
M2ICAL: A Tool for Analyzing Imperfect Comparison Algorithms

Wee-Chong Oon and Martin Henz
National University of Singapore

School of Computing
Computing 1, Law Link, Singapore 117590, Singapore

{oonwc,henz}@comp.nus.edu.sg

Abstract

Practical optimization problems often have objective
functions that cannot be easily calculated. As a result,
comparison-based algorithms that solve such problems use
comparison functions that are imperfect (i.e. they may
make errors). Machine learning algorithms that search
for game-playing programs are typically imperfect compar-
ison algorithms. This paper presentsM2ICAL , an algo-
rithm analysis tool that usesMonte Carlo simulations to
derive aMarkov Chain model forImperfectComparison
AL gorithms. Once an algorithm designer has modeled an
algorithm usingM2ICAL as a Markov chain, it can be ana-
lyzed using existing Markov chain theory. Information that
can be extracted from the Markov chain include the esti-
mated solution quality after a given number of iterations;
the standard deviation of the solutions’ quality; and the time
to convergence.

1. Introduction

Many algorithms that solve optimization problems are
comparison-based, i.e. they have as their primary operation
the comparison of two (or more) solutions in order to de-
termine their relative superiority. However, real-world op-
timization problems are often not well-defined in the sense
that the quality of a solution may not be satisfactorily ex-
pressed in terms of an easily calculable equation. Therefore,
comparison-based algorithms must often employ a compar-
ison function that is not 100% accurate. We call algorithms
that rely on such imperfect comparison functionsimperfect
comparison algorithms.

The game-playing problem is an archetypal imperfect
comparison problem. The aim of this problem is to create a
program that can play an intellectual game such as chess or
checkers well. Recently, intellectual games have been used
as a test bed for machine learning techniques. Notable suc-
cesses in this field include the backgammon programTD-

Gammon[7] that was based on temporal difference learn-
ing, and the checkers programAnaconda[1, 2] based on
co-evolution of neural networks.

This research proposes a tool for the analysis of imper-
fect comparison algorithms domain. The tool is based on
the idea of modelling the algorithms as a discrete Markov
chain with the help of Monte Carlo simulations, and then
discovering important attrributes such as the expected so-
lution quality; solution spread; and rate of convergence
of the algorithm using numerical analysis. We call the
tool Monte CarloMarkov Chain forImperfectComparison
AL gorithms, orM2ICAL1 for short; the models produced
using the tool are similarly calledM2ICAL models. As far
as we know, there have been no previous tools to analyze the
performance of complex imperfect comparison algorithms
in practical settings.

The application of theM2ICAL tool to HC-Gammon, an
imperfect comparison algorithm for generating backgam-
mon players, is the subject of recent work in [5]. While
that work concentrates on analyzing a particular known al-
gorithm, the present paper focusses on theM2ICAL tool it-
self (Section 3), and its usefulness (Section 4). Section 5 il-
lustrates the tool by applying it to an imperfect-comparison
algorithm for generating players of a simple game called
Modulo Nim. The use ofM2ICAL for analyzing HC-
Gammon is briefly reviewed in Section 6.

2. Definitions and Notations

Let P be an optimization problem, andS the set of solu-
tions to this problem. In general, any optimization problem
P can be expressed in terms of a correspondingobjective
functionF : S → R, which takes as input a solutions ∈ S
and returns a real value that gives the desirability ofs. Then,
the problem becomes finding a solution that maximizesF .
We further define acomparison functionQ : S × S → S
as a function that takes two solutionssi andsj and returns

1pronouncedMichael.

the superior one. If the comparison function does not al-
ways return the correct solution according toF , it is called
imperfect.

The aim of the game-playing problem is to create a pro-
gram that can play a game well (so the solution spaceS
of the problem is the set of all possible game-playing pro-
grams). Games can be represented by a directed graph
G = (V, E), where each vertex represents a valid position,
andE = {(vi, vj)| there is a legal move fromvi to vj}. For
simplicity, we only examine 2-player, turn-taking, win-loss
games.

Definition 1 (Player) A player of a gameG = (V, E) is a
functionPL : V → E that takes as (one of its) input(s) a
valid positionv ∈ V and returns a valid move(v, v′) ∈ E.

Our definition of a player is a function that takes as one
of its inputs a legal position and returns its move. This in-
cludes non-deterministic functions as well as functions that
take information other than the current game position into
consideration when making a move.

One way to compare two players is to play them against
each other and select the winner. Formally, thisbeats-
comparison function (BCF) is defined as follows:

BCF (PLi,PLj) =

{

PLi PLi beatsPLj

PLj otherwise.

for all PLi,PLj ∈ S (1)

For turn-taking games, the first argument is the first player
and the second argument is the second player. We use the
shorthand notationPLi � PLj to represent the case where
BCF (PLi,PLj) = PLi; and PLi ≺ PLj to represent
BCF (PLi,PLj) = PLj .

The objective of the game-playing problem is to find a
player with maximumplayer strength. In this research, we
make use of the following definition of player strength. The
notation1f is the indicator function for a boolean function
f , i.e. 1f returns 1 iff is true and 0 iff is false.

Definition 2 (Player Strength) The strength of player
PLi, denoted byPS (PLi), is

PS (PLi) =
∑

1≤j≤|S|

1PLi�PLj
+

∑

1≤j≤|S|

1PLj≺PLi
(2)

3. TheM2ICAL Tool

TheM2ICAL tool proscribes a 4-phase analysis process
for imperfect comparison algorithms:

1. Populate the classes of the Markov chain.

2. Generate thewin probability matrixW .

3. Generate theneighbourhood distributionλi for each
classi.

4. Calculate the transition matrixP usingW andλ.

In this paper, we explain howM2ICAL can be used to
derive a Markov chain model of an algorithm that searches
for strong game-playing programs. However, it should be
reasonably simple to adapt the approach to other imperfect
comparison problems.

3.1. Estimating Player Strength

Monte Carlo simulations are used to estimate the
strength of a player over the space of all possible players.
Let N denote the number of states in the Markov chain. For
a target playerPLi, we randomly generateMopp opponents
PLij , 1 ≤ j ≤ Mopp . PlayerPLi then plays a match ofg
games against each of these opponents. To divide all play-
ers intoN unique sets of players of similar strength, we
group them byestimated player strength ofPLi, denoted
by F ′(PLi):

F ′(PLi) =















Mopp
∑

j=1

(1PLi�PLij
+ 1PLij≺PLi

)

(g ·Mopp/N)















+ 1 (3)

Let F (i) be the quality measure of statei. Therefore, the
state spaceI = {i|∃PL∈S , F ′(PL) = F (i)}. If the random
generation of opponents is assumed to takeO(1) time, then
the evaluation of each player takesO(Mopp) time. This
process of evaluating players takes up the bulk of the com-
putation time forM2ICAL.

3.2. Populating the Classes

In the first phase, the task is to populate the classes of
the Markov chain (which represent different strength lev-
els) with as many players as possible, with the given time
and space constraints. The aim of this phase is to find a
representative subset of the sample space that the algorithm
will be searching, which will form the initial basis for the
remaining steps in our technique.

Many algorithms that attempt to find strong game-
playing programs begin with a randomly-generated player.
From this initial player, other players are generated in some
manner, e.g. by using a mutation function that changes a
given player’s values slightly. For the rest of this paper, we
will refer to such functions by the generic term ofneigh-
bourhood function.

In order to get a representative subset of the algorithm’s
neighbourhood, we populate the classes in two separate

2

steps. In the first step, we randomly generate a number of
players to provide a starting population for the model; this
simulates the running of the algorithm several times using a
randomly chosen initial player. In the second step, we make
use of the algorithm’s neighbourhood function for each of
the classes in turn to generate more players in an attempt
to fill up the remaining classes; this generates players that
will be produced over the course of the target algorithm for
inclusion into the sample population.

We define thesizeof a statei as follows:

Definition 3 (State Size)Let S̄ be a sample population of
players,S̄ ⊆ S. Thesize ofi, γi is the number of players
PL ∈ S whereF ′(PL) = F (i). Thecumulative size ati,
Γi is the value of the cumulative distribution function ofγ
at i, i.e.

Γi =

i
∑

j=1

γj (4)

By convention, we defineγj = 0 whenj ≤ 0 or j > N .
Note thatγj = Γj − Γj−1. The total number of distinct
players in the problem isΓN .

We set amaximum class sizevalue ofγ̂, so that we only
retain a maximum of̂γ players per class. We begin by gen-
eratingMsample players using the method employed by the
target algorithm to select the initial player. For each player,
we evaluate its strength by playing it againstMopp uni-
formly randomly generated opponents. We randomly retain
up to γ̂ players from each class generated this way and dis-
card the rest.

After the initial Msample players have been generated,
we consider each class in turn. For each playerPL in an
unchecked classi with maximal sizeγi, we generate an-
other playerPL

′ using the algorithm’s neighbourhood func-
tion and evaluate its strength. IfPL

′ belongs to a class with
fewer thanγ̂ players, then it is retained; otherwise it is re-
tained with a probability of γ̂

γ̂+1 , replacing a random exist-
ing player in that class (i.e. all players from the same class
have an equal probability of being retained). We repeat this
process untilMpop new players have been generated. If at
least one of theMpop players produced belongs to a class
that initially had fewer than̂γ players, then we generate a
furtherMpop players from the same class, and repeat this
process until no such players are produced out of the set of
Mpop players. The pseudocode for this phase is given in
Algorithm 1.

In the worst case, the initialMsample players all belong
to the same class, and then the subsequentMpop players
generated using the neighbourhood function always gener-
ates only one new player in every instance. The algorithm
would then takeO((Msample +(N−1)γ̂Mpop)Mopp) time.
Assuming thatMsample = Mpop = Mopp = γ̂ = O(N),

Algorithm 1 Populating the Classes

Initialize~s[1..N] = NULL
for i = 1 to Msample do

Uniformly randomly generate playerPL

STR = eval (PL)
if size(~s[STR]) < γ̂ then

~s[STR]← PL

else
Randomly replace player in~s[STR] with PL with
probability γ̂

γ̂+1
end if

end for
for i = 1 to N do

Choose an unmarked~s[j] s.t. WPM~s[j] ≥WPM ~s[k]
for all unmarked~s[k]
COUNT = 0; FOUND = false
while COUNT< Mpop do

Randomly select playerPL from~s[j]
Generate neighbourhood playerPL

′ from PL

STR = eval (PL
′)

if WPM ~s[STR]) < γ̂ then
~s[STR]← PL

′; FOUND = true
else

Randomly replace player in~s[STR] with PL
′

with probability γ̂
γ̂+1

end if
COUNT++
if COUNT ==Mpop && FOUND == true then

COUNT = 0; FOUND = false
end if

end while
Mark~s[j]

end for

then this process takesO(N4) in this very unlikely worst-
case scenario. The storage of the generated players requires
O(N · γ̂) space.

3.3. Comparison Function Generalization

When comparing the relative strengths of two players,
the comparison functionQ employed by the target algo-
rithm usually involves playing them against each other in
a match consisting of one or more games. Note that as long
as we know the probability that a playerPL beats another
playerPL

′ as first player and also as second player, we can
compute the probability thatPL beatsPL

′ in at leastx out
of y games (wherey1 games are as first player andy2 are
as second,y = y1 + y2). Hence, we wish to compute an
N ×N win probability matrix (WPM)W , such that its ele-
mentswij provides the probability that a player from class
i beats a player from classj playing first.

3

Algorithm 2 Computing the Win Probability MatrixW
for i = 1 to N do

for j = 1 to N do
WINS = 0
for k = 1 to Mwpm do

Randomly select a playerPL from classi
Randomly select a playerPL

′ from classj
WINS + = 1PL�PL′

end for
wij = WINS/Mwpm

end for
end for

For all pairs of classesi and j we randomly select a
playerPL from classi and a playerPL

′ from classj and
play a game between them withPL as first player andPL

′

as second, noting the result. We repeat thisMwpm times for
each pair of classesi andj, and then compute the value of
wij as1s�s′/Mwpm . The pseudocode is given in Algorithm
2.

For each pair of classes,Mwpm games are played. As-
suming thatMwpm = O(N), then this algorithm takes
O(N3) time.

The WPMW gives us the probabilities for winning as
first player. LetW̄ be the corresponding win probability
matrix that provides the winning probabilities as second
player. For a win-loss game,̄wij = 1 − wji. We define

a shorthand notationW≥x(y1/y2)
ij to denote the probability

that a playerPL from classi would beat a playerPL
′ from

classj at leastx times in a match wherePL plays as first
playery1 times and as second playery2 times. For example,

W
≥3(2/2)
ij = ((1 − w̄ij) · w̄ij · w

2
ij) +

(w̄2
ij · wij · (1 − wij)) +

(w̄2
ij · w

2
ij) (5)

The probabilities of other results based on multiple games
can be computed in a similar manner. In this way, we avoid
having to recompute our probability distributions for differ-
ent comparison functions.

3.4. Neighbourhood Distribution

Algorithms that attempt to produce a strong game-
playing program search the domain of all possible players
starting from the initial player or population of players. The
set of players that the algorithm can potentially search is
called the algorithm’sneighbourhood. In this phase, we
once again use Monte Carlo simulations to estimate the dis-
tribution of player strengths in the neighbourhood of the al-
gorithm. To do so, we apply the neighbourhood function
employed by the algorithmMnei times for each class in our

Algorithm 3 Finding the Neighbourhood Distributionλi

for i = 1 to N do
Initialize ~λi[1..N] = 0.0
for j = 1 to Mnei do

Randomly select playerPL from~s[i]
Generate neighbourhood playerPL

′ from PL

STR = eval (PL
′)

~λi[STR]++
end for
~λi[1..N] = ~λi[1..N]/Mcha

end for

representative population of players, and then evaluate the
strengths of the resultant players.

For each class,Mnei neighbourhood players are gen-
erated and evaluated. If the generation of neighbourhood
players is assumed to take O(1) time, then up to a total of
O(MneiMopp) operations are performed per class. Assum-
ing thatMnei = Mopp = O(N), then this part of the pro-
cess runs inO(N3) time.

3.5. Transition Matrix

In the final phase, we combine the win probability ma-
trix W with the neighbourhood distribution functionsλi

for each statei to find the transition matrix for the Markov
chain model of this system.

The transition matrix for several algorithms follow a
discernable structure. For example, considerstrict hill-
climbing algorithms. Strict hill-climbing algorithms do not
change their current statei if the next statej is not superior.
However, since the relative quality of two solutions is de-
termined by the imperfect comparison functionQ, there is
a chance of an error denoted byδij . Let λij be the proba-
bility that statej is chosen as the potential next state when
the current state isi. Then the transition matrix for strict
hill-climbing algorithms can be expressed as:













p11 · · · λ1j(1− δ1j) λ1N (1− δ1N)
... pii λij(1− δij) λiN (1− δiN)

λi1δi1 λijδij pjj

...
λN1δN1 λNjδNj · · · pNN













(6)

wherepkk = 1−
k−1
∑

j=1

(λkjδkj)−
N
∑

j=k+1

(λkj(1− δkj)) .

Once the transition matrix for the Markov chain is deter-
mined, we can use existing Markov chain theory to discover
several important properties of the algorithm in question.

4

Algorithm 4 Expected player strength aftert iterations
Initialize~v[1..N]; EXPPS = 0
for i = 1 to t do

~v[1..N] = ~vT P
end for
for i = 1 to N do

EXPPS +=~v[i].F (i)
end for
return EXPPS

4. Usefulness of Model

4.1. Expected Player Strength

The first property to discover about an algorithm is its
expected solution quality aftert iterations for a given value
of t. For the game-playing problem, this is equivalent to the
expected player strengthof the current player aftert itera-
tions. We begin with a probability vector~v(0) of sizeN ,
~v(0) = {v1, v2, · · · , vN} that contains in each elementvi

the probability that the initial player will belong to classi,
i.e. the probability that it will be of estimated strengthF (i).
The values of ~v(0) depends on how the algorithm chooses
its initial state, and can usually be easily determined.

Let ~v(t) be the corresponding estimated player strength
probability vector of the algorithm aftert iterations. Given
the transition matrixP of our Markov chain, we can com-
pute ~v(t) by performing a matrix multiplication of~v(0)

T and

P t times, i.e. ~v(t)
T = ~v(0)

T · P (t). The estimated strength
of the player produced by the algorithm aftert iterations,
denoted byPL

(t) is then given by

E(PS(PL
(t))) =

N
∑

i=1

~v(t)[i] · F (i) (7)

Algorithm 4 shows this process in pseudocode form. The
computation requirest · N2 floating point multiplications,
which takes very little actual computation time. In general,
once the transition matrix for the Markov chain has been de-
termined, the computation of the expected solution quality
using this method will be much faster than running the tar-
get algorithm itself, and then using Monte Carlo simulations
to determine the estimated solution quality after every iter-
ation. This is one of the main advantages of usingM2ICAL
to analyze imperfect comparison algorithms.

4.2. Time to Convergence

Another property that would be useful to discover is the
expected number of iterations required for the given imper-
fect comparison algorithm to converge to the values given
in the stationary vector to a specified degree of accuracy.

Algorithm 5 Convergence to Stationary

Initialize~v[1..N]; COUNT = 0; DIFF = 1
while DIFF != 0 do

~v′[1..N] = ~vT P
for i = 1 to N do

DIFF = abs(~v[i].10k)− abs(~v′[i].10k)
if DIFF != 0 then

break
end if

end for
if DIFF == 0 then

return COUNT
end if
~v[1..N] = ~v′[1..N]; COUNT++

end while

We could then terminate the algorithm once this number of
iterations has been reached because further iterations will
not improve the expected solution quality significantly.

While Markov chain theory has several concise defini-
tions on the convergence of a system, including concepts
of φ-irreducibility, Harris recurrence and geometric ergod-
icity of Markov chains [3], the practitioner is often more
concerned with the practical performance of the algorithm.
Our notion of thetime to convergenceof an algorithm is
admittedly not theoretically concise, but we believe that it
is useful to the practitioner.

Essentially, we detect the number of iterations required
before all the elements in~v are identical up tok decimal
places in two successive iterations; the number of iterations
required for this to occur is the expected number of itera-
tions for the algorithm to converge to the stationary values
to a degree of accuracy ofk decimal places. We first instan-
tiate a probability vector~v of sizeN , ~v = {v1, v2, · · · , vN}.
We then perform successive vector multiplications of~vT P ,
terminating when all the values of~v in two successive itera-
tions are equal to a degree of accuracy ofk decimal places,
as shown in Algorithm 5.

4.3. Variance and Standard Deviation

It is also useful to know the spread of the solutions gen-
erated by the algorithm. This is measured by the standard
deviation of the solutions, and can be calculated from the
probability vector~v after any number oft iterations. We
first find the varianceσ2 of the vector:

σ2 =

N
∑

i=1

(~v[i]− µ)2 · F (i) (8)

whereµ =
N
∑

i=1

~v[i] · F (i). We can then find a range of

expected values given by[µ − σ, µ + σ], whereσ is the

5

square root of the variance, which is the standard deviation.
Assuming that the set of solutions generated by the algo-
rithm can be approximated by a normal distribution, then
about 68% of all solutions found by the algorithm will have
a strength within this range (and about 95% will be within
[µ− 2σ, µ + 2σ]).

The standard deviation and the expected solution quality
of an algorithm helps the practitioner decide if re-running
the algorithm is worthwhile. For example, assume that the
quality of the solution generated by one run of the algorithm
is close to the predicted expected quality. If the standard
deviation is small, then it is less likely that re-running the
algorithm will produce a superior result; conversely, if the
standard deviation is large, then it may be worthwhile to
re-run the algorithm in the hopes of generating a superior
solution (although the probability of generating an inferior
solution could be just as high).

The standard deviation also helps to determine if the re-
sults of a particular run are anomalous. This may be par-
ticularly pertinent to algorithms that generate game-playing
programs, since the current methodology is to present pri-
marily the results obtained by the best run. If the best run
is indeed an anomaly (e.g. it is far superior to the predicted
expected solution quality even after the standard deviation
is taken into account), then the results achieved would over-
state the actual ability of the algorithm.

5. SCSA on Modulo Nim

This section shows how theM2ICAL tool can be used to
examine the performance of a simple algorithm SCSA on a
simple game-playing problem calledModulo Nim, or Mod-
Nim for short. The purpose behind performing this case
study is twofold. Firstly, the simplicity of both the algo-
rithm and problem allows us to explain the implementation
of theM2ICAL model without having to handle extraneous
factors that may be present in more complex instances. Sec-
ondly, this experiment represents a close to ideal setup for
M2ICAL. The algorithm is simple enough that the neigh-
bourhood function is easily and precisely captured, and the
short duration of each game of ModNim allows us to in-
crease the sample sizes of the Monte Carlo simulations,
thereby increasing the accuracy of the estimations. There-
fore, this case study can serve as a “proof of concept”.

5.1. Modulo Nim

The rules of ModNim are simple. The initial position
of ModNim containsK sticks. On a player’s turn, he can
remove no fewer than 1 stick and at mostM sticks. The
player who removes the last stick loses (and his opponent
wins). We use the notation ModNim(K,M) to denote the
game of ModNim withK sticks in the initial position and at

Algorithm 6 Simple Comparison Search Algorithm
(SCSA)

Chooses(0) uniformly randomly fromS; t := 1
while t < MAXGEN do

Let s(t) = Q(s(t−1), s)
if t = MAXGEN then

returns(t)

else
incrementt

end if
end while

mostM sticks removed per move; we have chosen the game
of ModNim(100, 3) for our case study. The winning strat-
egy can be expressed mathematically as follows: to win, re-
move a number of sticks to leaven sticks so thatn satisfies
the equationn mod (M + 1) = 1.

In our experiments, we represent a deterministic
ModNim(K,M) player using a vector{m1, m2, · · · , mK}
of K integers. The range of the firstM − 1 elementsmi is
[1..i], and the range of the remaining elements is[1..M]; the
elementmi represents the number of sticks that the player
removes when there arei sticks left. To randomly generate
a player, we simply randomly determine the value of each
element in the vector within the presribed ranges.

5.2. Simple Comparison Search

The simplest comparison-based algorithm is one that
successively improves a current solution by uniformly ran-
domly finding a better solution and replacing it. We call this
theSimple Comparison Search Algorithm (SCSA), as given
in Algorithm 6.

When SCSA is applied to the game-playing problem,
then each solutions is in fact a player of the gamePL.
For our experiments, the comparison functionQ(PL,PL

′)
plays a single game of ModNim(100,3) wherePL is the first
player andPL

′ is the second player, and returns the winner.
Hence, the incumbent always plays as the first player.

5.3. Model Construction

The parameters were chosen semi-arbitrarily such that
an acceptable degree of accuracy could be achieved within
a reasonable amount of computation time. We set the num-
ber of states in the Markov chainN to 100. The number
of randomly generated opponentsMopp used to estimate
player strength was set at the value ofMopp = 1000.

Since the mutation function for SCSA involves choos-
ing a random player, the neighbourhood of SCSA is already
captured when populating the classes withMsample ran-
domly generated players. We decided to simply populate

6

Figure 1. Model and experimental results for
ModNim(100,3) using SCSA

the classes withMsample = 10, 000 randomly generated
players and retain all of them for the subsequent steps of
the process. In terms of Algorithm 1, this is equivalent to
setting the parameters asγ̂ =∞ andMpop = 0.

Since SCSA is a strict hill-climbing algorithm, we can
make use of Equation (6) directly to represent the Markov
chain model of the system. The error (δij) distribution for
all pairs of statesi andj is identical to the WPMW , which
can be computed using Algorithm 2, such thatδij = Wij .
The number of games played between every pair of classes
Mwpm was set to a value of 1000.

For SCSA,λij =
γj

ΓN
. Therefore, we need not use Algo-

rithm 3 although it will produce similar results. To estimate
theλij -distribution from our sample population, we simply
count the number of players in each state and divide these
values byMsample to give an estimated value forγi

ΓN
.

Having determined both theδij-distribution and theλij -
distribution, we substitute these values into Equation 6 to
produce the transition matrix that represents the Markov
chain model of the system. These experiments were per-
formed on a Pentium-IV 1.6 GHz PC with 512MB RAM. It
took approximately 24 hours for the entire process.

5.4. Experimental Results

By modeling the implementation of SCSA on Mod-
Nim(100,3) as a Markov chain as given in the previous
chapter, we were able to discover several useful properties
of the system. Figure 1 gives the results averaged over 100
runs of SCSA, along with the expected solution quality and
spread forecast by the model. The bold black lines give the
estimated player strength predicted by the model as well as
the estimated player strength when the predicted standard
deviation is added or subtracted; the grey line gives the cor-
responding values for the 100 runs of SCSA. We ran the
algorithm to 1000 iterations each, but only the first 200 iter-
ations are shown here for the purpose of clarity because the
remaining iterations follow a similar trend.

The model predicts that the expected solution quality
will eventually converge to a value of 68.3551%, closely
matching the average solution quality achieved by the ac-
tual runs (which fluctuates within a range of 67% to 70%).
Our model also shows that the solution quality of SCSA on
ModNim(100,3) has a standard deviation of±16.4793%,
and a visual inspection of the sample standard deviation of
our 100 runs confirms that this prediction is also accurate. If
the strength of ModNim(100,3) players produced by SCSA
is normally distributed, then this indicates that different runs
of SCSA on ModNim(100,3) could produce players of rad-
ically differing strengths, where about 68% of the players
produced will have strengths over a range of over 32% of
all player strengths.

Furthermore, using Algorithm 5 we find that SCSA con-
verges to a stationary solution to a degree of accuracy of
3 decimal places in 207 iterations. This suggests that fur-
ther iterations of the algorithm beyond 207 will not improve
the expected solution quality found by SCSA by more than
0.001%.

6. HC-Gammon

In computer science, the greatest success in backgam-
mon is undoubtedly Gerald Tesauro’sTD-Gammonpro-
gram [7]. Using a straightforward version of Temporal Dif-
ference learning called TD(λ) on a neural network, TD-
Gammon achieved Master-level play. Pollack and Blair
[6] implemented three versions of a simple hill-climbing
method of training a backgammon player using the same
neural network structure employed by Tesauro (known as
HC-Gammon).

We were able to use theM2ICAL tool to model the HC-
Gammon algorithm, as reported in [5]. One issue that
needed to be addressed was the fact that HC-Gammon used
a neural network with all weights set to zero as the initial
player, which we call theall-zero neural network(AZNN).
If the model was derived using players in the neighbourhood
of the AZNN player, then the results will reflect the proper-
ties of this neighbourhood (rather than the search space of
the algorithm in the long term). To address this issue, we
performedMsample = 200 runs of the HC-Gammon algo-
rithm using the AZNN player as the initial player, advanc-
ing each run one iteration at a time in parallel until at least
50% of the runs have experienced at least 10 replacements,
i.e. the challenger has defeated the incumbent at least 10
times. In our experiment, this event occurred after 47 itera-
tions. At this point, we used the current players of the 200
runs as the initial sample. We call this processintroducing
a time-lag.

Figure 2 shows the predictions given by the time-lag
M2ICAL model, compared to 25 runs of HC-Gammon for
the first experiments conducted by Pollack and Blair; the

7

Figure 2. Time-lag model and experimental
results for HC-Gammon using the AZNN ini-
tial player (figure reproduced from [5] to illus-
trate the capacity of M2ICAL to analyze HC-
Gammon).

values for the model begin at iteration 48. It predicts that the
expected player strength of HC-Gammon will rise steadily
from 67.80% at iteration 48 before converging to a value of
86.99% to an accuracy of 5 decimal places, after approxi-
mately 1050 iterations. This is reasonably close to the re-
sults obtained from the average of 25 runs of HC-Gammon,
which fluctuates between 85.5% and 90.5%. Further details
on the use ofM2ICAL for HC-Gammon are given in [5]
and [4].

7. Conclusions

M2ICAL is designed to be a practical analysis tool for
complex real-world imperfect comparison algorithms. The
formulation is kept general to maintain applicability to the
maximum number of problems, and some of the design de-
cisions were made with practical considerations in mind.
Theoretically, all of the properties modelled byM2ICALcan
be obtained by running the target algorithm multiple times
and performing Monte Carlo simulations on these runs.
However, while the initial derivation of theM2ICAL model
is time-consuming, once the model is derived it can produce
the results more quickly than running the algorithm itself
several times. The model can also handle certain changes to
the algorithm without requiring a re-run of the entire pro-
cess, e.g. different victory conditions of the comparison
function in HC-Gammon, game-playing improvements like
opening books and endgame databases, etc. Therefore, the
model is useful in predicting the effects of “what if” sce-
narios by modeling such changes, which aids the algorithm
designer in making effective changes to the algorithm.

TheM2ICAL tool can be used to re-check the veracity of
the analysis of existing algorithms. Since there have been
no techniques available for the analysis of imperfect com-

parison algorithms in practical settings prior toM2ICAL, it
is likely that some of the previous analyses of such algo-
rithms may be erroneous or unconfirmed; we could there-
fore use theM2ICAL tool to either correct or confirm (or at
least bolster) the analysis of existing research.

The method can also be helpful in the design of new al-
gorithms since the practitioner can compare the effects of
changes to certain parameters in the algorithm without hav-
ing to re-implement and re-run the algorithms. The pre-
dicted standard deviation can help to determine if a re-run
of the algorithm in hopes of producing a superior solution
is justified, and the time to convergence provides a good
ending point for the algorithm.

TheM2ICAL tool presents pioneering work on the analy-
sis of imperfect comparison algorithms. In a field like intel-
lectual games, it provides an objective alternative to the ex-
isting method of evaluating algorithms based on the results
of the best player produced against benchmark players of
possibly inaccurately determined strength. Other fields with
similar difficulties may also benefit from usingM2ICAL.

References

[1] K. Chellapilla and D. B. Fogel. Evolving an expert checkers
playing program without using human expertise.IEEE Trans.
on Evolutionary Computation, 5(5):422–428, 2001.

[2] D. B. Fogel.Blondie24: Playing at the Edge of AI. Academic
Press, London, UK, 2002.

[3] S. P. Meyn and R. L. Tweedie.Markov Chains and Stochastic
Stability. Springer, London, 1993.

[4] W.-C. Oon. M2ICAL : A Technique for Analyzing Imperfect
Comparison Algorithms using Markov Chains. PhD thesis,
School, Address, 2007. Submitted.

[5] W.-C. Oon and M. Henz.M2ICAL analyses HC-Gammon. In
R. C. Holte and A. Howe, editors,Proceedings of the Twenty-
Second Conference on Artificial Intelligence, AAAI-07, pages
621–626, Vancouver, Canada, July 2007. AAAI Press.

[6] J. B. Pollack and A. D. Blair. Coevolution in the success-
ful learning of Backgammon strategy.Machine Learning,
32:225–9240, 1998.

[7] G. Tesauro. Temporal difference learning and TD-Gammon.
Communications of the ACM, 38(3):58–68, 1995.

8

