
User-defined Difficulty Levels for Automated
Question Generation

Rahul Singhal
School of computing

National Institute of Singapore
Email: nitk.rahul@gmail.com

Martin Henz
School of computing

National Institute of Singapore
Email: henz@comp.nus.edu.sg

Shubham Goyal
Holmusk Pvt. Ltd.

Email: shubhamjigoyal@gmail.com

Abstract—We propose a difficulty model for generating ques-
tions across formal domains according to the difficulty level
provided by the user. Our model is interactive and adaptive to
user input. The model uses predefined factors for measuring the
difficulty and a user defines the difficulty level by ordering these
factors. We use lexicographical ordering to compare the difficulty
of questions based on a user-defined ordering of factors and a
concomitant algorithm for handling these factors. Further, we
provide a feature called scenario guidance, which allows users to
change the scenario at run time. We develop a software using
the proposed model, which generates new questions according to
a user-defined difficulty level. In order to evaluate the proposed
framework, we conducted a pilot test of the software, in which
teachers generate questions according to their chosen desired
input including the difficulty level. The results show that the
system is effective, helpful and robust. Overall, the framework
shows promising benefits for teachers and organizations involved
in setting questions for standardized tests.

I. INTRODUCTION

Questions of varying difficulty level are required to aid and
assess one’s mastery of a concept. However, defining the dif-
ficulty level of a question is subjective and problematic, since
multiple skills such as visualization, analysis, abstraction,
deduction, diagrammatic interpretation etc. can be required to
solve a question. Mastery of these skills varies from person to
person. Given the task of setting a test, different teachers will
select a different set of questions of differing difficulty levels
because they do not share the same notion of difficulty.

Similarly, a question which is tough for one student may
not be tough for another student in the same class, since in a
classroom, every student has a different level of understanding
a topic. With the limited class-time, a teacher cannot focus
on every student’s weakness. This gap can be filled by a
software that can generate questions according to the difficulty
level defined by the student. The software can then act as a
personalized instructor and meet the required level of student
proficiency. Additionally, such software can generate multiple
questions of the same difficulty level based on user given
inputs for practice and to prevent cheating in large-scale tests.

Currently, little published work deals with the difficulty
of a question, and none with the goal of automatic question
generation based on a user-defined difficulty levels, no such
software is available. The literature review shows that even
the best available systems, such as Andes [1], Chemistry
Studio [2], ActiveMath [3], JGEX [4], Geogebra, Cinderella

and Sketchpad, are not able to automatically handle difficulty
level of a question.

This paper describes a framework to generate questions
based on user-defined difficulty levels. We use predefined
factors for measuring the difficulty levels and allow users to
order these factors. The order will decide the factors to be
added/subtracted to modify the difficulty of the next generated
question. The new framework is integrated with our previously
developed framework [5] for automated questions generation.
Overall, the combined framework can generate large number
of questions to test concepts in various domain objects, based
on the user-defined difficulty levels.

The main contributions of this paper are as follows:
1) We propose a difficulty model for question generation

according to user-defined difficulty levels.
2) We integrate the difficulty model with our previous

framework to generate geometry questions
3) We evaluate the framework and demonstrate the ef-

fectiveness of our question generator. It can generate
questions covered in high school textbooks and that can
be asked in various competitive tests such as SAT and
GMAT, based on user-defined difficulty levels.

II. RELATED WORK

In this section, we first describe the various theories proposed
for student’s growth in geometry. These theories describe
various factors responsible in handling geometry at different
levels, which can be used to define the difficulty level of a
question. We then deal with the literature regarding automated
measurement of the difficulty level of questions.

A. Theories for describing student’s growth in the geometry
domain

Piaget/Inhelder: Piaget and Inhelder’s theory [6] describes
the development of the ability to represent space. Repre-
sentations of space are constructed through the progressive
organization of the child’s motor and internalized actions,
resulting in operational systems [7]. The order of development
is seen to be: topological (connectedness, enclosure, and
continuity); projective (rectiliniarity); and Euclidean (angular-
ity, parallelism, and distance). They describe a sequence of
stages in the development of children’s ability to distinguish
between shapes when drawing them and can be used to assess

Fig. 1: Difficulty measuring technique in which the difficulty is
measured by adding the weights from root to leaf nodes

student development. Hence, geometry questions of increasing
difficulty level can contain an increasing number of these
elements.

However, this theory has not been widely accepted, since
young children may be able to operate with some Euclidean
concepts. It seems more likely that topological, projective
and Euclidean notions all develop over time and their usage
becomes increasingly integrated.

The Van Hiele levels: The Van Hieles proposed a model of
geometric thinking which comprises five levels of reasoning
-recognition (perception is visual only); analysis (a figure is
identified by properties); classification or informal deduction
(the significance of the properties is realized); formal deduc-
tion (geometric proofs are constructed); and rigour (an aspect
later shown to be difficult to operationalize and differentiate
from the previous level).

In the van Hiele model the levels were considered to be
hierarchical and discontinuous, with each level dependent on
mastery of the previous level [8], [7], [9]. However, several
papers oppose this theory. Burger [10] proposed that the levels
were dynamic and continuous, rather than static and discrete.
Clements and Battista (1991) considered that the levels appear
to describe students’ geometric development. However, they
found that students may be difficult to classify, especially in
the transition from Level 2 to Level 3 and they also found
some evidence for a more basic level than the van Hiele’s
Level l (visual thinking).

B. Automated generation of difficulty levels

An algorithm proposed by Khan [11], [12] used course
ontology for representing knowledge. Course ontology is a
hierarchical structure where the child of a node is required
to understand the knowledge of the parent node. Each node
has two values: prerequisite weight and the self weight and the
link between the parent-child nodes is assigned a value defined
as the link weight (see Figure 1). Prerequisite weight defines
the amount of knowledge required from its parent node and
self weight is the amount of knowledge intrinsic of the node.
Link weight is assigned according to the semantic importance
of the child concept to the parent concept. The difficulty of a
solution is obtained by adding prerequisite weight, self weight
and link weight of all the traversed nodes for finding the
solution. However this approach is not applicable in domains

such as geometry where a question can have multiple solutions
of various difficulty levels depending on the theorems used to
solve it. In such cases, assigning the weights for each node and
link varies for each solution. Another issue with this mode is
that the individual weights may differ from student to student.

Korhan and Rifat [13] developed an intelligent tutor system
called MathITS for mathematics education which used concept
maps for representing knowledge and a differential equation
model to measure difficulty. The system ia based on a dynamic
model which depends on whether the question has been solved
by the student in the past or not. After each attempt, the
difficulty rate of the question changes. The model used by
them follows the equation:

y
′
(t) = (b−a

a+b)y(t)[p−y(t)
p], t > to

where a and b specifies how many times the question Qi was
answered correctly and incorrectly respectively, t represents
the number of attempts made by a student and p is a variable
used to stabilize the equation. The question Qi has been asked
to students a + b times, and y represents the new difficulty rate.
The approach used in MathITS is suitable for teaching purpose
where the difficulty level of a question decreases if a student
is unable to solve it. However, the question-bank is manually
added in the system. Additionally, there is no provision of
configuring the questions according to user-desired difficulty.

In the engineering domain, Rui[14] has defined a framework
called Standards, Analysis, Synthesis and Expression (SASE)
for question generation and assessment. In this framework,
concepts are nodes, which are linked to each other as in
concept maps. A table for each node is stored with infor-
mation on the attributes of the node and its relationship with
neighboring nodes. The table stores all the possible logical
conditions that can be applied on the node, along with all the
possible actions and rules that can be applied to the output
of logical conditions. The table decides the next node to
follow while generating a question and difficulty is calculated
by counting the number of nodes traversed for obtaining a
solution. However, this approach depends on the rules in the
tables, which are static and may not be suitable for measuring
the difficulty of the questions with respect to each user.

Li and Sambasivam [15] developed an intelligent assess-
ment system consisting of three modules: question difficulty
assessment, automatic question generator and guided problem
solving. The system starts with pre-stored questions and a
directed acyclic graph to measure the proficiency level of
learners. The degree of difficulty D can be defined as follows:

D=w1 N+ w2 P+ w3 M

where D is the degree of difficulty of a question. N is the
number of conditions given in the question. P is the number
of downward edges in the path traversed during question
generation. M is the number of upward edges in the path
traversed during question generation. w1,w2,w3 are the weight
factors used to balance between the path length and the
number of conditions. The approach is quite generic but they

have predefined set of questions and there is no provision of
configuring the difficulty level of questions by the user..

C. Summary/Gap

The theories described for student’s growth in geometry may
not be applied to other domains such as algebra. Further, all
the methods described so far for automated measurement of
difficulty levels either used predefined static weights assigned
to each concept node or decided difficulty on the basis of
total number of nodes traveled. However, these methods are
not applicable in domains such as geometry where multiple
solutions can exist for the same question and each solution
uses different concepts. In such cases, the weight assigned
to the concept should differ in the situation when user in-
tentionally wants that concept to be tested as compared to
that of situation where the concept is not required by the
user but it is a prerequisite for the solution. Additionally, a
user cannot configure the generated question according to his
desired difficulty levels.

We adopt the model by Li and Sambasivam [15] and
propose a framework which is dynamic and therefore adapts to
the user-desired difficulty level while generating the questions.
Additionally, the users can configure the factors responsible
for the difficulty of the generated question until the desired
question is generated. The next section describes the difficulty
model.

III. GENERIC DIFFICULTY MODEL

Difficulty is a subjective matter and therefore it is hard to
define a notion of difficulty which is valid for all users. Hence,
we propose a generic model of handling difficulty while
generating question which is adaptive to the users. Questions
are generated based on user’s given input and desired-difficulty
levels. The main properties of the model are as follows
• The model includes the factors affecting the difficulty of

a question.
• The model allows the user to define their own difficulty

levels by assigning the order of these factors. Addition-
ally, the user can modify the order of the factors later
until the question of desired difficulty levels is generated.

• The model adapts to the ordering of the factors given by
the user.

The factors responsible for measuring the difficulty of a ques-
tion can be classified into three categories–Affecting Semantic
Relationships (SR), Affecting Quantitative Relationships(QR)
and Affecting relationships derived from meta-information
(DR). The next section describes these factors in detail. We
explain the model using the domain of mechanics (high school
physics) as example.

IV. FACTORS AFFECTING THE DIFFICULTY OF A QUESTION

Factors affecting the semantic relationships (SR)

SR deals with the ways in which a domain objects interact
with each other. It refers to the non-numeric and logical
relationship between the domain-objects developed due to their
interaction. For example, in mechanics, two blocks connected

by a massless string will have the same acceleration if the
string is taut. The major factors in this category are as follows

1) Number and type of domain-objects involved
2) Number and type of domain-rules involved
3) User given scenarios such as Figure 4a.

Factors affecting the quantitative relationships (QR)

QR refers to assignment of numeric values to the properties
of the domain-objects, for example, the acceleration of blocks
and pulleys, masses of blocks and pulleys in a question.

Factors derived from the solution (DR)

DR refers to the factors which affect the difficulty of a question
using the information in the generated solution. For instance,
the number of steps in a generated solution can be an important
factor for difficulty in a domain. Some of the factors which
falls in this category are:

1) Length of the solution
2) Direct/Indirect use of rules involved

Example of a direct use of rule is direct application of an
equation where all variables except one is available. One
instance of indirect use of rules in mechanics is the use of
solving linear equations for finding values of the variables.

The model analyzes and adapts to all SR, QR and DR
factors. The framework uses these factors in an ordered way
to generate domain questions. The ordering plays a significant
role in the difficulty of the generated question and the next
section describes the ordering in detail.

V. ORDERING THEORY

We compare two questions and used lexicographical order-
ing of the factors used for generating them. For example, if
the factors “F1” and “F2” are used for the generation of two
questions, then the lexicographical ordering between the two
questions are as follows

(F11,F21)≺ (F12,F22)

iff

(F11 < F12) or

(F11 = F12 and F21 ≤ F22)

(1)

Equation 1 implies that a question having a bigger factor
“F1” is considered harder as compared to other question.
However, if the factors “F1” are same then the question having
a bigger factor “F2” is considered harder.

(F11,F21)≡ (F12,F22)

iff

(F11 = F12 and F21 = F22)

(2)

Equation 2 shows the lexicographical ordering for the
similar questions where the two questions are similar if both
the factors “F1” and “F2” are equal to their respective factors
in other priority list. In order to use the lexicographical
ordering for quantitative comparison, we need to show that this
ordering can be represented as ordinal representation, which
is discussed in the next section.

Fig. 2: Showing the ordering representation between two factors F1
and F2

Proof of Ordinal representation

Theorem 1. If the domain is countable, a lexicographical
ordering between the domain-elements can be represented in
the form of ordinal representation.

Proof of a domain countability: In a formal domain, objects
can be considered as countable and the scenarios are gener-
ated by the intersection of the domain objects. Intersection
of countable objects results in the generation of countable
sets, hence scenarios are also countable. In addition, meta
information of the objects is generated through algorithm’s
application on the generated scenarios and hence they also
become countable.

Proof of ordinal representation: If Domain = F1 × F2,
Equation 1 defines a lexicographical relation between F1 and
F2 and its utility representation is as shown in Figure 2, then
we can say that the right side has better points, but if two
points are equally far to the right, then the top point is better.
If we choose two distinct points on each vertical line and
suppose there is a utility representation U, then the top point
tx on the line with first coordinate x must map to a higher
number than the bottom point bx on that line. Now consider the
collection of intervals {[U(bx),U(tx)] : x≥ 0}. These intervals
are all disjoint. and non-degenerate, hence each contains a
rational number. These rational numbers are all distinct, and
we have one for each vertical line, so if a utility function exists,
there must exist an countable collection of rational numbers. A
scenario is a collection of countable points; hence, the rationals
are countable. So U must exist for scenarios.

In addition, ordinal (numerical) representation maps the
ordering of the factors with the real numbers and hence can
be used in measuring the difficulty level.

We represent the ordering between the factors given by the
user using a data structure called priority list described in detail
in the next section.

User-priority list

User-priority list is a list of key-value pairs of factors that
can affect a scenario and a question. The key refers to the pre-
defined factors affecting the difficulty of a question and the
value refers to the number given to it by the user. The factors
belong to either SR, QR or DR. For example, a user-priority
list in mechanics may be

Number of Blocks–10, Number of Pulley–8, Acceleration
of at-least one block–7.

The numbers assigned to each object describe its priority.
The next section explains the processing of user-priority list
in detail.

Processing User-priority list in handling difficulty factor

Ordering refers to priority assignment to the items specified
in the user-priority list. The user needs to assign numbers to
the factors, which he wants to see in the generated question.
The assigned number to each factor is directly proportional to
the priority of the factor in generating a question. To generate
a question of harder and easier difficulty level, higher value
of a factor implies higher and lower occurrence of that factor,
respectively. Further, demand of higher and lower complexity
in a question involves addition and reduction of factors having
higher priorities, respectively. The priority of the factors in the
user-priority list mentioned in the last section is as follows

Acceleration of a block ≺ Number of Pulley ≺ Number of
Blocks

where ≺ denotes the priority symbol. The above expression
implies that the priority of blocks is higher than the pulleys,
which has higher priority than the constraint of acceleration
of a block.

Summing up these numbers will give the difficulty level of
a generated question. A larger sum implies higher difficulty
level of the generated question. For instance, if the sum of
assigned numbers of the factors in the generated question is
25 then a harder question would have sum higher than 25.
The cause can be addition of any item from blocks, pulleys or
block’s acceleration. Similar logic applies for generating easier
and similar questions. However, generating similar question
would have an extra constraint of each factor having the
same difficulty points. For example, the two questions are
similar if they have equal number of blocks, pulleys and both
scenarios have accelerating blocks. Generally these figures are
isomorphic.

VI. USER INTERACTION WITH THE MODEL

The user plays a crucial role in deciding the difficulty of
a generated question and this section describes the ways in
which a user can interact with the framework.

1) Specification of the input required for question
generation: Mathematically, an input for a geometry
question generated by the framework can be represented
by a triple (Object V , Rule R , Query type Q t). The
input plays a major role in deciding the difficulty as
priority of rules changes with respect to the objects used.
For instance, in mechanics, testing accelerating block
concept is different than testing with accelerating pulleys
and wedges.

2) User-defined difficulty level: The process of allowing
the user to generate the ordering between the factors
defined in user-priority list is termed as user-defined
difficulty level.

Fig. 3: Flowchart for handling adaptability to difficulty factors across
formal domains

3) User-desired difficulty: Additionally, the user selects
the difficulty direction of the next generated question
from the following options

a) Easier than the given question
b) Similar to the given question
c) Harder than the given question

4) Scenario guidance: The process involves modifying the
scenario at run-time. If the users are not satisfied with
the interaction and properties of the objects in the current
question then they can change them according to their
choice. Figure 4b and c explains this feature with an
example. The user changes the position of the pulley
P. Additionally, the user can add the objects from the
user-priority list which are not present in the currently
generated question.

5) Algorithm termination: The users can stop the working
of the framework if they are satisfied with the generated
question.

The users can change these options multiple times based on
the generated question until they are satisfied. The next section
describes the framework used to adapt to the difficulty factors.

VII. FRAMEWORK

The proposed framework is an extension of the framework
mentioned in [5]. Figure 3 shows a flow diagram of the pro-
posed difficulty model for adaptability to the difficulty factors.
The previous framework generates a question from the user-
given input. If the user is not satisfied with the difficulty level
of the generated question, the previous framework randomly
enriches the scenario and generates a new question, which
may not be desirable to the user. However, the new framework
provides the user with various options, which can lead to next

Harder question Change pulley

Remove block

Change priority
to QR

Harder question

(a) (b) (c)

(d) (e)

Fig. 4: Working of the difficulty model with an example (a) generation
of a mechanics scenario from the user-given input; (b) addition of
pulley and block to make the question harder; (c) change the position
of a pulley P via scenario guidance; (d) removal of a block to make
the question easy; (e) changing the priority with QR as highest
priority and hence removing the value of forces in the rope and
acceleration of a block to make the question harder

generated question according to user’s choice. The user can
change the user-desired difficulty level such as higher, similar
or harder for the next question. In addition, the user can change
the priority-list of the factors and the framework uses the
new priority list for the next question. Furthermore, the user
can change the scenario in the current question (see scenario-
guidance) and the framework generates the next question based
on the new current scenario. This process of user interaction
and new question generation continues until a satisfactory
question is generated. In this way the difficulty model is
user-adaptable. The details of user-interaction are given in
Section VI.

Figure 4 explains the framework with the help of an
example. The input for generating a question in mechanics
is as follows
• V : a pulley and two blocks
• R : At least one block is given an acceleration

The framework generates a question from the input given by
the user (see Figure 4a). The user is not satisfied with the
scenario in the newly generated question and orders the system
to generate a harder question. The framework picks the highest
priority factor from the user-priority list and adds a pulley
and a block (see Figure 4b). In the newly generated scenario,
the user changes the position of a pulley P through scenario
guidance feature (see Figure 4c). Next, the user requests the
generation of an easier question, compared to the previously
generated question. As a result, the framework removes a
block (B2) (highest priority factor in user-priority list) from
the existing scenario to make the scenario easy, and generates
a new question (see Figure 4d). Again, the user is not satisfied
and changes the ordering of the predefined factors in the user-

Difficulty
level

Affecting SR Affecting both QR and
DR

Easier than a
given ques-
tion

Reduce the number of oc-
currences of the selected
item by 1

Give more data to result in
smaller number of steps

Similar to a
given ques-
tion

Change the location of oc-
currences of the selected
item

Interchange the data with
the help of pattern match-
ing

Harder than
a given ques-
tion

Increase the number of oc-
currences of selected item
by 1

Reduce the given data or
indirectly give the data re-
quiring a larger number of
steps

TABLE I: Pre-defined algorithms for changing the difficulty of the
generated question

priority list, this time, giving priority to the QR relationship to
generate a harder question. Hence, the generated question has
the same scenario but less number of quantitative relationships
by removing the value of forces acting on the ropes and
acceleration of a block making the question more difficult(see
Figure 4e). Finally, the user is satisfied with the generated
question and the whole process stops.

A. Integration of Difficulty model with the existing framework

The proposed framework comprises two major
components—scenario enrichment and deductive engine.
Each component depends on various user-desired features for
their functions. For instance, scenario enrichment will enrich
the scenario depending on the user’s choice with a higher
number of objects or a lesser number of objects with more
number of known relationships between them. Similarly, the
deductive engine requires to know that what rules a user
wants to test. The details of the framework without the logic
of handling difficulty level are given in [5].

The key changes for integration of the difficulty model
involves ordering of the factors required in decisions making in
both the components. Previously, the framework used random
selection of adding/removing domain objects and rules at
various decision points. Currently, the framework uses the
user-priority list. The list contains the ordering of the factors
and helps in dealing with decision points. The next subsection
describes the details of extension in each component of the
framework to integrate with the difficulty model.

VIII. SCENARIO ENRICHMENT FOR HANDLING DIFFICULTY

This component enriches the scenario. It operates at two
levels–with or without an existing scenario. The details are as
follows.

Generating scenarios from the user-input (Without-
scenario): This component generates a scenario through a
set of predefined ways to combine the domain objects. The
process includes addition and removal of various factors such
as objects and rules, to the existing scenario. The details of the
component without the logic of handling the difficulty concept
is given in [5].

The component deals with the ordering of the SR factors
such as number and type of domain objects and rules to modify
the current scenario. Previously the ordering was random

every time the framework generated a question. However, now
the framework uses user-defined difficulty levels for deciding
the order of the factors and user-desired difficulty levels
for application of these factors in an existing scenario. The
second column in Table I shows the pre-defined algorithms for
handling the semantic relationships. For each factor, making a
question harder/easier implies adding/removing that factor in
the existing scenario. Consider an instance where the order of
the SR factors is as follows

Number of Wedges ≺ Number of Pulleys ≺ Number of
Blocks

The above order shows that a user has given highest priority
to blocks followed by pulleys and wedges are given least
priority. For generating the harder question, the framework
attempts to increase the blocks demanded by the user. If no
more blocks can be added then the framework approaches
pulleys followed by wedges. Similarly, for generating an easier
question, firstly, the framework tries to reduce the number
of blocks followed by pulleys and wedges. For generating a
similar question, the framework tries to change the positions
of blocks followed by pulleys and wedges.

Generating new scenarios from an existing scenario: This
component is optional and is used when the user is not satisfied
with the difficulty level of the generated question and wants
to enrich it. The component enriches a scenario by assigning
numeric values to the existing relationships in the generated
scenario. This component along with the Deductive engine
handle the quantitative relationships (QR) demanded by the
user. Previously, the enrichment in QR was done randomly.
However, currently, user-defined difficulty levels guide the
enrichment process. The third column in Table I shows the
pre-defined algorithms for handling quantitative relationships.
The approach is similar to the scenario enrichment component
described earlier, the difference being that this component is
directed towards the properties of the existing domains objects
in the generated scenario. The details of this component
without the logic of handling the difficulty concept is given
in [5].

A. Deductive Engine for handling difficulty

This component is responsible for finding the values of
unknown variables of the generated scenario from the scenario
enrichment component. The component acts as both a question
generator and a solver. The unknown variables whose values
have been found represent the generated questions. The steps
that leads to finding the unknown variables represent the
solution. The component handles the DR factors and assists
the scenario enrichment component in handling the difficulty
level. It acts as a filter showing only those questions which
suits to the DR factors defined by the user-priority list. The
details of this component without the difficulty handling logic
part is given in [5].

B. Implementation

We employ SWI-Prolog (Version 7.1.2) [16] as deductive
engine and represent axioms using Constraint Handling Rules

(CHR) [17] via this system’s multi-head clause format. In our
implementation, we use the CHR library provided by K. U.
Leuven, on top of SWI-Prolog. A domain may require solving
of linear equations, for which we employ the SWI-Prolog
library CLP(R).

Evaluation

For evaluating the difficulty model, we developed a prototype
of the model in Geometry, called “Euclid’s Toolkit”, and
tested it with real users such as high school teachers, students
and professionals who tutor for standardized tests such as
CAT, GRE, GMAT, SAT etc. The knowledge database consists
of triangles and concepts include perpendicular, median and
parallel lines. Each concept has a corresponding theorem,
which the user can select. Currently, the users can choose any
one theorem from the options: Pythagoras theorem, Apollonius
theorem and Similarity theorem.

Euclid’s Toolkit provides a method for handling the diffi-
culty level of a question. The factors which affect the difficulty
of the question include the 3 concepts and 3 theorems. The
user can assign priority to these factors by assigning them
numeric values between 0 to 6.

User feedback for Euclid’s Toolkit

Re-evaluation of Euclid’s Toolkit is ongoing. So far it
has been evaluated by 10 teachers with different educational
backgrounds: 3 high school teachers, 4 private tutors for high
school and 3 private tutors for standardized tests such as CAT,
GRE and GMAT. The teachers used the Euclid’s Toolkit for
1-2 hours and the filled an evaluation survey. The survey form
consists of 40 questions covering all features of the software
such as quality of the generated questions, difficulty factors,
usefulness of the scenario guidance feature in handling the
difficulty, etc.

The feedback was positive with all the teachers being either
very satisfied or satisfied with the quality of of generated
questions, the scenario guidance feature and the handling of
difficulty factors. Feedback included wanting more control
over the concepts addition process. Currently, the toolkit
provides the options to select a triangle from the list of the
generated triangles. It doesn’t gives the exact point at which
concept can be added. Also, one teacher comment that they
spent time classifying the generated question and this could
be automated.

If made available to them, all the teachers would like to use
Euclid’s Toolkit for teaching and 80 % of them would like
to use it for student assessment (see Figure 6). Two teachers
criticized that complex questions (involving the use of multiple
theorems) were generated only later on adding difficulty
instead of at the first generated question. They wanted to
have control over this process. Further, teachers were asked
to assess Euclid’s Toolkit in comparison to existing textbooks
and online materials in terms of practice questions and new
questions. 80% teachers rated Euclid’s Toolkit higher than
existing textbooks and online material for these parameters.
(see Figures 7 and 8).

Fig. 5: Evaluation of Euclid’s Toolkit: How satisfied are the users
with the features of Euclid’s Toolkit.

Fig. 6: Evaluation of Euclid’s Toolkit: Its usability for teaching and
testing the students.

The users liked the scenario guidance feature and being able
to handle difficulty of geometry questions. They assessed that
these features are useful for generating questions relevant for
high school students. They also evaluated this toolkit as better
than books and online material with respect to new questions
and highly recommend it for assessing students.

Other suggestions from them included the addition of more
objects such as circle, square, etc., concepts and geometry
theorems. Also, generating questions with length and angle
values in terms of variables such as “x1” is uncommon for
high school mathematics. They suggested the use of numeric
values would be appropriate to teach and test students. Another
suggestion was to generate multiple choice options so that this
software can directly be used for standardized tests such as
CAT, GRE and GMAT. However, these suggestions/criticism
is out of the scope of the research.

IX. CONCLUSION

In this paper, we provide a framework for the automatic gen-
eration of questions and their solution across formal domains
based on the user-defined difficulty level. Our system is able
to quickly generate large numbers of questions on specific
topics and of varying difficulty levels. Such a system will help
teachers reduce the time and effort spent on the tedious and
error-prone task of generating questions of various difficulty
levels.

Future work needs to be done in testing the framework
rigorously with teachers across different countries. Further,
in the existing system, a user needs to feed his difficulty

Fig. 7: Evaluation of Euclid’s Toolkit: Usefulness as resource for
practice questions in comparison to existing textbooks and online
material.

Fig. 8: Evaluation of Euclid’s Toolkit: Usefulness as resource for new
questions in comparison to existing textbooks and online material.

choices before generating a question and alters the difficulty
options until his desired question gets generated. Future work
involves automating this process through the use of machine
learning. The machine would learn the difficulty level of each
user during the process of question generation and apply
this learning to generate new questions according to desired
difficulty level automatically thus minimizing tedious user
intervention.

REFERENCES

[1] K. Vanlehn, C. Lynch, K. Schulze, J. A. Shapiro, R. H. Shelby, L. Taylor,
D. J. Treacy, A. Weinstein, and M. C. Wintersgill, “The Andes physics
tutoring system—Five years of evaluations,” in Proceedings of the
Artificial Intelligence in Education Conference, ser. Frontiers in Artificial
Intelligence and Applications, vol. 125, 2005, pp. 678–685.

[2] “Chemistry studio: An intelligent tutoring system,” Jan. 2013. [Online].
Available: http://www.cs.stanford.edu/people/ashgup/Reports/BTP.pdf

[3] E. Melis and J. Siekmann, “ActiveMath—An Intelligent Tutoring Sys-
tem for Mathematics,” in Artificial Intelligence and Soft Computing—
ICAISC 2004, ser. Lecture Notes in Artificial Intelligence, L. R. et al.,
Ed. Springer, 2004, no. 3070, pp. 91–101.

[4] X. S. Gao and Q. Lin, “MMP/Geometer—a software package for
automated geometric reasoning,” in Automated Deduction in Geometry,
ser. Lecture Notes in Artificial Intelligence, F. Winkler, Ed. Springer,
2004, no. 2930, pp. 44–66.

[5] R. Singhal, M. Henz, and S. Goyal, “A framework for automated
generation of questions across formal domains,” in In Proceedings of
17th International Conference on Artificial Intelligence in Education,
F. E. Browder, Ed. American Mathematical Society, 2015, pp. 147–
240.

[6] J. Piaget, B. Inhelder, F. J. Langdon, and J. L. Lunzer, “The child’s
conception of space,” in British Journal of Educational Studies, vol. 5.
Taylor & Francis, Ltd., 1957, pp. 187–189.

[7] D. Clements and M. Battista, “Geometry and spatial reasoning,” in
Handbook of research on mathematics teaching and learning, 1992, pp.
420–464.

[8] M. C. Afonso, M. Camacho, and M. M. Socas, “Teacher profile in the
geometry curriculum based on the Van Hiele theory.” in Proceedings of
the 23rd PME International Conference, vol. 2, 1999.

[9] C. Lawrie, “An alternative assessment: The Gutiérrez, Jaime and Fortuny
technique.” in Proceedings of the 22nd PME International Conference,
A. Olivier and K. Newstead, Eds., vol. 3, 1998, pp. 175–182.

[10] W. Burger and J. Shaughnessy, “Characterising the Van Hiele levels
of development in geometry.” in Journal for Research in Mathematics
Education, vol. 17, 1986, pp. 31–48.

[11] J. Khan and M. Hardas, “A technique for representing course knowledge
using ontologies and assessing test problems,” in Advances in Intelligent
Web Mastering, ser. Advances in Soft Computing, Wegrzyn-Wolska,
M. Katarzyna, and P. Szczepaniak, Eds. Springer Berlin Heidelberg,
2007, vol. 43, pp. 174–179.

[12] J. I. Khan, M. Hardas, and Y. Ma, “A study of problem difficulty
evaluation for semantic network ontology based intelligent courseware
sharing,” in Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence, ser. WI ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 426–429.

[13] G. Korhan and A. Rifat, “Determining difficulty of questions in
intelligent tutoring systems,” Turkish Online Journal of Educational
Technology, vol. 8(3), pp. 14–21, 2009.

[14] Y. Rui, “Problem generator system in engineering design tutor,” Master’s
thesis, Rice University, 2002.

[15] T. Li and S. Sambasivam, “Automatically generating questions in
multiple variables for intelligent tutoring,” Issues in Informing Science
& Information Technology, vol. 2, pp. 471–478, 2005.

[16] T. Schrijvers and B. Demoen, “The K. U. Leuven CHR System—
implementation and application,” in First Workshop on Constraint Han-
dling Rules—Selected Contributions, 2004, pp. 1–5.

[17] T. Frühwirth and F. Raiser, Eds., Constraint Handling Rules: Compila-
tion, Execution, and Analysis. Books On Demand, 2011.

