M?2I CAL: A Tool for Analyzing Imperfect Comparison Algorithms

Wee-Chong Oon and Martin Henz
National University of Singapore
School of Computing
Computing 1, Law Link, Singapore 117590, Singapore
{oonwc,hen@comp.nus.edu.sg

Abstract Gammon7] that was based on temporal difference learn-
ing, and the checkers prografmacondg[1, 2] based on
Practical optimization problems often have objective co-evolution of neural networks.
functions that cannot be easily calculated. As a result, This research proposes a tool for the analysis of imper-
comparison-based algorithms that solve such problems use&ect comparison algorithms domain. The tool is based on
comparison functions that are imperfect (i.e. they may the idea of modelling the algorithms as a discrete Markov
make errors). Machine learning algorithms that search chain with the help of Monte Carlo simulations, and then
for game-playing programs are typically imperfect compar- discovering important attrributes such as the expected so-
ison algorithms. This paper present4?ICAL, an algo- lution quality; solution spread; and rate of convergence
rithm analysis tool that usesonte Carlo simulations to of the algorithm using numerical analysis. We call the
derive aMarkov Chain model fot mperfectComparison tool Monte CarloM arkov Chain fol mperfectComparison
AL gorithms. Once an algorithm designer has modeled an AL gorithms, orM2ICAL! for short; the models produced
algorithm usingV2ICAL as a Markov chain, it can be ana- using the tool are similarly calleM?ICAL models. As far
lyzed using existing Markov chain theory. Information that as we know, there have been no previous tools to analyze the
can be extracted from the Markov chain include the esti- performance of complex imperfect comparison algorithms
mated solution quality after a given number of iterations; in practical settings.
the standard deviation of the solutions’ quality; and thnedi The application of thé/?ICAL tool to HC-Gammon, an
to convergence. imperfect comparison algorithm for generating backgam-
mon players, is the subject of recent work in [5]. While
that work concentrates on analyzing a particular known al-
1. Introduction gorithm, the present paper focusses onNt#CAL tool it-
self (Section 3), and its usefulness (Section 4). Sectidn 5 i
Many algorithms that solve optimization problems are !ustrates the tool by applying it to an imperfect-companiso
comparison-based, i.e. they have as their primary operatio &l90rithm for generating players of a simple game called
the comparison of two (or more) solutions in order to de- Modulo Nim. The use ofM?ICAL for analyzing HC-
termine their relative superiority. However, real-worio ~ Gammon is briefly reviewed in Section 6.
timization problems are often not well-defined in the sense
that the quality of a solution may not be satisfactorily ex- 2. Definitions and Notations
pressed in terms of an easily calculable equation. Thexefor
comparison-based algorithms must often employ a compar- | ot p pe an optimization problem, arfiithe set of solu-
ison function that_|s not 100% accu_rate. We qgll algorithms s to this problem. In general, any optimization problem
that rely on such |_mperfect comparison functiamgerfect P can be expressed in terms of a correspondibgctive
comparison algorithms functionF : S — R, which takes as input a solutione S

The game-playing proble_:m is an archetyp_al imperfect onq returns a real value that gives the desirability. Gfthen,
comparison problem. The aim of this problem is to create athe problem becomes finding a solution that maximiZes

program that can play an intellectual game such as chess O{yis further define @omparison functio) : S x S — S

checkers well. Recently, intellectual games have been used,¢ ; f,nction that takes two solutionsands; and returns
as a test bed for machine learning techniques. Notable suc-

cesses in this field include the backgammon progfdm LpronouncedMichael

the superior one. If the comparison function does not al- 3. Generate thaeighbourhood distributior\; for each
ways return the correct solution accordingHoit is called classi.
imperfect N _

The aim of the game-playing problem is to create a pro- 4. Calculate the transition matrik using¥ and.
gram that can play a game well (so the solution spéice
of the problem is the set of all possible game-playing pro-
grams). Games can be represented by a directed grap
G = (V, E), where each vertex represents a valid position,
andE = {(v;,v;)| there is a legal move from; to v; }. For
simplicity, we only examine 2-player, turn-taking, winsk
games.

In this paper, we explain howm?ICAL can be used to
Herive a Markov chain model of an algorithm that searches
for strong game-playing programs. However, it should be
reasonably simple to adapt the approach to other imperfect
comparison problems.

3.1. Estimating Player Strength
Definition 1 (Player) A player of agame& = (V, E) is a
functionPL : V' — FE that takes as (one of its) input(s) a Monte Carlo simulations are used to estimate the
valid positionv € V and returns a valid movéey, v’) € E. strength of a player over the space of all possible players.
Let N denote the number of states in the Markov chain. For
Our definition of a player is a function that takes as one g target playe”’L;, we randomly generat/,,,, opponents
of its inputs a legal position and returns its move. This in- PL;;,1 < j < M,y,. PlayerPL; then plays a match qf
cludes non-deterministic functions as well as functiors th games against each of these opponents. To divide all play-
take information other than the current game position into ers into N unique sets of players of similar strength, we
consideration when making a move. group them byestimated player strength d?L;, denoted
One way to compare two players is to play them againstby F’(PL;):
each other and select the winner. Formally, théats

comparison function (BCF) is defined as follows: Moy
> (Ipr-pry; +1pL,<pPL)
oy _ [PLi PL;beatsPL; F/(PL) = | = +1 (3)
BCF(PLi, PLj) = { PL; otherwise. (9 Mopp/N)

forall PL;, PL; € S Q)

For turn-taking games, the first argument is the first player L&t £'(¢) be the quality measure of state Therefore, the

and the second argument is the second player. We use th&t@t€ spacé = {i|3pres, F'(PL) = F(i)}. If the random

shorthand notatio®L; - PL; to represent the case where 9generation of opponents is assumed to @2k#) time, then

BCF(PL;, PL;) = PL;; and PL; < PL; to represent the evaluation of each player takegM,,,) time. This

BCF(PL;, PL;) = PL;. process qf evaluat2|ng players takes up the bulk of the com-

The objective of the game-playing problem is to find a Putation time foM7ICAL.

player with maximunplayer strength In this research, we

make use of the following definition of player strength. The 3.2. Populating the Classes

notationl is the indicator function for a boolean function

f,i.e. 1y returns 1iff is true and O iff is false. In the first phase, the task is to populate the classes of
the Markov chain (which represent different strength lev-

Definition 2 (Player Strength) The strength of player els) with as many players as possible, with the given time

PL;, denoted byPS(PL;), is and space constraints. The aim of this phase is to find a
representative subset of the sample space that the algorith

PS(PL;) = Z lpr;~pPr; + Z lpr,<prL, (2) will be searching, which will form the initial basis for the

1<5<|S| 1<5<|S| remaining steps in our technique.
Many algorithms that attempt to find strong game-
3. The M2ICAL Tool playing programs begin with a randomly-generated player.

From this initial player, other players are generated inssom
manner, e.g. by using a mutation function that changes a
given player’s values slightly. For the rest of this papes, w
will refer to such functions by the generic term réigh-

The M2ICAL tool proscribes a 4-phase analysis process
for imperfect comparison algorithms:

1. Populate the classes of the Markov chain. bourhood function _ ,
In order to get a representative subset of the algorithm’s
2. Generate thein probability matrixi?. neighbourhood, we populate the classes in two separate

steps. In the first step, we randomly generate a number ofAlgorithm 1 Populating the Classes
players to provide a starting population for the model; this |nitialize 5[1..N] = NULL

simulates the running of the algorithm several times usinga for ; = 1 to Mample do

randomly chosen initial player. In the second step, we make Uniformly randomly generate playétL
use of the algorithm’s neighbourhood function for each of STR = eval(PL)

the classes in turn to generate more players in an attempt i size(5[STR]) < 4 then

to fill up the remaining classes; this generates players that 5[STR] « PL

will be produced over the course of the target algorithm for else

inclusion into the sample population.
We define thesizeof a state as follows:

Definition 3 (State Size)Let S be a sample population of
players,S C S. Thesize ofi, v; is the number of players
PL € S whereF’(PL) = F(i). Thecumulative size ati,
T'; is the value of the cumulative distribution functiomof
ati, i.e.

ro= Y @
j=1

By convention, we defing; = 0 whenj <0orj > N.
Note thaty; = I'; — I';_;. The total number of distinct
players in the problem iE .

We set amaximum class siaalue of9, so that we only
retain a maximum of players per class. We begin by gen-
eratingM.mpie players using the method employed by the
target algorithm to select the initial player. For each play

Randomly replace player ig[STR] with PL with
probability%
end if
end for
fori=1to N do
Choose an unmarked;] s.t. WPM3Tj] > WPM 57k]
for all unmarkeds{k]
COUNT = 0; FOUND = false
while COUNT < My, do
Randomly select playePL from s[5
Generate neighbourhood play@t’ from PL
STR = eval(PL')
if WPM 3[STR]) < 4 then
§]STR] «— PL'; FOUND = true
else
Randomly replace player ig[STR] with PL’
with probability =2
end if
COUNT++

if COUNT ==M,,, && FOUND == true then

e evaluate its strength by playing it agai ni-
we evaiuare | gth by playing it agaimst,, uni COUNT = 0: FOUND = false

formly randomly generated opponents. We randomly retain

up to4 players from each class generated this way and dis- ‘Z”drifl
card the rest. (I\a/ln IZV |’e
After the initial M,.mpie players have been generated, ond ?c:r sj]

we consider each class in turn. For each plajérin an
unchecked class with maximal sizevy;, we generate an-

other playerPL’ using the algorithm’s neighbourhood func- . AN o b .
tion and evaluate its strength. HL’ belongs to a class with then this process take3(V") in this very unlikely worst-

fewer than players, then it is retained; otherwise it is re- case scfenario. The storage of the generated players require

tained with a probability o%, replacing a random exist- O(N - 4) space.

ing player in that class (i.e. all players from the same class

have an equal probability of being retained). We repeat this 3-3- Comparison Function Generalization

process untilM,,, new players have been generated. If at

least one of thel,,,, players produced belongs to a class ~ When comparing the relative strengths of two players,

that initially had fewer thary players, then we generate a the comparison functiod) employed by the target algo-

further M,,, players from the same class, and repeat this rithm usually involves playing them against each other in

process until no such players are produced out of the set ofa match consisting of one or more games. Note that as long

M,., players. The pseudocode for this phase is given in as we know the probability that a play®d. beats another

Algorithm 1. player PL’ as first player and also as second player, we can
In the worst case, the initial/ s, players all belong compute the probability tha?L beatsPL’ in at leastz out

to the same class, and then the subseqiént, players of y games (whergy; games are as first player apg are

generated using the neighbourhood function always generas secondy = y; + y2). Hence, we wish to compute an

ates only one new player in every instance. The algorithm N x N win probability matrix (WPM)¥, such that its ele-

would then taked (M sampie + (N —1)FMpop) Mopp) time. mentsw;; provides the probability that a player from class

Assuming thatVsgmpie = Mpop = Mopp = 5 = O(N), i beats a player from clagsplaying first.

Algorithm 2 Computing the Win Probability Matrix//

Algorithm 3 Finding the Neighbourhood Distributiox

for i =1to N do
forj=1to N do
WINS =0
for k = 1to Mypm, do
Randomly select a playdtL from classi
Randomly select a playétL’ from class;
WINS + -]-PL>—PL/
end for
Wiy = WINS/wam
end for
end for

For all pairs of classes and j we randomly select a
player PL from classi and a playetPL’ from class;j and
play a game between them wiffy, as first player andPL’
as second, noting the result. We repeat fiig,,,, times for
each pair of classesandj, and then compute the value of
w;j aslgy o /Muypm. The pseudocode is given in Algorithm
2.

For each pair of classed/,,,,, games are played. As-
suming thatM,,,, = O(N), then this algorithm takes
O(N?3) time.

The WPM W gives us the probabilities for winning as
first player. LetW be the corresponding win probability
matrix that provides the winning probabilities as second
player. For a win-loss gamey;; = 1 — wj;. We define
a shorthand notatiowg’”(”l/yg) to denote the probability
that a playerPL from classi would beat a playePL’ from
classj at leastx times in a match wher@L plays as first
playery; times and as second playertimes. For example,

Ww=32/2)

i (1 = wij) - wi; - w?;) +
5 wig - (1= wig)) +
2 2)

()

for i =1to N do
Initialize X;[1..N] = 0.0
for j =1to M,.; do
Randomly select playePL from s]i]
Generate neighbourhood play@f’ from PL
STR = eval(PL')

—

Xi|STR]++
end for
NIL.N] = X [1..NYM e
end for

representative population of players, and then evaluate th
strengths of the resultant players.

For each class),.; neighbourhood players are gen-
erated and evaluated. If the generation of neighbourhood
players is assumed to take O(1) time, then up to a total of
O(Mpe; M ,p,) Operations are performed per class. Assum-
ing thatM,,.; = M,p, = O(N), then this part of the pro-
cess runs i (N?) time.

3.5. Transition Matrix

In the final phase, we combine the win probability ma-
trix W with the neighbourhood distribution functions
for each staté to find the transition matrix for the Markov
chain model of this system.

The transition matrix for several algorithms follow a
discernable structure. For example, consiggict hill-
climbing algorithms Strict hill-climbing algorithms do not
change their current statéf the next statg is not superior.
However, since the relative quality of two solutions is de-
termined by the imperfect comparison functiQnthere is
a chance of an error denoted by. Let \;; be the proba-

The probabilities of other results based on multiple gamesbility that statej is chosen as the potential next state when
can be computed in a similar manner. In this way, we avoid the current state i Then the transition matrix for strict

having to recompute our probability distributions for diff
ent comparison functions.

3.4. Neighbourhood Distribution

Algorithms that attempt to produce a strong game-

playing program search the domain of all possible players

starting from the initial player or population of playersér

set of players that the algorithm can potentially search is

called the algorithm’sreighbourhood In this phase, we

tribution of player strengths in the neighbourhood of the al
gorithm. To do so, we apply the neighbourhood function
employed by the algorithm¥/,,.; times for each class in our

hill-climbing algorithms can be expressed as:

D11 A (1—=4615) Ain(1—din)
; Dii Xij(1=65) Nin(1—din) ©6)
Ait0in)\z’jfsij Djj :
AN1ONT ANjON; . DPNN
k=1 N

; _ : : _whereppr =1 — 30 (Arjokg) = 22 (Akg(1 = dkj)) -
once again use Monte Carlo simulations to estimate the dis- j=1

j=k+1

Once the transition matrix for the Markov chain is deter-
mined, we can use existing Markov chain theory to discover
several important properties of the algorithm in question.

Algorithm 4 Expected player strength afteiterations Algorithm 5 Convergence to Stationary

Initialize ¥[1..N]; EXPPS =0 Initialize ¢[1..N]; COUNT = 0; DIFF = 1
fori=1to¢do while DIFF '=0do
#[1..N]=dTP V[1.N] = oTP
end for fori=1to N do
fori = 1to N do DIFF = abs(7]i]).10F) — abs(v'[i].10%)
EXPPS +=0[i].F (i) if DIFF != 0then
end for break
return EXPPS end if
end for
if DIFF == Othen
4., Usefulness of Model return COUNT
end if
4.1. Expected Player Strength #[1..N] = v/[1..N]; COUNT++
end while

The first property to discover about an algorithm is its
expected solution quality afterterations for a given value
of t. For the game-playing problem, this is equivalent to the
expected player strengthf the current player afteritera-
tions. We begin with a probability vectery, of size N,
vy = {v1,v2,---,vn} that contains in each element
the probability that the initial player will belong to clags
i.e. the probability that it will be of estimated strendtl().
The values ofvg) depends on how the algorithm chooses
its initial state, and can usually be easily determined.

Let v;) be the corresponding estimated player strength
probability vector of the algorithm afteriterations. Given
the transition matrixP of our Markov chain, we can com-
putev;) by performing a matrix multiplication Qf(_{))T and
P ttimes, i.ev’ = v " - PM. The estimated strength
of the player produced by the algorithm afteiterations,
denoted byPL!" is then given by

We could then terminate the algorithm once this number of
iterations has been reached because further iteratiohs wil
not improve the expected solution quality significantly.

While Markov chain theory has several concise defini-
tions on the convergence of a system, including concepts
of ¢-irreducibility, Harris recurrence and geometric ergod-
icity of Markov chains [3], the practitioner is often more
concerned with the practical performance of the algorithm.
Our notion of thetime to convergenceof an algorithm is
admittedly not theoretically concise, but we believe that i
is useful to the practitioner.

Essentially, we detect the number of iterations required
before all the elements ifi are identical up td: decimal
places in two successive iterations; the number of itematio
required for this to occur is the expected number of itera-
tions for the algorithm to converge to the stationary values

N to a degree of accuracy sfdecimal places. We first instan-
E(PS(PLY)) = > g lil- F() (7) tiate a probability vector of sizeN, 7 = {v, v, -, un}.
i=1 We then perform successive vector multiplicationsdP,

terminating when all the values &fin two successive itera-
tions are equal to a degree of accuracy afecimal places,
as shown in Algorithm 5.

Algorithm 4 shows this process in pseudocode form. The
computation requires- N2 floating point multiplications,
which takes very little actual computation time. In gengral
once the transition matrix for the Markov chain has been de-
termined, the computation of the expected solution quality
using this method will be much faster than running the tar- |1 i< 2150 useful to know the spread of the solutions gen-
getalgorithm itself, and then using Monte Carlo simulagion o otaq by the algorithm. This is measured by the standard
to determine the estimated solution quality after eveny ite yqiation of the solutions, and can be calculated from the
ation. This is one of the main advantages of USCAL \ hanility vectoris after any number of iterations. We
to analyze imperfect comparison algorithms. first find the variance? of the vector:

4.3. Variance and Standard Deviation

4.2. Time to Convergence 9 Z (W] —)2 - i) (8)

Another property that would be useful to discover is the
expected nu.mberof |t§rat|ons required for the given imper- wherey — 3" 4li]- F(i). We can then find a range of
fect comparison algorithm to converge to the values given =
in the stationary vector to a specified degree of accuracy.expected values given by, — o, 1 + o], whereo is the

square root of the variance, which is the standard deviation Algorithm 6 Simple Comparison Search Algorithm
Assuming that the set of solutions generated by the algo-(SCSA)

rithm can be approximated by a normal distribution, then Chooses) uniformly randomly froms; ¢ := 1

about 68% of all solutions found by the algorithm will have while t < MAXGEN do

a strength within this range (and about 95% will be within Letsy) = Q(s(t—1),5)

[— 20, 1+ 20)). if t = MAXGEN then
The standard deviation and the expected solution quality returns)

of an algorithm helps the practitioner decide if re-running else

the algorithm is worthwhile. For example, assume that the increment

guality of the solution generated by one run of the algorithm end if

is close to the predicted expected quality. If the standard end while
deviation is small, then it is less likely that re-running th
algorithm will produce a superior result; conversely, i&th
standard deviation is large, then it may be worthwhile to mostM sticks removed per move; we have chosen the game
re-run the algorithm in the hopes of generating a superiorof ModNim(100, 3) for our case study. The winning strat-
solution (although the probability of generating an inderi egy can be expressed mathematically as follows: to win, re-
solution could be just as high). move a number of sticks to leawesticks so thah satisfies
The standard deviation also helps to determine if the re-the equatiom mod (M + 1) = 1.
sults of a particular run are anomalous. This may be par- In our experiments, we represent a deterministic
ticularly pertinent to algorithms that generate game-plgay = ModNim(K,M) player using a vectofmy, ma, -+, mg }
programs, since the current methodology is to present pri-of K integers. The range of the fir8f — 1 elementsn; is
marily the results obtained by the best run. If the best run [1..i], and the range of the remaining elementd is\/]; the
is indeed an anomaly (e.qg. it is far superior to the predicted elementm,; represents the number of sticks that the player
expected solution quality even after the standard deviatio removes when there afesticks left. To randomly generate
is taken into account), then the results achieved would-over a player, we simply randomly determine the value of each

state the actual ability of the algorithm. element in the vector within the presribed ranges.
5. SCSA on Modulo Nim 5.2. Simple Comparison Search

This section shows how tHd2ICAL tool can be used to The simplest comparison-based algorithm is one that
examine the performance of a simple algorithm SCSA on a successively improves a current solution by uniformly ran-
simple game-playing problem callédodulo Nim or Mod- domly finding a better solution and replacing it. We call this

Nim for short. The purpose behind performing this case the Simple Comparison Search Algorithm (SCS#)given
study is twofold. Firstly, the simplicity of both the algo- in Algorithm 6.

rithm and problem allows us to explain the implementation =~ When SCSA is applied to the game-playing problem,
of the M2ICAL model without having to handle extraneous then each solutios is in fact a player of the gaméL.
factors that may be present in more complex instances. SecFor our experiments, the comparison funct@t’L, PL')
ondly, this experiment represents a close to ideal setup forPlays a single game of ModNim(100,3) wheré is the first
MZ2ICAL. The algorithm is simple enough that the neigh- player andPL’ is the second player, and returns the winner.
bourhood function is easily and precisely captured, and theHence, the incumbent always plays as the first player.
short duration of each game of ModNim allows us to in-

crease the sample sizes of the Monte Carlo simulations,5.3. Model Construction

thereby increasing the accuracy of the estimations. There-

fore, this case study can serve as a “proof of concept”. The parameters were chosen semi-arbitrarily such that
an acceptable degree of accuracy could be achieved within
5.1. Modulo Nim a reasonable amount of computation time. We set the num-

ber of states in the Markov chaiN to 100. The number
The rules of ModNim are simple. The initial position of randomly generated opponent$,,, used to estimate
of ModNim containsk sticks. On a player’s turn, he can player strength was set at the valueldf,, = 1000.
remove no fewer than 1 stick and at magt sticks. The Since the mutation function for SCSA involves choos-
player who removes the last stick loses (and his opponenting a random player, the neighbourhood of SCSA is already
wins). We use the notation ModNim(,}/) to denote the captured when populating the classes with .,y ran-
game of ModNim withK sticks in the initial positionandat domly generated players. We decided to simply populate

100

The model predicts that the expected solution quality
: will eventually converge to a value of 68.3551%, closely
—— ModMim (ave. 100 runs)
A | Modbin - stéDev matching the average solution quality achieved by the ac-
et |~ M stdDey tual runs (which fluctuates within a range of 67% to 70%).
I Our model also shows that the solution quality of SCSA on
1 | —Motel + staev ModNim(100,3) has a standard deviation -616.4793%,
and a visual inspection of the sample standard deviation of
: o s i our 100 runs confirms that this prediction is also accuréte. |
Iterations the strength of ModNim(100,3) players produced by SCSA
is normally distributed, then this indicates that diffeanems
Figure 1. Model and experimental results for of SCSA on ModNim(100,3) could produce players of rad-
ModNim(100,3) using SCSA ically differing strengths, where about 68% of the players
produced will have strengths over a range of over 32% of
all player strengths.

) Furthermore, using Algorithm 5 we find that SCSA con-
the classes withV/sqpmpie = 10,000 randomly generated yerges to a stationary solution to a degree of accuracy of
players and retain all of them for the subsequent steps of3 gecimal places in 207 iterations. This suggests that fur-
the process. In terms of Algorithm 1, this is equivalent to ther jterations of the algorithm beyond 207 will notimprove

setting the parameters @s= oo and M, = 0. the expected solution quality found by SCSA by more than
Since SCSA is a strict hill-climbing algorithm, we can 0.001%.

make use of Equation (6) directly to represent the Markov
chain model of the system. The erréy;] distribution for

all pairs of states andj is identical to the WPMV/, which

can be computed using Algorithm 2, such thgt= W;;.))
The number of games played between every pair of classes [N computer science, the greatest success in backgam-
M pm Was set to a value of 1000. mon is undoubtedly Gerald Tesaurdi®-Gammonpro-

For SCSA\;; = Fv_7 Therefore, we need not use Algo- 9ram [7]. Using a straightforward version of Temporal Dif-
rithm 3 although it will produce similar results. To estimat f€rénce learning called TDf on a neural network, TD-
the \,;-distribution from our sample population, we simply Gammon achieved Master-level play. Pollack and Blair
count the number of players in each state and divide thesd®] implemented three versions of a simple hill-climbing

Player Strength

6. HC-Gammon

values byM .. to give an estimated value fgt-. method of training a backgammon player using the same
© ~ N
Having determined both the; -distribution and the\, - neural network structure employed by Tesauro (known as
HC-Gammoi

distribution, we substitute these values into Equation 6 to

2 -
produce the transition matrix that represents the Markov _ e Were able to use tid“ICAL tool to model the HC

chain model of the system. These experiments were per_Gammon algorithm, as reported in [5]. One issue that
formed on a Pentium-1V 1.6 GHz PC with 512MB RAM. It needed to be addressed was the fact that HC-Gammon used
a neural network with all weights set to zero as the initial
player, which we call thall-zero neural networKAZNN).
If the model was derived using players in the neighbourhood
of the AZNN player, then the results will reflect the proper-
ties of this neighbourhood (rather than the search space of
By modeling the implementation of SCSA on Mod- the algorithm in the long term). To address this issue, we
Nim(100,3) as a Markov chain as given in the previous performedM ;qmpi. = 200 runs of the HC-Gammon algo-
chapter, we were able to discover several useful propertiegithm using the AZNN player as the initial player, advanc-
of the system. Figure 1 gives the results averaged over 100ng each run one iteration at a time in parallel until at least
runs of SCSA, along with the expected solution quality and 50% of the runs have experienced at least 10 replacements,
spread forecast by the model. The bold black lines give thei.e. the challenger has defeated the incumbent at least 10
estimated player strength predicted by the model as well agimes. In our experiment, this event occurred after 47 itera
the estimated player strength when the predicted standardions. At this point, we used the current players of the 200
deviation is added or subtracted; the grey line gives the cor runs as the initial sample. We call this procégsoducing
responding values for the 100 runs of SCSA. We ran the a time-lag
algorithm to 1000 iterations each, but only the first 200 iter Figure 2 shows the predictions given by the time-lag
ations are shown here for the purpose of clarity because theM2ICAL model, compared to 25 runs of HC-Gammon for
remaining iterations follow a similar trend. the first experiments conducted by Pollack and Blair; the

took approximately 24 hours for the entire process.

5.4. Experimental Results

R i i
e

— AZMN {ave. 25 runs)
— AZNM - stdDey

— AZNN + stdDeyv

4 | =——nodel

—Model - stdDev
—tdodel + stdDey

Player Strength

1 101 201 301 401 501 601 701 801 901
Iterations

Figure 2. Time-lag model and experimental
results for HC-Gammon using the AZNN ini-
tial player (figure reproduced from [5] to illus-
trate the capacity of MZ2ICAL to analyze HC-
Gammon).

values for the model begin at iteration 48. It predicts that t

expected player strength of HC-Gammon will rise steadily
from 67.80% at iteration 48 before converging to a value of
86.99% to an accuracy of 5 decimal places, after approxi-
mately 1050 iterations. This is reasonably close to the re-
sults obtained from the average of 25 runs of HC-Gammon,

which fluctuates between 85.5% and 90.5%. Further details

on the use oM?ICAL for HC-Gammon are given in [5]
and [4].

7. Conclusions

MZ2ICAL is designed to be a practical analysis tool for
complex real-world imperfect comparison algorithms. The
formulation is kept general to maintain applicability teth
maximum number of problems, and some of the design de-
cisions were made with practical considerations in mind.
Theoretically, all of the properties modelled g/ ICAL can
be obtained by running the target algorithm multiple times
and performing Monte Carlo simulations on these runs.
However, while the initial derivation of th1?ICAL model
is time-consuming, once the model is derived it can produce
the results more quickly than running the algorithm itself

parison algorithms in practical settings priorNtF ICAL, it

is likely that some of the previous analyses of such algo-
rithms may be erroneous or unconfirmed; we could there-
fore use thevi2ICAL tool to either correct or confirm (or at
least bolster) the analysis of existing research.

The method can also be helpful in the design of new al-
gorithms since the practitioner can compare the effects of
changes to certain parameters in the algorithm without hav-
ing to re-implement and re-run the algorithms. The pre-
dicted standard deviation can help to determine if a re-run
of the algorithm in hopes of producing a superior solution
is justified, and the time to convergence provides a good
ending point for the algorithm.

TheMZ2ICAL tool presents pioneering work on the analy-
sis of imperfect comparison algorithms. In a field like intel
lectual games, it provides an objective alternative to the e
isting method of evaluating algorithms based on the results
of the best player produced against benchmark players of
possibly inaccurately determined strength. Other fields wi
similar difficulties may also benefit from usindg?ICAL.

References

[1] K. Chellapilla and D. B. Fogel. Evolving an expert checke

playing program without using human expertifeEE Trans.

on Evolutionary Computatiqrb(5):422-428, 2001.

[2] D. B. Fogel.Blondie24: Playing at the Edge of Ahcademic

Press, London, UK, 2002.

[3] S.P.MeynandR. L. Tweedidlarkov Chains and Stochastic
Stability. Springer, London, 1993.

[4] W.-C. Oon. MICAL: A Technique for Analyzing Imperfect
Comparison Algorithms using Markov Chain®hD thesis,
School, Address, 2007. Submitted.

[5] W.-C. Oon and M. HenzM?ICAL analyses HC-Gammon. In
R. C. Holte and A. Howe, editor®roceedings of the Twenty-
Second Conference on Artificial Intelligence, AAA|-pages
621-626, Vancouver, Canada, July 2007. AAAI Press.

[6] J. B. Pollack and A. D. Blair. Coevolution in the success-

ful learning of Backgammon strategyMachine Learning

32:225-9240, 1998.

G. Tesauro. Temporal difference learning and TD-Gammon

Communications of the ACN8(3):58-68, 1995.

[7]

several times. The model can also handle certain changes to

the algorithm without requiring a re-run of the entire pro-
cess, e.g. different victory conditions of the comparison
function in HC-Gammon, game-playing improvements like

opening books and endgame databases, etc. Therefore, the

model is useful in predicting the effects of “what if” sce-
narios by modeling such changes, which aids the algorithm
designer in making effective changes to the algorithm.
TheM?2ICAL tool can be used to re-check the veracity of
the analysis of existing algorithms. Since there have been
no techniques available for the analysis of imperfect com-

