
QuikFix
A Repair-based Timetable Solver

Michael Clark1, Martin Henz2, and Bruce Love3

1 Metaparadigm Pte Ltd
2 National University of Singapore

3 Overseas Family School

Abstract. QuikFix is a software program for solving timetabling prob-
lems. The software adapts repair-based heuristic search known in SAT
solving to the timetabling domain. A high-level timetabling-specific model
enforces structural constraints and allows for meaningful moves in the
search space, such as swaps of the time slots or venues of events. Quik-
Fix uses known techniques to improve the search performance, such as
multi-starts, tabu lists, and strategic oscillation. The software is easily
extensible through the use of object-oriented programming techniques
and has been employed for the timetabling of a Singapore K-12 interna-
tional school, and as an entry to the ITC 2007 timetabling competition.

1 Background

The Overseas Family School, a K–12 international school in Singapore
with over 3000 students, faces a complex timetabling problem every year.
After employing expert human timetabling expertise, the school’s par-
ent company Master Projects Pte Ltd, commissioned and engaged Meta-
paradigm Pte Ltd for the development of its own bespoke local-search
based timetabling solver.
The success of tabu search [GL97] and other meta-heuristics in the time-
tabling domain made local search an obvious starting point. Instead of
exploring a search tree of possible variable assignments, as done by inte-
ger and constraint programming, local search quickly constructs an initial
state, and then applies so-called moves in order to iteratively change it,
eventually resulting in an acceptable solution. Domain-independent local
search systems such as LOCALIZER [MH97], EASYLOCAL++ [FV01],
and HOTFRAME [GS01], follow an abstract view of a state from which
possible moves are generated, forming a neighborhood. This approach
follows established heuristic search traditions in Operations Research,
and has been described in a minimalistic form as GSAT in the domain
of boolean satisfiability.
A variant of this approach has proven to be more efficient than GSAT in
boolean satisfiability, namely the Walksat strategy [SKC94]. The idea of
Walksat is to generate moves not based on a given state, but to select a vi-
olated constraint and focus on those moves that “repair” this constraint.
The advantage of this approach is that at each step, a smaller number of
neighbours needs to be evaluated. In order to translate this approach to

2 Clark, Henz, Love

the timetabling domain, QuikFix requires each constraint to elect a move
generation strategy that generates repair moves when the constraint is
violated. The QuikFix solver is timetabling-specific, which—compared to
generic local search frameworks—allows us to exploit domain knowledge
effectively, and increase search performance.

In this paper, we explain the QuikFix solver and describe how the prob-
lems in Track 3 of the International Timetabling Competition 2007 (ITC
2007) are modeled and solved using this system. Section 2 reviews the
problems of the targeted competition track. Section 3 motivates the de-
sign of QuikFix by outlining its design goals. Section 4 provides a high-
level description of the structure of the engine, Section 5 focuses on the
repair-based approach of generating moves based on violated constraints,
Section 6 contains the main loop of the solver, and Section 7 describes
a number of heuristics that enable QuikFix to achieve competitive re-
sults within short running times. Finally, Sections 8 and 9 describe the
application of the solver to ITC 2007, and a Singapore International
Secondary School, respectively.

2 Problem

Automated timetabling has a long tradition in Operations Research and
Artificial Intelligence [Sch99]. This paper focuses on curriculum-based
timetabling, as presented in the Second International Timetabling Com-
petition, ITC-2007 [GMS07]. We quote the general problem description,
as given by Gaspero, McCollum and Schaerf [GMS07]:

“The Curriculum-based timetabling problem consists of the week-
ly scheduling of the lectures for several university courses within
a given number of rooms and periods, where conflicts between
courses are set according to the curricula published by the Uni-
versity and not on the basis of enrolment data.”

In detail, each day is split into a fixed number of time slots, resulting in
day/slot pairs called periods. Each course consists of a fixed number of
lectures to be scheduled in distinct periods, is attended by given num-
ber of students, and taught by a teacher. Each teacher is available in a
specified set of periods. Each room has a capacity, expressed in terms of
the number of available seats. A curriculum is a group of courses such
that any pair of courses in the group have students in common. The so-
lution of the problem is a timetable, which is an assignment of a period
and a room to all lectures of each course, such that the following hard
constraints are met:

– All lectures of a course must be scheduled, and they must be assigned
to distinct periods.

– Two lectures cannot take place in the same room in the same period.

– Lectures of courses in the same curriculum or taught by the same
teacher must be all scheduled in different periods.

– If the teacher of the course is not available to teach that course at a
given period, then no lectures of the course can be scheduled at that
period.

QuikFix–A Repair-based Timetable Solver 3

The objective of timetabling is to generate timetables that meet all hard
constraints and minimize the number of violations of the following soft
constraints.

– For each lecture, the number of students must be less than or equal
to the capacity of its room.

– The lectures of each course must be spread into the given minimum
number of days.

– Lectures belonging to a curriculum should be adjacent to each other
(i.e., in consecutive periods).

– All lectures of a course should be given in the same room.
Details on how the quality of solutions is quantified with respect to
hard and soft constraint violations are given by Gaspero, McCollum and
Schaerf [GMS07].
Timetabling at the Overseas Family School shares the structure of these
curriculum-based timetabling problems, but requires several additional
constraints, as explained in Section 9. Since the constraints of OFS
timetabling problems are a superset of the ITC-2007 Track 3, it was
easy to use QuikFix to participate in the competition.

3 Design Goals

Before describing the solver, we are listing in this section the main design
goals that underlie the QuikFix solver. These principles provide clear
guidelines during the development of the development of the solver.
Timetabling focus. The solver must focus on the timetabling domain,

and should not be too general in its scope. A timetabling focus will
ensure the ability to exploit timetabling-specific optimizations, and
provide a data model that enforces strong structural constraints.

Object orientation. The system design should follow the principles of
object-oriented design to simplify the data layout of items such as
problems, solutions, moves, etc.

Separation of concerns. As far as possible, the components of the
solver should be represented as independent objects with clear in-
terfaces. This separation of concerns will ensure ease of development
and maintenance, and provide the basis for extensibility and perfor-
mance tuning.

Efficiency. Every design decision needs to be analyzed regarding its
effect on the runtime of the solver. Real-world and competition re-
quirements demand a rapid response time, and only a carefully engi-
neered system will be able to explore a sufficient search space within
the given time constraints.

4 Solver Structure

4.1 Problems

The QuikFix data layout for problems matches closely the format of
the ITC 2007 track 3 competition. The principal items are Class, Pe-
riod (composed of the tuple of day and time slot), Teacher, Room and
Curricula.

4 Clark, Henz, Love

 AbstractParameter

 dependents : Constraint[]

 Teacher

 canTeach : Clazz[]

 Period

 day : int
 timeslot : int

 Clazz

 numLectures : int
 numStudents : int
 availablePeriods : Period[]
 availableRooms : Room[]

 Room

 capacity : int

 Curricula

 classes : Clazz[]

The main difference lies in the definition of a Course. In QuikFix, there is
a distinction between a Course as a definition of an instructional unit and
a Class as the scheduled instance of instruction for a particular Course.
This is to support large courses that need to be split into multiple classes
wherein students could equivalently be placed in any one of these classes.

The competition problem does not make this distinction so a Course can
be treated equivalently to a Class. For the puposes of this description,
the Class terminology will be used.

4.2 Solution

A solution is an assignment of each (Class, lecture number) tuple to both
a (Teacher, Period) and (Room, Period) tuple.

One of the key goals in the design of the QuikFix solver was the use
of a high-level structurally constrained timetabling specific model. This
structural approach ensures intrinsic satisfaction of basic timetabling
constraints:

– no more than one lecture assigned to the same room in the same
period

– no more than one lecture assigned to the same teacher in the same
period

The solution structure differs from the competition model in that it can
also represent a variable assignment of teachers to classes, whereas the
teacher allocations are fixed in the competition model.

The solution variable structure follows an object-oriented model con-
taining references to object instances rather than being represented as a
matrix of integer or boolean values.

The solution variables (Figure 1) store bi-directional associations be-
tween the tuples. The associations are indirected through a tuple pointer
rather than referencing the variable directly. This is to reduce the num-
ber of variable updates during the layered assignment/move evaluation
described later.

The solution variable structure is hidden behind a TimetableSolution
interface which is used by constraint implementations to evaluate their
cost values.

QuikFix–A Repair-based Timetable Solver 5

 TeacherVar

 tpv : TeacherPeriodVar[]

 TeacherPeriodVar

 tp : TeacherPeriod
 cl : ClassLecture

*

 ClassVar

 clv : ClassLectureVar[]

 ClassLectureVar

 cl : ClassLecture
 tp : TeacherPeriod
 rp : RoomPeriod

*

 RoomVar

 rpv : RoomPeriodVar[]

 RoomPeriodVar

 rp : RoomPeriod
 cl : ClassLecture

*

 TeacherPeriod

 t : Teacher
 p : Period

 ClassLecture

 c : Clazz
 lectureNum : int

 RoomPeriod

 r : Room
 p : Period

 «interface»
 Solution

 getObjective() : int
 getDynamicObjective() : int
 getConstraintVar(x : Constraint) : ConstraintVar

 «interface»
 TimetableSolution

 getClassLectureVar(cl : ClassLecture) : ClassLectureVar
 getTeacherPeriodVar(tp : TeacherPeriod) : TeacherPeriodVar
 getRoomPeriodVar(rp : RoomPeriod) : RoomPeriodVar

 TimetableSolutionVar

 teachers : Map<Teacher, TeacherVar>
 classes : Map<Clazz, ClassVar>
 rooms : Map<Room, RoomVar>
 constraints : Map<Constraint, ConstraintVar>

*
* *

Fig. 1. Solution Structure

5 Constraints and Moves

5.1 Constraints

In QuikFix there is a minimal4 distinction between hard and soft con-
straints. Hard constraints are modeled by setting their weights suffi-
ciently higher. Constraints return an integer value that represents their
degree of violation as components of an overall cost function.

An abstract Constraint class provides the basis for all Constraint imple-
mentations (Figure 2).

The abstract interfaces are as follows:

4 The only specific distinction between hard and soft constraints is made in the strate-
gic oscillation heuristic (see Section 7.2).

6 Clark, Henz, Love

 «interface»
 MoveStrategy

 generateMoves(sol : TimetableSolution) : Move[]

 Constraint

 hashCode() : int
 equals() : boolean
 link()
 unlink()
 effectedBy(move : Class<Move>) : boolean
 getWeight() : int
 computeValue(sol : TimetableSolution) : int
 getStrategies(sol : TimetableSolution) : MoveStrategy[]

provides

 ConstraintGroup

 groupWeight : int
 hard : boolean
 constraints : Constraint[]

*

Fig. 2. Constraint interface

hashcode() and equals() are implemented by constraints so that the
intrinsic Java generic collection classes can be used for duplicate
constraint elimination.

link() and unlink() are to allow a Constraint implementation to link to
its dependent variables to be later used to assess which constraints
need to be re-evaluated for a given move/assignment.

getWeight() returns the static weight of the constraint.
computeValue() computes the constraint value based on the given so-

lution assignment.
effectedBy() returns true if the constraint value could be effected by a

given type of Move (teacher period move or room period move, see
Section 5.2).

getStrategies() returns a set of move strategies that could repair the
given constraint.

Hard Constraints The following implementations of the Constraint
interface are used to model the hard constraints of the competition prob-
lem:

ClassNotConcurrent - given two Class parameters, returns the number
of periods of the two classes that overlap.

ClassPeriodUnavailable - given a Class and Period, returns 1 if the class
is assigned in the unavailable period.

ClassRoomPeriodInvariant - the solution structure allows the assign-
ment of a (Class, lecture number) tuple to a (Teacher, Period) and
(Room, Period) tuple with differing periods. This constraint returns
the number of lectures where the periods differ.

QuikFix–A Repair-based Timetable Solver 7

Soft Constraints The following implementations of the Constraint
interface are used to model the soft constraints of the competition prob-
lem:

CurriculumCompactness: for a given Curriculum, returns the number
of lectures that are not adjacent to any other lectures out of the set
of all classes of the curriculum.

ClassMinimumWorkDays: for a given Class and minimum working days
parameter, if the number of days the class is spread over is less than
minimum working days, returns the difference.

ClassRoomCapacity: for a given Class, returns the sum over all lectures
of the number of students surplus to the size of the assigned room
for that lecture.

ClassRoomStability: for a given Class, returns the number of rooms the
class is assigned to less one.

Constraint Groups Constraints are grouped together into a Con-
straintGroup to allow setting of a group weight and identifying whether
the constraints are hard or soft (Figure 2).
In the final problem formulation, constraint group weights combined with
the weighted constraint selection rules and the various move strategies
associated with the constraints guides the search through various phases
(see Section 5.4).

5.2 Moves and Assignment

In QuikFix, the solution assignments are updated by performing swap
moves. Figure 3 illustrates the variable structure and a sample move.
These swap moves are the only construct for changing the solution state,
which means that all (Class, lecture number) tuples are pre-assigned to
(Teacher, Period) and (Room, Period) tuples.

Initial Assignment The initial assignment is done randomly by it-
erating through all classes in a random order and then for each (Class,
lecture number) assigning an available (Teacher, Period) and (Room,
Period). If the required teachers or rooms are exhausted, then virtual
teachers and virtual rooms are created to enable complete assignment.

Multiswap Moves A move is composed of a sequence of pair in-
dependent transpositions. All moves are thus involutions [BW06]. Each
transposition is composed of two tuples for which the assignments are to
be swapped. Figure 4 shows the Move interface and implementations5.
An individual transposition can be performed between two tuples where
both of them have an assignment or where only one of the tuples has an
assignment (where it effectively acts as a simple move).

5 In addition to the pair of tuples to be swapped, the assignments associated with
those tuples are also stored. This information is not needed for move evaluation but
is used by the tabu mechanism.

8 Clark, Henz, Love

Fig. 3. Example teacher period swap move. The table on the left represents the teachers
field of TimetableSolutionVar in Figure 1, the table on the right represents the rooms
field, and the vertical table represents the classes field.

 «interface»
 TimetableSolution

 TimetableMove

 TeacherPeriodSwapMove

 swapA : TeacherPeriodVar[]
 swapB : TeacherPeriodVar[]

 hashcode() : int
 equals() : boolean

 RoomPeriodSwapMove

 swapA : RoomPeriodVar[]
 swapB : RoomPeriodVar[]

 hashcode() : int
 equals() : boolean

Fig. 4. Move interface

Java generic container classes are used for move comparison and tabu
lists. The tuple pairs defining the swap are commutative so hashcode
must return the same value for an equivalent move where any of the pair
representations are transposed and likewise equals() must return true.

Presently there are two types of moves implemented:

TeacherPeriodSwapMove which defines pairs of (Teacher, Period) tu-
ples for which their associated (Class, lecture number) assignments
are to be swapped.

RoomPeriodSwapMove which defines pairs of (Room, Period) tuples for
which their associated (Class, lecture number) assignments are to be
swapped.

QuikFix–A Repair-based Timetable Solver 9

While at OFS, multiswap moves are required for efficiently and reliably
generating timetables, it turns out that single swap moves are most ef-
fective for ITC-2007 Track 3 problems.

Move Evaluation Move evaluation takes advantage of object-oriented
polymorphism where the Move class itself implements the TimetableSolu-
tion interface (Figure 4). With this mechanism, a move can be evaluated
without actually modifying the underlying solution assignments. If the
move is chosen, it is applied to the underlying solution by replacing6 the
modified variables.
To evaluate a move, the following steps are performed:

– Make copies of all variables involved in the move with their associ-
ated assignments swapped.

– For each variable changed, add its dependent constraints to a list of
constraints that may change for this move.

– Calculate the objective delta by evaluating each of the dependent
constraints (using the move itself as the solution instance passed to
the constraint’s computeValue() method).

– The constraint methods when re-evaluated will call the solution to
get the dependent variable’s values.

– The move will respond to the resulting solution interface calls, re-
turning the modified instances for any requests for variables changed
by the move or alternatively they will be passed through to the un-
derlying solution.

5.3 Move Strategies

In QuikFix, move strategies are central to the repair-based local search
approach whereby a violated constraint is chosen and a move is generated
to fix it. A constraint can select a different repair strategy depending
on its type. Figure 2 shows the MoveStrategy interface returned by the
Constraint class getStrategies() method.
The following move strategies generate (Teacher, Period) swap moves:

ClassToNonConcurrentPeriod - given a pair of Class as parameters,
finds any overlapping periods between the two classes and for each
overlapping period generates n swap moves to randomly chosen non
overlapping periods.

ClassToAvailablePeriod - given a Class parameter, finds any periods
that are allocated to unavailable periods and generates n swap moves
to randomly chosen periods that are available.

CompactCurricula - given a Curriculum as a parameter, builds a map
of all periods of the given curriculum and finds all periods that are
not adjacent to any other periods in the curricula. For these non-
adjacent periods, n swap moves are randomly chosen that move these
periods next to other periods in the curriculum.

The following move strategies generate (Room, Period) swap moves:

6 The variables are replaced so that references to previous assigned states are preserved
for moves that are on the tabu list.

10 Clark, Henz, Love

 «interface»
 MoveStrategy

 generateMoves(sol : TimetableSolution) : Move[]

 TeacherPeriodMoveStrategy

 CompactCurricula

 CompactCurricula(curricula : Curricula)

 ClassToNonConcurrentPeriod

 ClassToNonConcurrentPeriod(c1 : Clazz, c2 : Clazz)

 ClassToAvailablePeriod

 ClassToAvailablePeriod(c : Clazz)

Fig. 5. Teacher period move strategies

ClassToOtherRoom: given a Class parameter, for each lecture of the
class, generates n swap moves to other rooms within the same period.

ClassToSameRoom: given a Class parameter, for each lecture of the
class, generates swap moves within the same period to rooms from
the set of rooms currently assigned to the lectures of the given class.
This strategy is used to achieve room stability.

FixRoomPeriodInvariant: given a Class parameter, for each lecture of
the class that is assigned to a (Teacher, Period) tuple where the
period differs from the assigned (Room, Period) tuple, generates n
swap moves to rooms with free periods in the same period as the
(Teacher, Period) assignment. This strategy is needed as the solution
is not structurally constrained in this dimension. i.e. a teacher can
assigned at a different time to the room assignment.

 «interface»
 MoveStrategy

 generateMoves(sol : TimetableSolution) : Move[]

 RoomPeriodMoveStrategy

 ClassToOtherRoom

 ClassToOtherRoom(c : Clazz)

 ClassToSameRoom

 ClassToSameRoom(c : Clazz)

 FixRoomPeriodInvariant

 FixRoomPeriodInvariant(c : Clazz)

Fig. 6. Room period move strategies

Constraint-specific Strategies In QuikFix, one of the design goals
was to be able to easily model new constraints with simple access to
solution variables through an abstract high-level timetabling specific so-
lution interface (Figure 1). A second goal in implementing repair-based
local search was to allow for a constraint to elect a move generation
strategy that may repair itself. This is accomplished through the Con-

QuikFix–A Repair-based Timetable Solver 11

straint.getStrategies() interface method that is implemented by each con-
straint class.

We have described the various constraint implementations used by the
competition problem followed by a section on the implemented swap
move generation strategies. The next step is to show the association
between the various constraints and the swap move generation strategies
employed for each of them (Table 1).

It is also possible that constraint implementations do not elect a move
generation strategy as their objective will be evaluated and guide the
search during moves made by other broken constraints. In particular, for
the competition problem, no strategy is elected by the ClassMinimum-
WorkDays constraint.

Constraint implementations may also elect multiple strategies. The Class-
RoomCapacity generates a combinations of room swap moves within the
same time period to achieve a better assignment within the same period.
This is not always achievable so teacher periods swap ejection moves are
generated to move the lecture into another time period as an alternative
mechanism to find a better room.

Constraint Type Weight Strategy

ClassNotConcurrent hard 1000 ClassToNonConcurrentPeriod
ClassPeriodUnavailable hard 1000 ClassToAvailablePeriod
ClassRoomPeriodInvariant hard 1000 FixRoomPeriodInvariant
CurriculumCompactness soft 2 CompactCurricula
ClassMinimumWorkDays soft 5 none
ClassRoomCapacity soft 1 ClassToOtherRoom

ClassToAvailablePeriod
ClassRoomStability soft 1 ClassToSameRoom

Table 1. Constraint weights and move generation strategies

5.4 Constraint Selection

The key process for repair-based local search involves selecting a broken
constraint followed by generating moves to fix it. At each iteration a
constraint is selected randomly out of the set of broken constraints with
the selection weighted by constraint weightings.

Given a set X containing n broken constraints, with w(Xj) representing
the weight of a constraint Xj , the probability pj of this constraint being
selected is:

pj =
w(Xj)

nP
i=1

w(Xi)

12 Clark, Henz, Love

6 Solver Main Loop

The base logic of the solver main loop is presented here with the following
Section 7 detailing the additional heuristics.

The process is to pick a violated constraint, generate moves to repair
the constraint, choose a move and conditionally apply it, repeating until
some stopping condition is met, similar to the main loop of WSAT(OIP)
[Wal98].

There is a single constant climbProbability which allows tuning the prob-
ablity of choosing hill climbing moves as an escape mechanism when no
moves exist that improve upon the current value of the objective func-
tion.

f ina l double c l imbProbab i l i t y = 0 . 1 0 ;

The Java following code illustrates the main loop algorithm.

public void s o l v e (int maxIterat ions)
{

TimetableSo lut ion s o l = g e n e r a t e I n i t i a l S o l u t i o n () ;

for (int i t e r = 0 ; i < maxIterat ions ; i t e r ++)
{

i f (s o l . g e tObjec t ive () <= stopp ingObjec t ive)
return ;

Constra int x = p i ckVio l a t edCons t ra in t () ;
Move [] moves = generateMovesForConstraint (x) ;
Move se lectedMove = pickBestMove (moves) ;

i f (se lectedMove == null &&
Random . nextFloat () < c l imbProbab l i ty)

se lectedMove = pickAnyMove (moves) ;

i f (se lectedMove != null)
s o l . applyMove (se lectedMove) ;

/∗ o t her h e u r i s t i c s here − see Sec t ion 7 ∗/
. . .

}
}

7 Heuristics

Without further refinement, the stochastic local search described in the
previous two sections typically descends into feasible regions fairly quickly,
but then gets trapped in local minima. QuikFix therefore employs the
following escape techniques once the feasible region is reached.

QuikFix–A Repair-based Timetable Solver 13

7.1 Tabu Lists

QuikFix employs two tabu lists containing moves that are excluded from
being chosen as the next step in the main loop of the search.
List of recent moves. For a global constant recentTabuExpiry, this

list contains the most recent recentTabuExpiry moves. This tabu
list is essential for escaping local minima.

List of bad moves. For a global constant badTabuExpiry, this list con-
tains the most recent badTabuExpiry moves that lead to a decrease in
the quality of the solution. This tabu list serves as an optimization.

f ina l long badTabuExpiry = 100 ;
f ina l long recentTabuExpiry = 50 ;

In the main loop of the search, any move that is a member of either of
the two tabu lists is discarded.
The TabuList class makes use of Java Generics to allow tabu of other
types (such as Constraint).

badTabu = new TabuList<Move>(badTabuExpiry) ;
recentTabu = new TabuList<Move>(recentTabuExpiry) ;

The pickBestMove() routine used in the main loop (see Section 6) is
described here:

Move pickBestMove (Move [] moves)
{

Move selectedMove = null ;
for (Move move : moves)
{

badMoveTabu . runExpiry (i t e r) ;
recentMoveTabu . runExpiry (i t e r) ;

i f (badMoveTabu . conta in s (move) | |
recentMoveTabu . conta in s (move)) {

continue ;
}
i f (move . ge tObjec t i ve () < s o l . g e tObjec t ive ()) {

se lectedMove = move ;
}
else i f (move . ge tObjec t i ve () > s o l . g e tObjec t ive ()) {

badTabu . add (move) ;
}

}
i f (se lectedMove != null){

recentTabu . add (se lectedMove) ;
}

}

7.2 Strategic Oscillation

QuikFix adopts strategic oscillation [LM97,AMHV06], a mechanism for
escaping from local minima by modifying the weights of constraints,
exploring the feasible/infeasible boundary.

14 Clark, Henz, Love

After entering the feasible region, any improvement in soft constraints
will typically lead to violations of hard constraints, due to the timetabling
model adopted by QuikFix. Therefore, our version of strategic oscillation
raises the weight of all soft constraints to be equal to that of hard con-
straints for a fixed number softBurstOnIters of moves. Another global
parameter softBurstOffIters prohibits this behavior for a fixed number
of moves after returning to normal weights to allow the solution to settle.

f ina l long so f tBur s tOnI t e r s = 15 ;
f ina l long s o f t B u r s t O f f I t e r s = 30 ;
f ina l long softBurstWeight = 1000 ;
long endSo f tBur s t I t e r = 0 ;

The following code is added to the main loop.

i f (s o l . i s F e a s i b l e () &&
i t e r s > endSo f tBur s t I t e r + s o f t B u r s t O f f I t e r s) {

changeSoftConstra intWeights (so l , so ftBurstWeight) ;
endSo f tBur s t I t e r s = i t e r s + so f tBur s tOnI t e r s ;

}
else i f (i t e r s == endSo f tBur s t I t e r) {

changeSoftConstra intWeights (so l , −softBurstWeight) ;
endSo f tBur s t I t e r s = 0 ;

}

7.3 Rapid Restarts
QuikFix starts from a randomly generated assignment and applies repair-
based search until it reaches a feasible region. It combines strategic oscil-
lation with multi-starts from the currently best solution [BCFN07], using
another global variable noImproveRestartIters. For any feasible solution
S, if the solver is not able to find a feasible solution better than S during
noImproveRestartIters moves after S is found, the search abandons that
path, and re-starts the search at the best solution found so far.

f ina l long noImproveRestar t I te r s = 200 ;
Timetab leSo lut ion savedBestSo lut ion = null ;
long l a s t I m p r o v e I t e r = 0 ;

The following code is added to the main loop.

i f (i t e r − l a s t I m p r o v e I t e r > noImproveRestar t I te r s
&& savedBestSo lut ion != null)

{
badTabu . c l e a r () ;
recentTabu . c l e a r () ;
s o l = savedBestSo lut ion . c l one () ;

}

i f (s o l . g e tObjec t ive () < savedBestSo lut ion . ge tObjec t ive ()) {
savedBestSo lut ion = s o l . c l one () ;
l a s t I m p r o v e I t e r = i t e r ;

}

QuikFix–A Repair-based Timetable Solver 15

8 Benchmarks

The following experiments were conducted on the compute cluster of the
School of Computing, National University of Singapore, which comprises
more than 100 nodes of 32-bit Intel Xeon processors (2.8GHz) and 64-bit
AMD Opteron nodes (2.2 and 2.4GHz).

Each run was performed on one node of the cluster, with a number
of iterations that was previously calibrated. Calibration was done by
averaging the number of iterations performed during five runs within
the allowed competition time. For these five runs, the time was fixed
using the calibration software provided by the competition organizers.

Table 2 displays the performance of running QuikFix for the calibrated
number of iterations.

9 OFS, A Real-world Application

OFS (Overseas Family School) in Singapore is a school catering for pre-
school up to pre-university students. Currently it is managed as four
schools: Kindergarten, Elementary School (grades 1 to 5), Middle School
(grades 6 to 8), High School (grades 9 to 12). QuikFix is being developed
to solve timetabling problems in these schools and to manage resource
sharing between these schools. Currently it is being used to develop the
High School timetable.

The High School works towards an external qualification of I.G.C.S.E.
[IGC07] and M.Y.P. [MYP08] at grade 9 and 10 level (Junior High
School) while at grade 11 and 12 level (Senior High School) the external

Instance Iterations % Feasible Best Median Worst

comp01 6630000 100 9 16.0 92
comp02 2550000 100 103 139.0 183
comp03 2600000 100 101 137.5 187
comp04 3040000 100 55 84.0 107
comp05 1330000 58 370 510.5 762
comp06 2590000 100 112 146.0 187
comp07 2640000 100 97 142.0 203
comp08 3040000 100 72 95.5 128
comp09 2880000 100 132 150.0 171
comp10 2630000 100 74 107.0 152
comp11 7720000 100 1 5.0 9
comp12 1410000 100 393 452.5 555
comp13 3050000 100 97 124.0 141
comp14 2810000 100 87 109.0 129

Table 2. Average results obtained by QuikFix in one hundred runs, each performed
with a number of iterations calibrated to the competition guidelines. The column “Fea-
sible” give the percentage of feasible solutions among all solutions for the respective
instance. The last four columns are based on the feasible solutions.

16 Clark, Henz, Love

Fig. 7. Constraints interface

qualifications are International Baccalaureate and High School Diploma
(accredited by W.A.S.C. [WAS01]).
We briefly highlight constraints and requirements for OFS High School
timetabling that go beyond ITC 2007 Track 3. The most important differ-
ence between timetabling the High School and the competition problem
is that the teachers in the High School are expected to teach about 75%
of their available time. Some teachers are given more time depending
on their allocated duties. Some courses have several classes (see Sec-
tion 4.1) and teachers can be used to teach several classes of the same
course and the assignment of teachers to classes is done by the solver
(see Section 4.2).
In the High School, the students do not have free time. This means
that every period of the school week (currently 25) is timetabled with
a class/teacher/room. Additional constraints are added to ensure that
groups of core courses at Junior High School are placed at the same time
to allow students to move freely between them (concurrency constraints).
Specialist courses (e.g. science, music, art, computer) must be placed in
specialist rooms. Many teachers are allocated rooms and it is important
that their teaching is done in that room as much as possible. There are
part-time teachers who cannot be allocated rooms and so must use the
rooms of full-time teachers when their rooms are not being used.
QuikFix provides extensive support for optimized and interactive time-
tabling. Constraints can be specified and weighted using constraint in-
terface as shown in Figure 7. Periodic display of the highest-quality time-
table uses color-coding of different intensity for constraint violations of
corresponding severity, as shown in Figure 8. QuikFix supports inter-
active timetabling by allowing for fixing teaching event to periods and
rooms, and by dynamically changing the constraint weights.

10 Conclusion

The performance of QuikFix on selected (humanly tractable) ITC 2007
competition problems compared with that of an expert human timetable
solver (our third author) has shown us that the solver is achieving results

QuikFix–A Repair-based Timetable Solver 17

Fig. 8. Color-coded Display of Timetable

that are close to optimal on these problems. We believe this makes repair-
based local search a viable approach to timetable solving.
The object-oriented design of the solver opens up the possibilities of easy
modeling and experimentation with different heuristics for repair-based
local search in the timetabling domain.
It has also shown itself to be very adaptable based on the small number
of changes required to implement the competition problem model.

References

[AMHV06] A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and
Y. Vergados. A simulated annealing approach to the trav-
eling tournament problem. Journal of Scheduling, 9(2):177–
193, 2006.

[BCFN07] G. Brønmo, M. Christiansen, K. Fagerholt, and B. Nygreen.
A multi-start local search heuristic for ship scheduling—a
computational study. Computers & Operations Research,
34:900–917, 2007.

[BW06] W. Bożejko and M. Wodecki. New concepts in neighborhood
search for permutation optimization problems. In PATAT
2006—Proceedings of the Sixth International Conference on
the Practice and Theory of Automated Timetabling, pages
363–366, Masaryk University, Brno, Czech Republic, 2006.

[FV01] A. Fink and S. Voss. EASYLOCAL++: An object-oriented
framework for the design of local search algorithms and meta-
heuristics. In Proceedings of MIC’2001, Meta-heuristics In-
ternational Conference, volume 1, pages 287–292, Porto, Por-
tugal, 2001.

[GL97] F. Glover and M. Laguna. Tabu Search. Kluwer Academic
Publishers, 1997.

[GMS07] L. Di Gaspero, B. McCollum, and A. Schaerf. The
second international timettabling competition (ITC-2007):

18 Clark, Henz, Love

Curriculum-based course timetabling (track 3). Technical re-
port, DIEGM, University of Udine, August 2007.

[GS01] L. Di Gaspero and A. Schaerf. Reusable metaheuristic soft-
ware components and their application via software genera-
tors. In Proceedings of MIC’2001, Meta-heuristics Interna-
tional Conference, volume 2, pages 637–641, Porto, Portugal,
2001.

[IGC07] University of Cambridge. International Examinations. Pub-
lications catalog available at http://www.cie.org.uk/

profiles/teachers/orderpub, 2007.
[LM97] J.-M. Labat and L. Mynard. Oscillation, heuristic ordering

and pruning in neighborhood search. In Gert Smolka, ed-
itor, Principles and Practice of Constraint Programming -
CP97, Proceedings of the 3rd International Conference, Lec-
ture Notes in Computer Science 1330, pages 506–518, Linz,
Austria, 1997. Springer-Verlag, Berlin.

[MH97] L. Michel and P. Van Hentenryck. LOCALIZER—a mod-
elling language for local search. In Gert Smolka, editor,
Principles and Practice of Constraint Programming—CP97,
Proceedings of the Third International Conference, Lecture
Notes in Computer Science 1330, pages 237–251, Schloss Ha-
genberg, Linz, Austria, October/November 1997. Springer-
Verlag, Berlin.

[MYP08] International Baccalaureate. Middle Years Programme. Pub-
lications available at http://www.ibo.org/myp/, 2008.

[Sch99] A. Schaerf. A survey of automated timetabling. Artificial
Intelligence Review, 13(2):87–127, 1999.

[SKC94] B. Selman, H. Kautz, and B. Cohen. Noise strategies for
improving local search. In Proceedings of AAAI-94, pages
337–343, 1994.

[Wal98] J. P. Walser. Domain-Independent Local Search for Linear
Integer Optimization. PhD thesis, Universität des Saarlandes,
D 66041 Saarbrücken, Germany, August 1998.

[WAS01] Western Association of Schools and Colleges. Hand-
book of Accreditation. Publications catalog avail-
able at http://www.wascsenior.org/wasc/News-Events/

NewandRevisedPolicies.htm, 2001.

