syntactically. We allow to declare a propertyprop locking
for a class which has the effect that a private feature of every instance is bound
to a different lock. The propertylocking is inherited. Mutual exclusion can be
enforced for statementsSby writing within methodslock S end , which refers
implicitly to the lock of the current object. Thus a reentrant version of Program9.9
can be written as

class SafePassage
from Passage
prop locking
meth pass

lock Passage , pass end
end

end

In the context of concurrency it becomes clear why we insist on an initial
message for object creation. In a sequential context, we could instead simply first
create the object and then apply it to the initialization message. In a concurrent
context, however, it is possible that another thread has already a reference to the
variable to which the newly created object is bound and tries to apply it. It could
happen that this object application gets executed before the object gets applied to
the initial message, which clearly defeats the purpose ofinitial messages. The
definition ofNewin Program 7.3 prevents this by returningOonly after the object
application{O Message} .

Thread-reentrancy solves a problem that plagues languages with synchronized
objects, namely that self application of such objects leads to immediate deadlock.
Instead of introducing thread-reentrancy as in Oz and Java, the language POOL-
T [Ame87] allows for direct method invocation that bypasses synchronization.
The languages ConcurrentSmalltalk [YT87] and Obliq [Car95] change the se-
mantics ofself in an ad-hoc way such that object application that is statically
identified as self application is not synchronized. However, indirect application
of the current object or object application where the callee turns out to be self at
runtime are synchronized, which can lead to unwanted deadlocks.

Note that making the lock feature public is generally unsafe since any refer-
ence to an objectOcan lock it forever as in

thread lock O.theLock then {Wait _} end end
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A drawback of making the lock implicit is that it is not available to the program-
mer. Lea [Lea97] shows a number of programming techniques where this is es-
sential. However, we can implement access to the object’s lock with the following
methodLOCK.

meth !LOCK(P) lock {P} end end

In order to use the lock of an objectOfrom outside for a statementS, we can write

{O LOCK(proc {$} S end )}

For security, the scope ofLOCKcan be controlled by the programmer. In the
context of locking the situation may arise that several messages must be processed
without releasing the lock. This can be achieved by the following methodbatch

which employs first-class messages.

meth batch(Ms)
lock {ForAll Ms proc {$ M} { self M} end } end

end

9.10 Inheritance and Concurrency

We pointed out in Sections 2.2.3 and 5.4 that non-conservative inheritance like
any complex feature necessitates careful design and can be the source of pro-
gramming errors. In the context of concurrent object-oriented programming,
the dangers of non-conservative inheritance have been studied by Matsuoka and
Yonezawa [MY93] who coined the term “inheritance anomaly”. The source of
these dangers is that synchronization often depends on non-local properties of
objects.

Our conclusion of this observation is to propagate particularly careful usage of
inheritance in the context of concurrency. Lea gives an overview of the issues that
need to be kept in mind for concurrent programming in Java [Lea97]. Due to the
close relation of the concurrency model of Oz and Java, his remarks are equally
valid for Oz.

In languages like ABCL [Yon90] and POOL-T [Ame87], whose main tool of
synchronization is synchronization code in the form of method guards, the prob-
lem is more urgent. Here, the “anomaly” pointed out by Matsuoka and Yonezawa
consists mainly of the lack of a generally applicable method for inheritance of this
synchronization code. This situation convinced the designers of these languages
to abandon inheritance altogether.

Thread-reentrant locking of Java and Oz avoids the most urgent synchro-
nization problem in the context of inheritance and concurrency, namely self and
method application of synchronized methods as argued in Section 9.9.
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Lea [Lea97] notes that immutable attributes provide strong invariants to the
concurrent programmer. He argues that a particular danger in the context of in-
heritance lies in changing attributes in subclasses that were used in superclasses
under the immutability assumption. Our radical decision to syntactically and se-
mantically separate mutable components (attributes) from immutable components
(features) helps to avoid errors of this kind.

9.11 Discussion

None of the presented synchronization techniques is new. We emphasize how-
ever the ease with which a wide variety of synchronization abstractions canbe
built in Oz from a small number of simple building blocks. To summarize, the
programming concepts that we relied upon in this section include

1. thread-level concurrency,

2. object-oriented programming (inheritance, encapsulation),

3. logic variables for synchronization,

4. atomic attribute exchange as main indeterministic construct, and

5. first-class procedures.

It is the integration of these features in a coherent programming framework
that turns Oz in a powerful concurrent language.

Both logic variables and the exchange operation were used in every program
after Section 9.1. This justifies their prominent position in the language definition
and the syntactic support for attribute exchange in the object system.

The concurrent functional language Multilisp [Hal85] supports some of these
features. We are now in a better position to compare Multilisp’s futures men-
tioned in Section 3.5 to logic variables. A future is statically tied to an ex-
pression that computes its value. Interestingly enough, after Section 9.1 ev-
ery program relies on the fact that there is no such a restriction for logic vari-
ables. We attribute to this difference the fact that the implementation ofthese
idioms with futures is much more complex in Multilisp than in Oz (see for
comparison the semaphore given in [Hal85]). Similar to Multilisp’s futuresare
ConcurrentSmalltalk’s CBoxes [YT87] and ABCL’s future objects [YBS86].

The language PCN [FOT92] features both thread-level concurrency and logic
variables, however lacks lexically scoped higher-order programming and does not
support object-oriented programming. PCN does not allow to access mutable
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variables (which correspond to Oz’s attributes) from concurrent threads. The de-
signers of PCN here obviously opted for security against expressivity, since this
decision precludes the simple expression of essential synchronization mechanisms
that are enabled by Oz’s cells with atomic exchange. Communication of concur-
rent threads in PCN is stream-based which has proven to be difficult to use in
practice in concurrent logic programming.

The language Java [AG96] supports thread-level concurrency and object-
oriented programming. It provides a built-in notion of mutual exclusion in the
form of synchronized methods and statements, with which atomic attribute ex-
change can be implemented. In its newest version 1.1, Java provides for lexically
scoped higher-order programming in the form of “inner” classes. Java’s main syn-
chronization constructswait andnotify can only be used within synchronized
methods and are similar to the constructswait and signal in Hoare’s moni-
tors [Hoa72]. An advantage of synchronization in Oz over Java is the simplicity
with which data-driven synchronization is provided, since the logic variable is
supported as a basic notion.

In Java, any object can use asynchronized method or statement, whereas
our corresponding syntactic support for locking requires the corresponding class
to have the propertylocking . Without this requirement, every object must be
prepared for synchronization, so either the object must be provided with a lock
upon initialization, or a lock must be created upon the first attempt to synchronize.
This is due to Oz’s dynamic typing and general method application. In Java, it is
statically known which classes have instances that may be locked and thus the
locking property can be kept implicit without sacrificing simplicity or efficiency
of sequential objects.



So he walked forward to the tree, but just as

he came under the �rst branches they bent

down and twined around him, and the next

minute he was raised from the ground and

�ung headlong among his fellow travelers.

This did not hurt the Scarecrow, but it sur-

prised him, and he looked rather dizzy when

Dorothy picked him up.

"Here is another space between the trees,"

called the Lion.

"Let me try it �rst," said the Scarecrow, "for

it doesn't hurt me to get thrown about." He

walked up to another tree, as he spoke, but its

branches immediately seized him and tossed

him back again.

"This is strange," exclaimed Dorothy. "What

shall we do?"

Chapter: Attacked by the Fighting Trees



Chapter 10

Active Objects

In the previous chapter, we saw how objects can exhibit specific concurrent behav-
ior. Unlike purely sequential objects, concurrent objects can suspend their current
thread via data flow synchronization. However, so far we maintained a clearsep-
aration between threads and objects. The only sources of computational activity
are threads; objects are passive and can control threads via synchronization.

In Section 4.2, we showed howactive objectsare represented in concurrent
logic programming. An active object is an object that is associated with a thread
of its own that carries out the operations on the object. In this chapter, we will
further explore active objects, leading to abstractions for many-to-one communi-
cation (Section 10.1) and servers (Section 10.2). A case study demonstrates how
these abstractions can be used in the context of simulation (Section 10.3), and
a performance analysis (Section 10.4) evaluates the practicality of using active
objects as a central object-oriented programming concept.

10.1 Many-to-One Communication

We saw in Section 4.2 that active objects can be supported in Small Oz in the
style of concurrent logic programming by installing a thread devoted to repeat-
edly reading messages from a stream. Messages are sent asynchronously by ex-
tending the stream. Here the metaphor of “message sending” is appropriate.1 The
sender thread does not wait for receipt of the message and the receiver thread is
responsible for carrying out the requested computation.

A basic problem with such stream-based objects is that there is exactly one po-
sition in the stream where the next message can be entered, while there are usually
many senders that can possibly do so. Thus the senders have to coordinate their
writing activity in order to avoid that two senders attempt to enter a message at

1Compare with terminology discussion on page 17.
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Program 10.1Expressing Ports with Cells
proc {NewPort Ms P}

{NewCell Ms P}
end
proc {Send P M}

Ms Mr in
{Exchange P Ms Mr}
Ms = M|Mr

end

the same position. Janson, Montelius and Haridi [JMH93] survey the techniques
for many-to-one communication in concurrent logic programming and point out
their problems and limitations. None of the surveyed techniques has constant time
and space complexity for many-to-one communication. Kahn [Kah89] notes that
“there are many ways of attaining many-to-one communication in the framework
of concurrent logic programming. All of these methods are fundamentally awk-
ward, especially when compared with actors or objects that support many-to-one
communication as a primitive notion.” Janson, Montelius and Haridi decided to
integrate in concurrent logic programming such a primitive notion, and call it
port. A port is an opaque front-end to a stream, realized by the following two
operations. The operation{NewPort Ms P} creates a portP and connects it to
a streamMs, and the operation{Send P M} sends a messageMto a port, which
will put it in the right place of its stream.

Ports can be implemented using cells as in Program 10.1, yielding a constant
time and space mechanism for stream-based many-to-one communication. The
idea is to represent the port as a cell holding the current tail of the stream. The
send operation performs an exchange on the cell putting a new variableMr in the
cell. The old contentMs of the cell is bound to a list with headMand tailMr.
Since the exchange operation is atomic, a continuous stream of messages is built
without two senders ever attempting to bind the same variable to a message.

Janson, Montelius and Haridi emphasize that the stream connected to a port
should be closed withnil when the port cannot be referenced any longer. This
provides a form of garbage collection and becomes important when active objects
are used for fine-grained structuring of data.

10.2 Servers

Our goal is to support active objects by reusing the sequential object system.
Specifically we want to be able to define a class with the usual syntax and cre-
ate active objects from it.
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Program 10.2Creating Servers for Objects
fun {MakeServer Object}

Stream
proc {Serve M|Mr}

{Object M} {Serve Mr}
end

in
thread {Serve Stream} end
{NewPort Stream}

end

Creating Servers for Objects

The first step is to provide the ability to confine the computation resulting from an
object application to a dedicated thread. To this aim the procedureMakeServer
in Program 10.2 installs aPort in front of a givenObject . The stream connected
to the port is continuously read by the procedureServe , which runs in its own
thread. After

S={MakeServer O}

the programmer can decide to perform an operation onO using that thread by
{Send S M} or using the current thread as usual with{O M} . Note that the
operations onO issued byS are performed in strict sequential order. InServe ,
Object is applied to the next message only after the previous object application
has finished. This strict sequentiality provides strong invariants to the programmer
at the expense of disallowing any concurrent interleaving where this would do no
harm.

An alternative would be to spawn a new thread for every message using the
following Serve procedure.

proc {Serve M|Mr}
thread {Object M} end {Serve Mr}

end

Here object applications can concurrently interleave and the programmer must use
synchronization techniques such as the ones presented in the previous chapter to
enforce synchronization conditions. The execution of the server is not confined
to a single thread, but scatters itself over as many threads as there are messages
being processed concurrently at any point in time.
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Program 10.3Encapsulating Objects in Servers
fun {NewServer1 Class Init}

Object={New Class Init}
in

{MakeServer Object}
end

Encapsulating Objects in Servers

Often an object is intended for exclusive use in a server. For this purpose, the
procedureNewServer1 in Program 10.3 can be used instead of object creation
via New. The procedureNewServer1 defines a localObject and hands it to
MakeServer . The only way to accessObject is by sending messages to the port
returned byMakeServer . Thus the port represents an active object to which we
can send messages viaSend.

A Server Class

By construction,self in methods refers to the object and not the server. In order
to enforce that the only wayObject is accessed is through its port, we must make
sure thatself is not passed as argument to the outside. Instead, methods should
be able to access and export the currentactive object, represented by its port.
Therefore, we refine our server abstraction as shown in Program 10.4.

Program 10.4A Server Class
local

InitServer = {NewName}
in

class Server
attr server
meth !InitServer(Port)

@server = Port
end

end
proc {NewServer Class Init ?Port}

Object={New Class InitServer(Port)}
in

{Object Init}
Port={MakeServer Object}

end
end
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Figure 10.1A Simplified Contract Net Protocol
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The argumentClass of NewServer is assumed to inherit fromServer . The
object is initialized using the methodInitServer , which is visible only in the
procedureServer and in the classNewServer . The methodInitServer binds
the attributeserver to the variablePort which is bound byMakeServer as in
the procedureNewServer1 . For self application to a messageM, the program-
mer can now decide whether to use the active object via{Send @server M}
or the passive object via{ self M}. While the former possibility may decrease
the latency for processing messages by the active object, it bears the danger of
deadlocks. In particular, synchronization on return arguments in the thread of the
active object as in

meth � � � {Send @server m(?X)} {Wait X} � � � end

immediately leads to a deadlock.

10.3 Case Study: Contract Net Protocol

As an example for a scenario in which active objects are useful, consider thesimu-
lation of the following distributed negotiation protocol. A transportation company
has several trucks at its deposal. In order to fulfill incoming orders, it forwards
them via mobile telephony to the trucks who reply with an estimated cost, de-
pending on their current position and schedule. The company selects the most
economic bid and awards the order to the corresponding truck. Figure 10.1 de-
picts the protocol.
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Program 10.5Negotiation Protocol in a Transportation Scenario
class Company from Server

attr trucks
meth order(Order)

Announcements=
{Map @trucks

fun {$ Truck}
Ann=ann(order:Order bid:_ award:_)

in
{Send Truck Ann} Ann

end }
in

{FoldL Announcements
fun {$ SmallestBid#SmallestAward

ann(order:_ bid:Bid award:Award)}
case Bid < SmallestBid %1
then SmallestAward= false Bid#Award
else Award= false SmallestBid#SmallestAward
end

end
MaxCost# false }.2 = true

end
end
class Truck from Server

meth ann(order:Order bid:?Bid award:Award)
Bid={ self computeBid(Order $)}
case Award then { self addToSchedule(Order)} %2
else skip end

end
end

The contract net protocol [Smi80] was developed as a general computation
framework for such negotiation protocols. We show here in principle how active
objects can implement such a protocol and demonstrate the use of logic variables.2

We represent both the company and the trucks as active objects in order to
model their distributed computational resources. The corresponding classes are
given in Program 10.5. The protocol between an instance ofCompany and the
instances ofTruck referred to byCompany’s attribute trucks is initiated by
sendingorder(Order) to the company. The company forwards this order to

2After a feasibility study by Christian Schulte, Oz has been used as an implementation plat-
form for a distributed collaborative transportation scenario in whichvariations of the contract net
protocol were used [FMP95].
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its trucks in the form of messagesann(order:Order bid:_ award:_) with
new variables at the fieldsbid andaward for each truck. In the course of the
negotiation, these variables will be used for communication and synchronization
between the company and its trucks. The trucks concurrently compute their bid on
the order using the methodcomputeBid not shown here and bind the fieldbid
of the received announcement message. The company iterates through the list of
all announcements to find the best bid and awards the order to the corresponding
truck by binding theaward field of the announcement message totrue . The
award field of all other announcements are bound tofalse . There is only one
message sending per truck and order being sent. The synchronization required
by the protocol is done through logic variables. At synchronization point%1, the
company waits for each truck to have delivered the bid, and at synchronization
point%2, the truck waits for the company to award or reject the order.

With conventional message passing a much more complex communication
protocol would have to be used. For example, trucks must respond to the order
via message passing. In general, the message must identify the order to which
it refers so that the company knows to which order the truck responded. This
example shows how natural data flow synchronization with logic variables can
be used with active objects and that the server abstraction allows to create active
objects from classes defined with the usual class notation.

10.4 Performance Analysis

Some concurrent object-oriented languages use active objects as the central pro-
gramming idiom. Examples include the languages ABCL [Yon90], POOL-T
[Ame87] and Eiffeljj [Car93]. In this section, we examine if this is desirable for
Oz. The central requirement that we insist on is that the language should be prac-
tical for ordinary sequential object-oriented programming. In our experience this
requirement is essential, since even for concurrent applications, typicallylarge
parts can and should be implemented with sequential programming concepts.

In order to get an impression of the consequences of active objects for the per-
formance of sequential algorithms, we implemented the programs given in Sec-
tions 5.5 and 6.11 using active objects. In the case of the sieve of Eratosthenes,
every filter is represented by an active object. Sending a number to the firstfilter
must be synchronized such that the previous number made it through the chain or
got filtered out. Thus a synchronization token is threaded through the methodsf .
No further change to the program was necessary. In the case of n-queens, every
queen is an active object. No such synchronization was necessary here and thus
migration was even simpler than for the sieve. The resulting programs are given
in [Hen97a]. We note that migrating code from passive to active objects is often
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Table 10.1Performance Figures Passive vs Active Objects

Benchmark
runtime

passive obj.
in seconds

runtime
active obj.
in seconds

runtime active
/ runtime passive

Sieve 8:44 107:3 12:7
Queens 5:99 35:2 5:88
Queens w/o Arit. 2:84 32:0 11:3

much harder than these examples suggest. In particular, getting the synchroniza-
tion conditions right can be tedious and error-prone.

Table 10.1 summarizes the performance results obtained under the conditions
given in Section 8.6 and compares them with the sequential encoding. Active
objects incur a runtime overhead of at least a factor of 10 (for n-queens after
subtracting arithmetics). This overhead is incurred by switching control from
one thread to another where the encoding with passive objects simply uses object
application. Specifically, in sequential algorithms a message sending to an object
o leads to waking upo’s thread and suspending the current thread. Given the
fact that threads are light-weight in Oz and that the suspension mechanism is
efficiently implemented, we conjecture that a slowdown of about one order of
magnitude is intrinsic for a sequential implementation of Oz.

The active object version of the sieve used 70.3 MBytes of heap memory com-
pared to 266 kBytes for the passive objects version. The active object version of
the n-queens program used 24.0 MBytes compared to 634 kBytes for the passive
objects version. The enormous memory consumption for active objects is due to
the fact that messages must be built on the heap to store them in message streams,
whereas messages to passive objects are usually not represented on the heap (see
Section 8.5.2).

Unfortunately there are no performance figures on standard hardware for lan-
guages based on active objects given in the literature. McHale [McH94] vaguely
suggests “several orders of magnitude overhead” for active objects depending on
the expressivity of synchronization code. Even for parallel hardware, we found
only a single performance analysis, carried out by Taura, Matsuoka and Yonezawa
who evaluate the performance of ABCL on multicomputers [TMY93] using math-
ematical programming benchmarks. We conjecture that languages based on active
objects so far failed to prove their practicality as general-purpose programming
languages on standard hardware.
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10.5 Discussion

We argued that active objects are a valuable programming idiom in applications
and demonstrated the use of active objects in a simulation scenario. We showed
that active objects can be expressed using passive objects and first-classmessages.
We showed that straightforward use of active objects for sequential algorithms in-
curs a significant overhead in our implementation. It has been shown that sophisti-
cated compile-time analysis can significantly reduce this overhead [PZC95]. What
still remains however is the conceptual burden of active objects for sequential pro-
gramming. More generally, Lopez and Lieberherr [LL94] argue that treating con-
currency and object-oriented organization of data as orthogonal issues increases
the flexibility and expressiveness of a programming language.

In this chapter we made heavy use of first-class messages. In languages with-
out first-class messages, such as Java, C++ and Smalltalk3, it is much more diffi-
cult to combine active and passive objects. In retrospect, this observationjustifies
the introduction of first-class messages as a basic ingredient of our object model
and the implementation effort incurred by them.

We conclude that while active objects provide a useful programming abstrac-
tion, a concurrent object system should be based on passive objects, which can—
together with first class messages—support abstractions for active objects.

10.6 Historical Notes and Related Work

Streams are introduced by Landin [Lan65] who characterized them as functions
()! element� stream. Gilles Kahn’s process network [Kah74] is the first ap-
proach to modeling a distributed system using streams (which he calls channels).
Kahn and MacQueen introduced stream merging for many-to-one communica-
tion [KM77].

Concurrent logic programming follows this approach by providing each po-
tential sender with its own stream [ST83, KTMB86], and merging them into the
stream that is read by the receiver object. Often, binary trees of merge agents are
used. The most widely used programming idiom in concurrent logic programming
to implement stream merging iscommitted choice, which was introduced in the
Relational Language [CG81] and used in variations in every following concurrent
logic language (for an overview see [Sha89]).

The communication structure in a concurrent object-oriented program is typi-
cally dynamic. At runtime, object references are passed around and new potential

3Smalltalk’s computation model defines messages as objects, but the language is designed such
that the user can access these message objects only in exception handling.
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senders appear. A program that uses stream merging for many-to-one communi-
cation therefore must introduce a merge process each time a new potential sender
is introduced. To relieve the programmer of this tedious and error-prone task,
the object-oriented extensions to concurrent logic languages Vulcan [KTMB87],
A’UM [YC88] and Polka [Dav89] automatically introduce sender streams and
mergers. This leads to a proliferation of streams since many of them are notac-
tually used. Communication with stream-merging cannot achieve constant-time
behavior, which makes it problematic as a central computational idiom.

Atomic test unification, introduced by Saraswat [Sar85], allows many-to-one
communication without the need for stream merging, but cannot achieve constant-
time message sending either [JMH93].

Only after Janson, Montelius and Haridi [JMH93] introduced ports, active
objects became a practically useful programming idiom in concurrent logic pro-
gramming. We showed that the basic idea of ports can be implemented using cells.
Vice versa, ports can express cells by modeling cells with active objects reading
exchange requests from a stream connected to a port as shown in [Jan94].

The actors model of computation [Hew77, HB77] can be seen as the first pro-
gramming model based on active objects. However, its underlying concurrency
model is fine-grained and thus there is no one-to-one relation between an ob-
ject and a thread of control. In the next chapter, we shall discuss fine-grained
concurrency. Based on the actors model, Yonezawa developed the language
ABCL [Yon90]. In contrast to the actors model, ABCL’s concurrency is coarse-
grained. The methods of active objects are defined by Lisp-like procedures, using
suitable synchronization primitives.

The language POOL-T [Ame87] is based on the idea of explicit message re-
ception. Object bodies define the processing of messages by active objects, in-
cluding their synchronization behavior.

The language Eiffeljj [Car93] integrates active objects conservatively into the
language Eiffel by adding a new base class calledPROCESSand the correspond-
ing compiler support. The instances ofPROCESSexhibit the behavior of active
objects. Furthermore, automatic data flow synchronization is provided similarto
futures as described in Section 3.5.

ABCL, POOL-T and Eiffeljj support active objects as the only form of con-
current objects. It is not possible to define passive objects with synchronization
behavior such as mutual exclusion.





The great spider was lying asleep when the

Lion found him, and it looked so ugly that

its foe turned up his nose in disgust. Its legs

were quite as long as the tiger had said, and

its body covered with coarse black hair. It

had a great mouth, with a row of sharp teeth

a foot long; but its head was joined to the

pudgy body by a neck as slender as a wasp's

waist. This gave the Lion a hint of the best

way to attack the creature, and as he knew

it was easier to �ght it asleep than awake, he

gave a great spring and landed directly upon

the monster's back. Then, with one blow of

his heavy paw, all armed with sharp claws,

he knocked the spider's head from its body.

Jumping down, he watched it until the long

legs stopped wiggling, when he knew it was

quite dead.

Chapter: The Lion Becomes the King of

Beasts



Chapter 11

Alternative Concurrency Models

Concurrency is introduced in Oz explicitly, usingthread � � � end . The compo-
sition construct (juxtaposition) realizes sequential composition. Unless the pro-
grammer introduces threads, programs run strictly sequentially. We call this style
of concurrent programmingcoarse-grained concurrency.

In this chapter, we contrast coarse-grained concurrency to different ap-
proaches, where the main composition construct is interpreted as concurrent (1) or
potentially concurrent composition (2). In the first case, every statement runs con-
currently by default, and sequentiality must be enforced explicitly (Section11.1).
Suchfine-grained concurrencyis the underlying concurrency model of concur-
rent languages as diverse as Hewitt’s actors model [Hew77, HB77], data-flow
languages [Den74] and concurrent logic (constraint) languages [Sha89]. In Sec-
tion 11.2 we examine the impact of fine-grained concurrency on models for object-
oriented programming. In the second case, concurrency is introduced on demand,
i.e. for suspending statements on top of the stack. This model was used in a pre-
vious version of Oz and is explained in more detail in Section 11.3. Its impact on
object models is discussed in Section 11.4.

11.1 Fine-Grained Concurrency

The underlying motivation for investigating fine-grained concurrent programs
was the hope that massively parallel computer hardware would enable their ef-
ficient execution. Examples for fine-grained concurrent programming frame-
works are data-flow languages [Den74], concurrent logic programming lan-
guages [Sha89] and Hewitt’s actors model [HB77], which was further developed
by Agha [Agh86].

As a gedankenexperiment we can turn Small Oz into a language with fine-
grained concurrency by reinterpreting the composition construct. Instead of push-
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ing both components on the stack of the reducing thread, we create a thread for
each component.

Composition. A composition of the formS1 S2 is unsynchronized. Reduction
creates two new threads and pushesS1 on the stack of the first one andS2

on the stack of the second.

Instead of “thread”, we shall call such a concurrently active entityactor. In a
framework of fine-grained concurrency, the active/passive dichotomy for objects
given in Section 2.3 becomes blurred since any operation on an object represents
an actor of its own, which typically computes by splitting up into many more
actors.

11.2 Objects for Fine-Grained Concurrency

The conventional use of state in programming relies heavily on sequential execu-
tion order which must be imposed explicitly in the context of fine-grained con-
currency. On the other hand, it is this sequential execution that was considered
the “bottleneck” to be overcome by fine-grained concurrency.1 Consequently, the
notion of sequential state was abandoned by the designers of object-oriented lan-
guages on the base of fine-grained concurrency.

The actors model uses a specialbecome statement to replace the current actor
by a new actor on which subsequent operations are carried out. Stateful program-
ming is obtained in this scheme by computing the new actor as an incremental
modification of the old one.

This model of state was adopted by the object-oriented extension of the con-
current logic language Polka [Dav89], where syntactic support for incremental
modification is provided. Specifically, all Polka expressions of the form

a becomes e

that get executed during the processing of a message together define the new state
that is used in the processing of the next message. Similarly, the object-oriented
extension of Concurrent Prolog, Vulcan [KTMB87], supports the syntax

new a is e

To preserve maximal concurrency and still meaningful stateful programming, the
modification of the state does not take effect until the processing of the next mes-
sage. In both languages it is implicitly assumed that only one such statement per
attribute is executed during the processing of a message.

1Backus [Bac87] famously talked of the “von Neumann bottleneck” of imperativeprogram-
ming that needed to be overcome by (pure) functional programming, which lends itself naturally
to fine-grained concurrency.
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In these languages, the implementation of any non-trivial sequential algorithm
becomes syntactically difficult and incurs a significant synchronization overhead.
On the other hand, we must bear in mind that these languages were not designed
to supportsequential programming, but rather toovercomeit. Objects in Vulcan
and Polka are realized as syntactic extensions on the base of active objects as
described in Section 4.2. A similar extension could be easily integrated in Small
Oz.

11.3 Implicit Concurrency

A less radical approach to concurrency is to introduce concurrency implicitly
when needed. This scheme was proposed by Smolka and was the concurrency
model underlying the initial version of the Oz Programming Model [Smo95].

In Small Oz, if the topmost statement on the stack of a thread is synchronized
and waits for a variable to become bound, then the whole thread suspends. In pre-
vious versions of Oz, which we adopt as another gedankenexperiment for this and
the following section, the suspending statement is instead popped from the stack,
and pushed on the stack of a newly created thread. The original thread can con-
tinue. Any synchronized statement can thus introduce concurrent computation.
In particular, conditionals and procedure applications can produce a thread for a
given statementSas in

local X in case X then S end X=true end

or in

local P in {P} proc {P} S end end

Therefore, we call this treatment of synchronized statementsimplicit concur-
rency. Implicit concurrency was (with slight variations) the underlying con-
currency model of Oz 1. A fitting characterization of this strategy is given by
Smolka [Smo95]: “The [...] reduction strategy tries to be as sequential as possible
and as concurrent as necessary.” However, this strategy made it hard to control
the concurrency created by a program and therefore was found to be inferior to
the current model ofexplicit concurrencysuppported by Oz 2.

11.4 Objects for Implicit Concurrency

For a model of object state with implicit concurrency, the following situation
arises.

� The state notion for fine-grained concurrency described in the previous sec-
tion becomes unnecessarily limiting. Typically, programs are written such
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that most synchronized statements do not lead to thread creation. Sequen-
tial execution is the default reduction technique in practice, which should
be reflected in the state model.

� On the other hand, in the presence of synchronization, implicit concurrency
generally makes stateful computation in the style of sequential program-
ming hard to achieve.

The main idea for solving this dilemma is to impose a static order on the execu-
tion of stateful statements in methods. Since this static order does not necessarily
coincide with the control flow, we need to enforce it at runtime, using data flow
synchronization. As an example, consider the following method

meth m(X Y)
case {P}
then a <- X
else a <- Y
end
b <- 2 * @a

end

To support the usual semantics of sequential state, we must make sure that the
attribute access@ais executed after the assignment in the body of the conditional.
This can be achieved by data-flow synchronization. For this purpose, the above
method is compiled to the following procedure.

proc {$ Self Message In Out}
Inter1 Inter2 A

in
case Message of m(X Y) then

case {P}
then {StateAssign Self a X In Inter1}
else {StateAssign Self a Y In Inter1}
end
{StateAccess Self a A Inter1 Inter2}
{StateAssign Self b 2*A Inter2 Out}

end
end

Synchronization variables are “threaded” through the code in order to provide for
data-flow synchronization. The proceduresStateAccess , StateAssign and
StateExchange get two further arguments for synchronization. The first one is
used to wait for the previous state manipulation to be completed and the second
one to signal completion to the next state manipulation. The corresponding proce-
dureStateAssign is given in Program 11.1 (compare with the library procedure
StateAssign given in Program 7.4).
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Program 11.1Data-Flow Synchronization for State Manipulation
proc {StateAssign Self Attr NewVal In Out}

case In== unit andthen {IsLiteral Attr}
then {Assign Self.OOState.Attr NewVal} In=Out
end

end

Note that the primitiveIsLiteral synchronizes on its argument to be bound
and reduces totrue if it is a literal.

Even if the procedureP in our method suspends, it is guaranteed that@arefers
to the value of the attributeafterexecution of one of the bodies of the conditional.
In this case, there will be three waiting actors, one forStateAccess , one for the
multiplication and one forStateAssign .

We prevent concurrent object applications from manipulating the state; the
operations on the state of an object are globally synchronized. This is achieved
by equipping objects with a cell at featureOOSyncthat holds the synchronization
token similar to the technique for mutual exclusion given in Section 9.2. The
cell at featureOOSync is initialized withunit by object creation. The procedure
ObjectApply threads the token through the message as shown in Program 11.2.

Program 11.2Data-Flow Synchronization for Object Application
proc {ObjectApply Object Message}

In Out in
{Exchange Object.OOSync In Out}
{ {Lookup Object.OOClass {Label Message}}

Object Message In Out}
end

In order to enforce sequentialization also for the non-state-using part of meth-
ods and to avoid a potential proliferation of actors, we can synchronize the appli-
cation of methods on the synchronization token as in Program 11.3.

As in other languages with implictly synchronized objects, the problem of
synchronized self application arises. Recall the discussion of this subject in Sec-
tion 9.9 on page 142. The code fragment

{ self m} a <- 1

always leads to a deadlock. We solve this problem by introducing a construct that
allows to apply a method using the current synchronization token, as opposed to
acquiring the token fromself . Consider the following method
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Program 11.3Data-Flow Synchronization for Object Application (seq. version)
proc {ObjectApply Object Message}

In Out in
{Exchange Object.OOSync In Out}
case In== unit
then

{ {Lookup Object.OOClass {Label Message}}
Object Message In Out}

end
end

meth m(X Y)
a <- X
self ; n(X)
Y = @a

end

which is translated to

proc {$ Self Message In Out}
case Message of m(X Y) then

Inter1 Inter2 in
{StateAssign Self a X In Inter1}
{ThreadedApply Self n(X) Inter1 Inter2}
{StateAccess Self a Y Inter2 Inter3}

end
end

We argue that the introduction of a new language construct for such a program-
ming idiom is a cleaner solution than pretending that it is a special case object
appliation as in Obliq. Note that in Oz 1, the constructself ; was merged with
the concept of method application.

11.5 Summary and Historical Perspective

We discussed the notion of concurrent objects in two alternative concurrency mod-
els, namely fine-grained concurrency and implicit concurrency. To match the spirit
of fine-grained concurrent languages, a new notion of stateful programming is ap-
propriate as shown by the languages Polka and Vulcan. For implicit concurrency,
the notion of a sequential state can be recovered using data-flow synchronization.

In the 70s and 80s it was generally believed that soon massively parallel
hardware would become widespread reality. Consequently, languages with fine-
grained concurrency that could exploit such massive parallelism attractedconsid-
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erable attention. However, in order to make effective use of availablesequential
or small-scale parallel hardware, the resulting programming concepts underwent
considerable revision, eventually leading to coarse-grained concurrency. We give
three examples for this pattern.

� The fine-grained concurrency of Hewitt’s actors model of computation
[Hew77] was revised by Yonezawa in the design of ABCL [Yon90], where
the behavior of active objects is described by sequential Lisp-like proce-
dures, using suitable synchronization primitives.

� Fine-grained concurrent data-flow languages [Den74] were merged with a
more traditional computation framework by Iannucci [Ian88].

� Concurrent logic programming was conceived as a fine-grained concurrent
programming model [Sha89]. Concurrent logic programming was adapted
to existing small-scale parallel hardware by Foster and others in the devel-
opment of PCN [FOT92], thus introducing thread-level concurrency.



Dorothy told the Witch all her story: how the

cyclone had brought her to the Land of Oz,

how she had found her companions, and of

the wonderful adventures they had met with.

"My greatest wish now," she added, "is to get

back to Kansas, for Aunt Em will surely think

something dreadful has happened to me, and

that will make her put on mourning; and un-

less the crops are better this year than they

were last, I am sure Uncle Henry cannot a�ord

it."

Chapter: Glinda The Good Witch Grants

Dorothy's Wish



Chapter 12

A Concurrent Meta-Object Protocol

Meta-object protocols allow to use object-oriented concepts not only to define
the properties and behavior of objects, but also of their underlying object model.
Meta-object protocols have been used in programming languages as tools for ad-
vanced application programming, for developing programming tools such as de-
buggers, and for language design. An example for a powerful meta-object pro-
tocol is provided by CLOS [KdRB91] where even central aspects of the object
model such as the inheritance scheme can be customized using object-oriented
programming.

Our aim in this chapter is not to recreate such a protocol for Objects in Oz in
general, but to show that it is possible to extend the ideas of a meta-object pro-
tocol to cover the concurrency model for objects. We show a simple meta-object
protocol that allows to define classes for different concurrency models including
implicitly synchronized objects and active objects. The intended applications for
this protocol lie mainly in language design. The goal is to provide a system that al-
lows to explore alternative concurrency concepts without manipulating the object
library, compiler or runtime system.

12.1 Overall Design

The aim of our meta-object protocol is to let a class define which concurrency
model its instances should adhere to. We let the class define what object cre-
ation, object/method application and locking means for its instances. Followinga
modular design, we define the following meta-classes.

� MetaNewObject allows to redefine object creation,

� MetaApplyObject provides access to the semantics of object and method
application, and

167



168 CHAPTER 12. A CONCURRENT META-OBJECT PROTOCOL

Figure 12.1The Structure of the Meta-Object Protocol

MetaApplyObject

MetaNewObject

MetaLockObject

MetaObject

� MetaLockObject provides access to the locking mechanism.

The latter two classes depend in their functionality on the first class, andthus in-
herit from it. A forth classMetaObject inherits both classesMetaApplyObject
andMetaLockObject and thus provides maximal flexibility. The inheritance re-
lation between these meta-classes is depicted in Figure 12.1.

As a general design policy we insist on the following invariant. The meta-
object protocol must not have any effect on classes that do not inherit from any
of its meta-classes. This allows us to freely mix classes and objects of the stan-
dard model with objects and classes defined by meta-classes, and thus provide for
maximal flexibility in experimentation.

Aspects that are less obviously related to concurrency such as class creation,
inheritance, state and object features are not modifiable. For meta-object protocols
that cover these aspects, we refer to CLOS and Smalltalk.

12.2 Object Creation

The meta-classMetaNewObject allows to redefine object creation. To this aim,
we obviously need to redefine the procedureNew. The classMetaNewObject
and the new procedureNeware given in Program 12.1.

The new procedureNew checks if the classC defines the featureMetaNew.
If so, it creates a standard object using the procedureMakeInstance given in
Section 7.2 and applies the procedure atC’s featureMetaNew to this object,Cand
the initial message. If not, the standard object creation procedureObject.new
is called. The classMetaNewObject represents the standard behavior of object
creation.

For maximal flexibility, the object creation functionality ofMetaNewObject
is split between object creation as such and object initialization. We generally
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Program 12.1A Meta-Class for Object Creation
declare
MetaNew ={NewName}
MetaInit={NewName}
class MetaNewObject from BaseObject

feat
!MetaInit: proc {$ C WithMessage NewObject}

{NewObject WithMessage}
end

!MetaNew : fun {$ C WithMessage NewObject}
{NewObject.MetaInit C

WithMessage NewObject}
NewObject

end
end
fun {New C WithMessage}

case {Class.hasFeature C MetaNew}
then

{NewObject.MetaNew C WithMessage {MakeInstance C}}
else

{Object.new C WithMessage}
end

end

use features for the meta-object protocol. A more obvious choice would be to
use meta-methods, but we want to avoid interference of the meta-object protocol
with object and method application that we are going to modify as well. Since
we do not intend to modify the feature mechanism, features provide more stable
grounds. Nevertheless, we are going to call these featuresmeta-methods.

As a simple first example, consider the task to write a meta-class that counts
how many instances are created from it and any class that inherits from it. We
simply redefine the featureMetaInit in the following meta-classCounting to
send a message to aCounter each time it is called.

class Counting from MetaNewObject
feat

!MetaInit: proc {$ C WithMessage NewObject}
{Counter inc}
{{Class.getFeature MetaNewObject MetaInit}

C WithMessage NewObject}
end

end
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The rest of the meta-method callsMetaNewObject ’smeta-methodMetaInit ,
and thus represents a (somewhat verbose) kind of super-call. The recordClass
represents a library module from which the procedureClass.getFeature is
retrieved that provides access to non-free features of classes.

A more interesting task consists in modifying object creation such thatNew
returns—instead of an ordinary object—a port which represents an active object
serving messages sent to the port. The following meta-classPortObject does
the job.

declare
class PortObject from MetaNewObject

feat
!MetaNew
:

fun {$ C WithMessage NewObject}
Ms P={NewPort Ms}

in
{NewObject WithMessage}
thread

{ForAll Ms NewObject}
end
P

end
end

Instead of returning the argumentNewObject as in the the original meta-
methodMetaNew, thisMetaNew returns a port. Thus, every instance created from
PortObject is a port to an encapsulated object.

12.3 Method and Object Application

Similar to object creation, we provide appropriate library (and compiler) sup-
port to enable redefinition of object and method application. The meta-class
MetaApplyObject in Program 12.2 represents the standard behavior of object
and method application that can be modified through overriding.

Observe that the meta-methodMetaInit is redefined such that it sets the
private featureMyClass to the object’s class. The meta-methodMetaObjAppl

implements object application by calling the meta-method for method application
with the featureMyClass as class argument. The procedureLookup is explained
in Section 7.5.

We use the meta-classMetaApplObject to refine the meta-classPortObject
such that object application uses the port, but method application uses the embed-
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Program 12.2A Meta-Class for Object and Method Application
declare
MetaMethAppl={NewName}
MetaObjAppl ={NewName}
class MetaApplObject from MetaNewObject

feat
MyClass
!MetaObjAppl
: proc {$ Self Message}

{Self.MetaMethAppl Self.MyClass Self Message}
end

!MetaMethAppl
: proc {$ C Self Message}

{{Lookup C {Label Message}}
Self Message}

end
!MetaInit
: proc {$ C WithMessage NewObject}

NewObject.MyClass = C
{{Class.getFeature MetaNewObject MetaInit}

C WithMessage NewObject}
end

end

ded object. Furthermore,self in methods refers to the port instead of to the
object. Program 12.3 shows the corresponding meta-classAgent .

Note that in contrast to the meta-classPortObject , we avoid using object
application in the body ofMetaNew; we leave to the reader to find out why.

12.4 Object Locking

To open up object locking, the standard object library is modified such that
the featureTheLock is used as lock inlock � � � end instead of the usual im-
plicit lock, if this feature is defined in the class of the current object. The class
MetaLockingObject in Program 12.4 modifies object initialization such that
this feature is bound to a lock, if the class has the propertylocking .

In the first example for the use ofMetaLockingObject we provide for gen-
eral implicit locking of object application. The meta-classAlwaysLocking

in Program 12.5 inherits fromMetaObject which in turn inherits both from
MetaApplObject and MetaLockingObject as shown in Figure 12.1. The
meta-method for object application is modified such that it acquiresTheLock
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Program 12.3A Meta-Class for Agents
class Agent

from MetaApplObject
feat

MyPort
!MetaObjAppl
: proc {$ Self Message}

{Send Self.MyPort Message}
end

!MetaNew
: fun {$ C WithMessage NewObject}

Mr Ms=WithMessage|Mr
P={NewPort Mr}

in
thread

{ForAll Ms
proc {$ M}

{Self.MetaMethAppl C NewObject M}
end }

end
P

end
end

Program 12.4A Meta-Class for Locking
declare
TheLock={NewName}
class MetaLockingObject from MetaNewObject

prop locking
feat

!TheLock
!MetaInit
: proc {$ C WithMessage NewObject}

NewObject.TheLock= case {Class.isLocking C}
then {NewLock}
else ´ no property locking ´
end

end
end
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Program 12.5A Meta-Class for Implicit Locking
class AlwaysLocking from MetaObject

feat !MetaObjAppl
: proc {$ Self Message}

lock Self.TheLock
then

{{Class.getFeature
MetaApplyObject MetaObjApply}

C WithMessage NewObject}
end end end

before the inherited meta-method is called.
For the second example, consider a situation where several objects must be

locked to perform a complex operation on them. If locking is done without care,
deadlocks can occur when two threads start locking objects that both operations
use. A classical deadlock prevention technique is to impose a total ordering on
the objects involved in such operations and make sure that the process of acquir-
ing the locks follows this ordering [Hav68]. This technique is calledhierarchical
locking. We provide a meta-class that encapsulates this protocol in Program 12.6.
The meta-classHierarchicalLocking refines the meta-methodMetaNew such
that an integer is bound to the featureLockId . The integers are generated by a
IdServer in increasing order. The procedureLockAll takesObjects that must
inherit from HierarchicalLocking , sorts them according to theirLockId ,
locks them in this order and applies a given procedureP.

12.5 Discussion and Related Work

We showed that a modified object library can support a powerful meta-object pro-
tocol, geared towards experimenting with alternative or additional concurrency
models for concurrent objects. Surprisingly, this is the first meta-object protocol
that covers a variety of concurrency models ranging from completely sequential
to active objects. Again, it is the feature of first-class messages thatallows us
to integrate active objects. The meta-classes given in this chapter are idealized
versions of an experimental meta-object system for Oz described in [Hen97a].

The meta-object protocols of CLOS and Smalltalk allow to integrate synchro-
nization techniques in the object system, but fail to provide for active objectsdue
to the lack of first-class messages. Watanabe and Yonezawa [WY90] describea
system based on ABCL that allows to reflect components of active objects, such
as their message queue, back into another active object which they call its “meta-
object”. Such reflection techniques provide a subset of the techniques possible for
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Program 12.6A Meta-Class for Hierarchical Locking
local

LockId={NewName}
proc {LockAll1 Os P}

case Os
of O|Or then

lock O.TheLock then {LockAll1 Or P} end
[] nil then {P}
end

end
IdServer={New class from BaseObject

attr id:0
meth id(NewId)

Id = id <- NewId in NewId=Id+1
end end

noop}
in

proc {LockAll Objects P}
{LockAll1

{Sort Os fun {$ X Y} X.LockId < Y.LockId end }
P}

end
class HierarchicalLocking from MetaLockingObject

feat !LockId
!MetaNew
: fun {$ C WithMessage NewObject}

NewObject.LockId={IdServer newId($)}
{{Class.getFeature MetaNewObject MetaNew}
C WithMessage NewObject}

end end end

meta-object protocols. They are restricted by their inherent descriptive nature, as
opposed to the prescriptive nature of meta-object protocols.

The locking scheme of Java is similar to ours. Java provides first-class access
to the implicit lock of objects, and thus allows to express the techniques described
in Section 12.4. Java does not provide any meta-object facilities; all Java classes
are instances of a fixed classClass which only provides some debugging and
self-documentation functionality.

Extensions of Eiffel such as Eiffeljj [Car93] and Karaorman and Bruno’s Eiffel
extension [KB93] achieve active objects using a combination of library and com-
piler support. A suitably modified Eiffel compiler recognizes inheritance from
a fixed class (PROCESSin Eiffeljj andCONCURRENCYin Karaorman and Bruno’s
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Eiffel dialect) and modifies object creation of instances of this class to yield active
objects. However, it is not possible to modify these classes through inheritance.

POOL-T [Ame87] allows to customize the behavior of active objects by defin-
ing suitable “object bodies”, but enforces explicit message receipt, which excludes
the possibility to encode passive objects.



All you have to do is to knock the heels to-

gether three times and command the shoes to

carry you wherever you wish to go.�

�If that is so,� said the child joyfully, �I will ask

them to carry me back to Kansas at once.�

She threw her arms around the Lion's neck

and kissed him, patting his big head tenderly.

Then she kissed the Tin Woodman, who was

weeping in a way most dangerous to his joints.

But she hugged the soft, stu�ed body of the

Scarecrow in her arms instead of kissing his

painted face, and found she was crying her-

self at this sorrowful parting from her loving

comrades.

Glinda the Good stepped down from her ruby

throne to give the little girl a good-bye kiss,

and Dorothy thanked her for all the kindness

she had shown to her friends and herself.

Dorothy now took Toto up solemnly in her

arms, and having said one last good-bye she

clapped the heels of her shoes together three

times, saying:

�Take me home to Aunt Em!�

Chapter: Glinda The Good Witch Grants

Dorothy's Wish



Chapter 13

Conclusion

In this dissertation, we showed that the investment into a particular collec-
tion of advanced language and system features pays off by providing a base for
a powerful object-oriented programming and system. We briefly review these in-
vestments and the corresponding returns in Section 13.1. Section 13.2 gives a
summary of the dissertation.

13.1 The Investments and their Returns

Higher-Order Programming. Lexically scoped first-class procedures are pro-
vided by functional programming languages, and object-oriented languages
such as Smalltalk (in the form of blocks) and Java (by “inner” classes in
its recent version). The use of first-class procedures to define an object
system was pioneered by object-oriented Lisp-extensions such as Flavors
and CLOS. In this presentation, lexically scoped higher-order programming
provided the key to advanced object-oriented techniques such as full com-
positionality of classes and classes as first-class values (Section 6.9), and
higher-order programming with state (Section 6.7). Furthermore, first-class
procedures allowed a simple reduction of objects to Small Oz in Chapter 7
which can be seen as their semantic foundation.

Cells. Stateful data in the form of cells are an obvious ingredient of object-
oriented programming. It is surprising that concurrent logic programming
languages struggled for a long time to achieve concurrent object-oriented
programming concepts without cells, leading to awkward semantic and syn-
tactic constructions and failing to express basic sequential object-oriented
programming as discussed in Sections 3.5 and 10.1. In fact, Oz is the first
concurrent language with logic variables that readily supports sequential
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object-oriented programming. From the perspective of concurrent logic pro-
gramming, the main prerequisite for this were cells and the replacement of
concurrent by sequential composition as the main composition operator.

Names. Names bound to lexically scoped variables allowed in Section 6.5 to ex-
press important object-oriented idioms such as private and protected meth-
ods.

Logic Variables. Logic variables powered concurrent programming techniques
such as data-driven synchronization (Section 10.3), and provided—together
with cells—a wide variety of other synchronization techniques (Chapter 9).

Thread-Level Concurrency. Part II describes a conventional object-oriented
system. In Chapter 11, we showed that conventional object-oriented pro-
gramming is much harder to obtain in alternative concurrency models such
as fine-grained concurrency.

Abstract Machine. The abstract machine for Oz proved in Chapter 8 to provide
the flexibility needed to efficiently integrate object-oriented programming
in an existing implementation.

13.2 Summary

Lea [Lea97] notes that “research on concurrency sometimes relies on models and
techniques that are ill-suited for everyday object-oriented software development.”
So far, this was certainly the case for object-oriented programming in concurrent
logic languages (see [JMH93] for a thorough discussion). This dissertation can
be seen as an attempt to bridge this apparent gap between concurrent language
research and programming practice. To this aim, we proceeded in two steps.
Firstly, we designed a conventional object system for the thread-based concur-
rent constraint language Oz, enabling sequential object-oriented programming in
a concurrent constraint language. We described this object system, its semantic
foundation and implementation (Part II). Secondly, we explored concurrent pro-
gramming from the perspective of this conventional object system, making use of
thread-level concurrency and logic variables (Part III).

13.2.1 Conventional Objects in Concurrent Constraint Pro-
gramming

In Chapters 5 and 6, we presented a simple yet powerful object-system on the base
of Small Oz, a variant of Oz. First-class messages, attribute and method identifiers
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allowed to express a variety of interesting programming techniques. The semantic
foundation of Objects in Oz was provided by a reduction to Small Oz in Chapter 7.
We showed that names together with lexical scoping readily support concepts such
as private and protected identifiers.

We showed in Chapter 8 that surgical operations on the instruction set of an
abstract machine for Oz can yield an efficient implementation of Objects in Oz.
We gave the first detailed account of how to integrate object-oriented concepts
efficiently into the abstract machine of a high-level language.

13.2.2 Concurrent Programming with Objects in Oz

In Chapter 9, we exploited the expressivity of logic variables together with cells
for a wide variety of synchronization techniques, ranging from data-driven syn-
chronization over mutual exclusion, readers/writer synchronization, to thread-
reentrant locks. We showed in Chapter 10 that active objects can be readily sup-
ported by making use of first-class messages. First-class messages also play a
crucial role in the concurrent meta-object protocol presented in Chapter 12, a lan-
guage design tool in which object-oriented programming can be used to define
the concurrency model of objects. Chapter 11 examined the impact of alternative
concurrency models on the design of suitable object systems.

13.3 Beyond Objects in Oz

To a researcher in programming languages, more interesting than the fate of indi-
vidual languages such as Oz is the fate of their underlying concepts. We provided
strong evidence that a conventional object system in a language with thread-level
concurrency can benefit greatly from synchronization with logic variables and
from first-class messages. On the base of this evidence we conclude that these
features should be included in future concurrent object-oriented languages.
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BIBLIOGRAPHY 183

[CHP71] Pierre-Jacques Courtois, F. Heymans, and David Parnas. Concur-
rent control with readers and writers.Communications of the ACM,
14(10):667–668, October 1971.

[CKPR73] Alain Colmerauer, Henri Kanoui, R. Psero, and Philippe Roussel.
Un système de communication homme-machine en français. Tech-
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