
Shrinking JavaScript
for an SICP-based First-Year Course

Martin Henz

joint work with Boyd Anderson, Kok-Lim Low, and Daryl Tan

National University of Singapore (NUS)

https://www.comp.nus.edu.sg/~henz/publications/pdf/Shrinking_JavaScript_Slides.pdf

https://www.comp.nus.edu.sg/~henz/publications/pdf/Shrinking_JavaScript_Slides.pdf

Overview

● Motivation for using SICP and JavaScript

● Shrinking JavaScript for SICP

● Source Academy and Source Academy @ NUS

● Outcomes so far

● Outlook: Global scaling of experiential learning with SICP

But first…

…thanks to Jerry and Hal for hosting me here, to Julie for her kind support,
and to the CSAIL and the MIT administration for making my visit happen!
Thanks to Cynthia Rosenthal from CSAIL for organizing this seminar.

About me

● Training: Programming language design and
implementation

● PhD in 1997: Objects in Oz, Concurrent Constraint Programming
● Research in discrete optimization, tournament scheduling (ACC97/98)
● Co-founded Workforce Optimizer Pte Ltd in 2001
● Teaching programming language design and implementation at NUS

since 1997
● “Discovered” experiential learning in the 2000s and 2010s

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Background of SICP JS

● 1970s-90s: Hal Abelson and Gerald Jay Sussman spearhead
introduce principled CS1 education with
Structure and Interpretation of Computer Programs

● 1997: NUS adopts SICP in a small opt-in course called CS1101S

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Why do we (still) use SICP for CS1 at NUS?

Students benefit from SICP’s emphasis on:

● Mental models for computation

● Programming as “communicating computational processes”

● Functional-programming-first approach

● “Roll your own language”

…as opposed to:

● Learning a particular programming language

● Solving problems using programming

● Software development

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Studios with at most 8 students

Studios with at most 8 students
(plus their “Avenger”)

Conversion of CS1101S to JavaScript

● 2008: MIT moves away from SICP and 6.001

● 2008: JavaScript adaptation of SICP starts

● 2012: CS1101S converts from Scheme to JavaScript

● 2015: EcmaScript 2015 enables full adaptation of SICP to JavaScript

● 2018: CS1101S gets adopted for all CS first-year students

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

What did we get ourselves into?

● The task: scaling from 120 student in 2017 to
420 students in 2018

● First challenge: How to keep group size of 8 students?

● Our asset: a core group of dedicated Avengers who volunteered
to help in recruiting 50+ new Avengers

● Funding?

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

2018: 412 students, 55 Avengers

2021: 667 students, 88 Avengers

Shrinking JavaScript

● Second challenge: How to manage
Avengers and students, and grade assessments?

● Our asset: the core group of Avengers volunteered to
build a system for teaching CS1101S that we called “Source Academy”

● Guiding principle: KISS: JavaScript is too big for us: we need to shrink it!

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

What did we mean by shrinking JavaScript?

● We force students to use very small JavaScript sublanguages

● Language features not in sublanguages are not available
in our implementation

Similar to approaches in teaching PL/I, DrScheme, Racket, Grace

For references, see “Shrinking JavaScript for CS1” SPLASH-E 2021

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://www.comp.nus.edu.sg/~henz/publications/#y2021

Why shrink the CS1 language?

● Lower the barrier of entry
● Focus on learning objectives
● Simplify implementation of tools

Examples:

if (test(x) === true) { … } else { … } bad: is not in first sublanguage
if (test(x)) { … } else { … } good (if test returns boolean)

JavaScript’s == operator is weird
⇒ Our JavaScript sublanguages do not have ==

OOP not introduced in our CS1
⇒ Our JavaScript sublanguages do not have OOP

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

SICP JS book project

● Third challenge: How to communicate course content
effectively in a team of ~100 persons in total?

● Solution: get serious about adapting SICP to JavaScript

● Key assets: Tobias Wrigstad who visited NUS on a teaching sabbatical
in 2019, and Julie Sussman, who got involved as MIT Press editor in
August 2020

● Result: SICP JavaScript Edition

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://mitpress.mit.edu/books/structure-and-interpretation-computer-programs-1

Language progression in our CS1 course

● Source §1: JavaScript sublanguage for SICP JS Chapter 1
○ Lambda calculus plus statements, primitive values, explicit recursion

● Source §2: for SICP JS Chapter 2
○ Source §1 plus pairs

● Source §3: for SICP JS Chapter 3
○ Source §2 plus variables and assignment (our CS1 course also adds arrays and loops)

● Source §4: for SICP JS Chapter 4
○ Source §3 plus a parse function

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Source §1

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Source §1 (continued)

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Some fun with Source §1

Runes: https://share.sourceacademy.org/rightsplit

Curves: https://share.sourceacademy.org/funwithcurves

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/rightsplit
https://share.sourceacademy.org/funwithcurves

Source §2

● Add primitive expression null for empty list (Scheme’s nil)
● Add pair, head, tail (Scheme’s cons, car, cdr)
● Add library for list processing (map/reduce/filter)

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/factorialinstepper

Some fun with Source §2

Functional audio processing: https://share.sourceacademy.org/echo

Sound contest 2019 winner: https://share.sourceacademy.org/0iz2g

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/echo
https://share.sourceacademy.org/0iz2g

Source §3

● Required by SICP:

● Required by our CS1:
○ while loops, for loops
○ Arrays:

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/bankaccount
https://share.sourceacademy.org/appendcps

Some fun with Source §3

Composing video filters: https://share.sourceacademy.org/funwithfilters

Motion detector: https://share.sourceacademy.org/motiondetector

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/funwithfilters
https://share.sourceacademy.org/motiondetector

Source §4

● Add function parse for meta programming

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.nus.edu.sg/mcefactorial

Source Academy

Open-source, developed for students by students:
First-year projects, Prog. Lang. Implementation term projects, Final-Year Projects

● Source Academy: https://sourceacademy.org server-less, on Github pages
● Source Academy @ NUS: https://sourceacademy.nus.edu.sg adds:

● Scalable backend (written in Elixir, currently hosted on AWS)
● Game
● Achievements
● Assignments (uploading, submission, manual and automatic grading)
● Contests
● Course management support

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://github.com/source-academy
https://sourceacademy.org
https://sourceacademy.nus.edu.sg

In-browser language implementations (js-slang)

● Parser: restricts students to chosen sublanguage

● Transpiler: JavaScript-to-JavaScript translation ensures
proper tail calls (PTC) even when the browser does not
implement PTC, adds pedagogical error messages

● Stepper: based on small-step reduction semantics

● Compilers from Source to SMVL virtual machine language:
used for robotics and SICP 3.4

● Interpreters: used for environment visualizer and SICP 4.3

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://github.com/source-academy/js-slang
https://www.comp.nus.edu.sg/~henz/publications/#splasheshrinking2021.abstract
https://www.comp.nus.edu.sg/~henz/publications/#splashestepper2021.abstract
https://www.comp.nus.edu.sg/~henz/publications/#splasheruggedizing2021.abstract
https://www.comp.nus.edu.sg/~henz/publications/#splasheshrinking2021.abstract

Outcome: Shrinking languages

Shrinking the CS1 language is liberating everyone involved:

● Students: “I can achieve what my ‘expert programmer’ peers can achieve.”

● Instructor: “I don’t need to worry about language features that I don’t cover.”

● Implementer: “I can design and implement new tools in a semester project.”

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Outcome: Source Academy

91% of CS1101S students in 2021 said they
Agree/Strongly Agree that the Source Academy helped them
“understand the structure and interpretation of computer programs”

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Some anonymous CS1101S student feedback:

● “Source Academy was a brilliant and fun platform to use. The format of
paths, missions, and quests kept my interest up throughout the course.”

● “The Source Academy was nothing short of a marvel; I cannot imagine the
amount of effort and resources that were needed to make it a success…”

Outlook: JavaScript for CS1

Motivation

Shrinking JavaScript

Implementation

Outcome

Outlook

● EcmaScript 2015 enabled seamless use of JavaScript in
SICP-based courses

● JavaScript keeps improving while retaining the functional
core used in SICP

Any application that can be written in JavaScript,

will eventually be written in JavaScript.

 Atwood’s Law

Outlook: Shrinking languages

Motivation

Shrinking JavaScript

Implementation

Outcome

Outlook
You can roll your own web-based shrunken language
implementation using Source Academy infrastructure

Examples:

● Scheme in Source Academy

● SICPy

https://scheme.garyliu.dev/
http://localhost:8000/

Outlook: Entry-level CS Education
Motivation

Shrinking JavaScript

Implementation

Outcome

Outlook

SICP is still, after 50 years, the best
computer science book in the world.

Brian Harvey, Berkeley

● SICP JS translation to Chinese under way

● Synergy between textbook and Source Academy

Can we build an inclusive global community of
learners of entry-level computer science?

Some fun with Source §1

Runes: https://share.sourceacademy.org/rightsplit

Curves: https://share.sourceacademy.org/funwithcurves

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/rightsplit
https://share.sourceacademy.org/funwithcurves

Some fun with Source §2

Functional audio processing: https://share.sourceacademy.org/echo

Sound contest 2019 winner: https://share.sourceacademy.org/0iz2g

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/echo
https://share.sourceacademy.org/0iz2g

Some fun with Source §3

Composing video filters: https://share.sourceacademy.org/funwithfilters

Motion detector: https://share.sourceacademy.org/motiondetector

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/funwithfilters
https://share.sourceacademy.org/motiondetector

Parser

The Source Academy uses Acorn1, an open-source JavaScript
parser, to build the Abstract Syntax Tree (AST).

We also check for any disallowed JavaScript syntax and return an
error if any is found. What we get at the end is a valid Source AST.

1https://github.com/acornjs/acorn

Is SICP JS more complex than the original? If so: why?

Apart from the superficial syntax issues, SICP JS differs from SICP in two major ways:
(1) It adds return statements to the language: you can return from a function anywhere in the body
(2) It adds the notion of parsing: the text of a program can be transformed into a data structure

But the question is: What are the concepts that need to be covered today, when the ambition is “Structure and
Interpretation of Computer Programs”?

● Return statements?
● Language processing of non-Lisp-like languages?

If the answer in these two cases is “Yes” then adding Return statements and Parsing is not a bug but a feature:

A reader who is interested in the “structure and interpretation of computer programs” should learn about return
statements and what they mean, because they occur in most languages that are in popular use today.

Similarly, a reader should be exposed to parsing because it is the key to implementing any language that is not
Lisp-like.

Outcome: CS1101S student # and feedback
Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Learning experiences

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Learning experiences

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Background

● 1970s-90s: Hal Abelson and Gerald Jay Sussman spearhead principled CS1
education with Structure and Interpretation of Computer Programs

● 1997: NUS adopts SICP in a CS1 course called CS1101S

● 2008: JavaScript adaptation of SICP starts

● 2012: CS1101S converts from Scheme to JavaScript

● 2015: EcmaScript 2015 enables “serious” work on SICP JS

● 2018: CS1101S becomes compulsory for all CS first-year students

The challenge: scaling from 120 student in 2017 to 667 students in 2021

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

Why use JavaScript rather than Python?

● Proper tail calls (PTC) is in JavaScript standard (ES2021).
● Python does not specify PTC.

● Functional programming is at least as elegant in JavaScript as in Scheme.
● Python imposes syntactic restrictions on lambda expressions.

● JavaScript clearly distinguishes assignment from declaration (since ES2015).
● Python does not syntactically distinguish between assignment and declaration.

Plus: All the fun in the World Wide Web!

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://sicp.sourceacademy.org/chapters/1.3.4.html

Stepper

Processes for factorial: https://share.sourceacademy.org/factorialinstepper

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://share.sourceacademy.org/factorialinstepper

Data Viz

Data visualization: SICP JS 2.2.2

Debugging append: https://share.sourceacademy.org/66ymt

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://sourceacademy.org/sicpjs/2.2.2#ex-2.29
https://share.sourceacademy.org/66ymt

Environment Visualizer

Debugging a bank account: https://share.sourceacademy.org/bankaccount

Debugging cps: https://share.sourceacademy.org/appendcps

Motivation

Shrinking JavaScript

Implementation

Outcomes

Outlook

https://sourceacademy.org/sicpjs/3.2.3
https://share.sourceacademy.org/bankaccount
https://share.sourceacademy.org/appendcps

Learning Tools: Environment Visualiser

Allows students to inspect
a Source program’s current
execution state by setting
breakpoints before the
relevant program lines.

It uses a CPS-style
interpreter (rather than
Source transpiler)

Why did instructors stop using Scheme for CS1?

● Programming has become a practically useful skill for students:
internships, summer jobs, startups,...

● Student motivation increases when they perceive the language
as “useful” to them

● Syntax not very important…except:
Scheme syntax is so different from the rest

