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Abstract

Nemhauser and Trick presented the problem of finding a timetable for the 1997/98

Atlantic Coast Conference (ACC) in basketball. Their solution, found with a com-

bination of integer programming and exhaustive enumeration, was accepted by the

ACC.

Finite-domain constraint programming is another programming technique that can

be used for solving combinatorial search problems such as sports tournament schedul-

ing. This paper presents a solution of round robin tournament planning based on

finite-domain constraint programming. The approach yields a dramatic performance

improvement, which makes an integrated interactive software solution feasible.

1 Introduction

Round robin tournaments are popular in many sports disciplines. They consist of suc-

cessions of dates in which each team plays each other team a fixed number of times

(twice in a double round robin). Such tournaments become computationally interesting,

if constraints prevent the reuse of well-known timetables. Such a case is presented by

Nemhauser and Trick (1998) where a host of criteria coming from teams, fans and media

must be satisfied. They show how the criteria are exploited in three phases of a solution

process, implemented using integer programming and explicit enumeration, and report a

“turn-around-time” of 24 hours, which means it takes one day of computing time from
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specifying/modifying the criteria using feedback from the ACC organizers to proposing

new solutions.

An alternative approach to solving such a combinatorial search problem is finite-

domain constraint programming. This paper shows how constraint programming can

be used for solving all three phases of the process and reducing the turn-around-time to

below one minute on a computer with similar performance as the one used by Nemhauser

and Trick. This speedup makes it practical to encorporate the approach in an interactive

tool for round robin scheduling.

Finite-domain constraint programming is introduced in the next section. The ACC

1997/98 tournament scheduling problem is given in Section 3. Section 4 explains the

decomposition into three phases. Sections 5, 6 and 7 describe the modeling and imple-

mentation of these phases using finite-domain constraint programming.

2 Constraint Programming

Finite-domain constraint programming is a technique designed for solving combinatorial

search problems. It evolved from research in constraint logic programming languages—

described by Jaffar and Maher (1994)—and led to the development of constraint pro-

gramming languages such as CHIP described by Dincbas et al. (1988), and Oz described

by Smolka (1995), and the constraint programming library ILOG Solver described by

Puget (1994). Stuckey and Marriott (1998) explain the approach in detail and Wal-

lace (1996) presents an overview of applications of finite-domain constraint programming.

Every variable of the model is represented by a finite-domain variable. A constraint

store stores information on such a variable in the form of the set of possible values that

the variable can take; this set is called the current domain of the variable. More formally,

the constraint store is a conjunction of constraints of the form x ∈ S, where S is a set

of integers. Computation starts with an initial domain for each variable as given in the

model. Some constraints can be directly entered in the constraint store. For example, the

constraint x 6= 5 can be expressed in the constraint store by removing 5 from the domain

of x.
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Other more complex constraints are translated by the programmer into computational

agents called propagators. Each propagator observes the variables given by the corre-

sponding constraint in the problem. Whenever possible, it strengthens the constraint

store with respect to these variables by excluding values from their domain according to

the corresponding constraint. For example, a propagator for the constraint x ≤ y observes

the upper and lower bounds of the domains of x and y. A possible strengthening consists

of removing all values from the domain of x that are greater than the upper bound of

the domain of y. Apart from arithmetic constraints, propagators can express complex

symbolic relationships between variables, such as the constraint that the values of given

variables should be distinct integers.

The process of propagation continues until no propagator can further strengthen the

constraint store. The constraint store is said to be stable. At this point, many problem

variables typically have still non-singleton domains. Thus the constraint store does not

represent a solution, and search becomes necessary.

Search for solutions is implemented by choice points. A choice point generates a

constraint c. From the current stable constraint store cs, two new constraint stores are

created by adding c and ¬c, respectively, to cs. It is quite possible that the new constraint

stores are not stable, in other words c or ¬c trigger some propagators in the respective new

store. After stability is reached, this branching process is continued recursively on both

sides until every leaf of the resulting search tree is either inconsistent or every variable

has a unique value. The choice of the constraint c at each branching determines the shape

and size of the search tree and thus is a crucial factor for performance of the search.

A mechanism to systematically generate these constraints is called a search strategy. A

common search strategy is based on variable enumeration, i.e. the constraints c have the

form x = v for some variable x and some value v from its domain.

A constraint programming system takes care of activating propagators, reaching sta-

bility and performing the search. The programmer can concentrate on translating the con-

straints into appropriate propagators and specifying the search strategy. Finite-domain

constraint programming systems support this task through libraries of propagators and
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search strategies.

3 The ACC 1997/98 Tournament Scheduling Problem

The double round robin scheme determines that every team i plays against every other

team exactly twice during the competition, once at the place of team i (a home match

for i) and once at the other team’s place (an away match for i). The first of the two

matches is called the first leg, the second is the return match.

A temporally dense double round robin (DDRR) for n teams distributes the n(n− 1)

matches over a minimal number of dates such that every team plays at most one match

per date. If n is even, the number of dates is 2(n − 1). A DDRR with an odd number of

teams consists of 2n dates in each of which n− 1 teams play and one team does not. This

team is said to have a bye.

The ACC 1997/98 schedule in male basketball described by Nemhauser and Trick

(1998) was a DDRR consisting of nine teams: Clemson (abbreviation Clem; team 1),

Duke (Duke; 2), Florida State (FSU; 3), Georgia Tech (GT; 4), Maryland (UMD; 5), North

Carolina (UNC; 6), North Carolina State (NCSt; 7), Virginia (UVA; 8), and Wake Forest

(Wake; 9). The problem was to find a DDRR timetable whose 18 dates are distributed

over the period of nine weeks starting December 31 1997 (date 1, a Wednesday) and

ending March 1 1998 (date 18, a Sunday) such that there is one weekday date and one

weekend date per week, subject to a number of criteria. For the purpose of comparison,

only the criteria that are employed by Nemhauser and Trick (1998) and Trick (1998) are

considered here.

1. Mirroring. The dates are grouped into pairs (r1, r2), such that each team will

get to play against the same team in dates r1 and r2. Such a grouping is called a

mirroring scheme. Nemhauser and Trick fix the mirroring scheme to

m = {(1, 8), (2, 9), (3, 12), (4, 13), (5, 14), (6, 15), (7, 16), (10, 17), (11, 18)}

to cater for one of the idiosyncratic criteria (see Criteria 9 below). To ease the

comparison with their work, this mirroring is used throughout this paper.
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2. No Two Final Aways. No team can play away on both last dates.

3. Home/Away/Bye Pattern Criteria. No team may have more than two away

matches in a row. No team may have more than two home matches in a row. No

team may have more than three away matches or byes in a row. No team may have

more than four home matches or byes in a row.

4. Weekend Pattern. Of the weekends, each team plays four at home, four away,

and one bye.

5. First Weekends. Each team must have home matches or byes at least on two of

the first five weekends.

6. Rival Matches. Every team except FSU has a traditional rival. The rival pairs are

Clem-GT, Duke-UNC, UMD-UVA, and NCSt-Wake. In the last date, every team

except FSU plays against its rival, unless it plays against FSU or has a bye.

7. Popular Matches in February. The following pairings must occur at least once

in dates 11 to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.

8. Opponent Sequence Criteria. No team plays in two consecutive dates away

against Duke and UNC. No team plays in three consecutive dates against Duke,

UNC and Wake (independent of home/away).

9. Idiosyncratic Criteria. UNC plays its rival Duke in the last date and in date 11.

UNC plays Clem in the second date. Duke has a bye in date 16. Wake does not play

home in date 17. Wake has a bye in the first date. Clem, Duke, UMD and Wake

do not play away in the last date. Clem, FSU, GT and Wake do not play away in

the first date. Neither FSU nor NCSt have a bye in last date. UNC does not have

a bye in the first date.

Among all solutions that fulfill these criteria, Nemhauser and Trick chose those solu-

tions that suitably satisfy a number of further preferences, for final selection by the ACC.

These preferences and the resulting postprocessing is beyond the scope of this work.
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4 Computing Round Robin Tournament Schedules

Previous works on round robin scheduling by Cain (1977), de Werra (1988), Schreuder

(1992), Schaerf (1996), and Nemhauser and Trick (1998) generally agree on a decompo-

sition of the scheduling process into three phases, namely pattern generation, pattern set

generation and timetable generation. McAloon, Tretkoff and Wetzel (1997) use constraint

programming to solve a related problem, in which the concept of home and away games is

replaced by resources called periods, and therefore this decomposition is not applicable.

A pattern indicates the way in which a team can play home, away and bye throughout

the tournament. In the ACC 1997/98 case, patterns are subject to Criteria 1 through 5

given in the previous section. The following pattern meets these criteria; here, a home

game is represented by the symbol +, an away game by − and a bye by b.

dates 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

pattern − + b − + + − + − − + b + − − + + −

After generating all patterns that meet the given criteria, sets of n patterns are com-

puted. The patterns in such a pattern set must have properties that enable the construc-

tion of a timetable based on its patterns.

From a given pattern set, timetables are constructed by deciding which team plays

according to which pattern and against which opponent in each round.

5 Patterns

A suitable constraint programming model for pattern generation consists of 0/1 variables

hj , aj and bj , 1 ≤ j ≤ 18. A team that plays according to the pattern represented by

these variables plays home (away, bye) at date j if and only if hj = 1 (aj = 1, bj = 1).

The constraints on these variables are given in Table 1.

The first constraint expresses that a team plays either home, away or has a bye in

each round. Constraints 2 through 6 correspond to the first five ACC 1997/98 criteria in

Section 3. Constraints 7 stem from Criteria 9 in Section 3, since only one team can have

a bye in a given date.
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1. For all dates j: hj + aj + bj = 1

2. For all pairs of dates (j, j ′) ∈ m (m is given in Constraint 1 in Section 3):
hj = aj′ , aj = hj′ , bj = bj′

3. a17 + a18 < 2

4. For all j ≤ 16: aj + aj+1 + aj+2 < 3, hj + hj+1 + hj+2 < 3,
for all j ≤ 15: aj + bj + aj+1 + bj+1 + aj+2 + bj+2 + aj+3 + bj+3 < 4,
for all j ≤ 14: hj +bj +hj+1+bj+1+hj+2+bj+2+hj+3+bj+3+hj+4+bj+4 < 5

5. (
∑

j∈{2,4,...,18} hj) = 4, (
∑

j∈{2,4,...,18} aj) = 4, (
∑

j∈{2,4,...,18} bj) = 1

6. (
∑

j∈{2,4,6,8,10} hj + bj) ≥ 2

7. b1 + a18 < 2, b1 + h17 < 2, b16 + a18 < 2

Table 1: The Constraints for Patterns

Constraint programming systems provide propagators for all these arithmetic con-

straints. The most effective search strategy in our case seems to be to enumerate the h,

a and b variables date-wise, i.e. in the order h1, a1, b1, h2, a2, b2, . . . , b18.

For ACC 1997/98, Nemhauser and Trick argue that explicit enumeration (“generate

and test”) finds all 38 patterns in reasonable time, but do not give runtimes. Using the

above model, a constraint program performs all solution search in 0.44 seconds using

117 choice points. This and all other runtimes given in this work were obtained by the

constraint-based round robin tournament planning software Friar Tuck developed by the

author and given in Henz (1999), on a PC with a 233 MHz Pentium II processor and 64

MBytes of RAM. Friar Tuck is implemented using the constraint programming system

Mozart, Mozart Consortium (1999).

6 Pattern Sets

The next step is to generate suitable sets of 9 patterns. Graph-theoretical results cover the

existence and generation of pattern sets with useful properties; see de Werra (1988) and

Schreuder (1992). In the presence of irregular constraints on patterns such as Criteria 3 in

Section 3 the pattern set problem becomes a combinatorial search problem. The following

model is suitable for a solution using constraint programming.
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The 38 feasible patterns are represented by three 38 × 9 matrices h, a, and b of 0/1

values, where hi,j , (ai,j , bi,j) indicate whether pattern i fixes date j to a home game (away

game, bye). For each pattern i, a 0/1 variable xi indicates whether this pattern occurs in

the resulting pattern set. The constraints are

1.
∑

i xi = 9

2. For all dates j: (
∑

i hi,jxi = 4), (
∑

i ai,jxi = 4), (
∑

i bi,jxi = 1)

Following Trick (1998) we exclude pairs of patterns in which there is no possible meeting

date for corresponding teams. More formally,

3. For every pair i, i′ s.t. i 6= i′, ∀j(hi,j = 0∨ai′ ,j = 0) and ∀j(ai,j = 0∨hi′,j = 0):
xi + xi′ ≤ 1

Nemhauser and Trick model pattern set generation as an optimization problem and use

integer programming to solve it. They report that all 17 pattern sets are found by solving

a sequence of 17 integer programs with an overall runtime under 1 minute on a Sun

Sparcstation 20 with CPLEX version 4.0. In each run, a constraint was added to the

previous integer program that precludes the previous solution.

For constraint programming, there is no need for introducing an objective function and

therefore the modeling and implementation is simpler than for the integer programming

approach. A constraint program for the above model performs all solution search in 3.1

seconds with 176 choice points, using simple enumeration of the variables xi.

7 Timetables

This step generates feasible timetables from a given pattern set. Two approaches for

timetable generation have been described. The first approach—proposed by Schreuder

(1992) and used by Nemhauser and Trick—generates timetables of “placeholder teams”

first and then assigns teams to placeholders. This approach is also taken in previous work

on using constraint programming for DDRR scheduling by Schaerf (1996). The disad-

vantage of this approach for ACC 1997/98 is that the team-specific Criteria 6 through 9

cannot be exploited while generating timetables of placeholders. Nemhauser and Trick
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report a runtime of 24 hours on a Sun Sparcstation 20 to compute all timetables based on

the 17 pattern sets for this approach using integer programming and explicit enumeration.

The second approach—sketched by Cain (1977)—assigns teams to pattern sets, and

then opponent teams for each team and date. This work recasts Cain’s approach in the

framework of finite-domain constraint programming. The following model assumes that

the pattern set is given in the form of 9 × 18 matrices H, A and B of 0/1 values whose

entries Hi,j (Ai,j , Bi,j) indicate home matches (away matches, byes) for pattern i in date j.

The target timetable is represented by a 9 × 18 matrix α, whose variables αi,j range

over 0, . . . , 9 and tell the opponent team against which team i plays in date j (0 stands

for bye), and three 9 × 18 matrices H, A and B of 0/1 variables whose entries Hi,j (Ai,j,

Bi,j) tell if team i plays home (plays away, has a bye) in date j.

The constraints on α, H, A and B are given in Table 2. Here, distinct is a constraint

that forces all its arguments to be distinct integers. (x
.
= y) stands for a 0/1 variable

which is 1 if and only if x is equal to y; (x ∈ s) stands for a 0/1 variable which is 1 if and

only if x is an element of s. Such constraints that reflect the validity of another constraint

in a 0/1 variable were introduced in the context of constraint programming by Older and

Benhamou (1993). For such constraints, the term reified constraint was coined by Gert

Smolka and appeared first in Henz and Würtz (1995). Expressions formed by the logical

operations ⇒, ∧ and ∨ represent constraints that operate on 0/1 variables. Constraints

1 through 7 describe general properties of DDRRs with an odd number of teams. Note

that Constraints 4 are redundant due to Constraints 3. Adding redundant constraints

to achieve earlier pruning of the search tree is an important constraint programming

technique. Constraints 8 through 11 correspond to the ACC 1997/98 Criteria 6 through 9

in Section 3.

To connect the given pattern set to the target timetable, nine finite-domain variables

pi, 1 ≤ i ≤ 9, ranging over 1, . . . , 9 are introduced. Each team i plays according to the

pattern in row pi of H, A and B. The following relationship links the given pattern set

with the target timetable, using the variables pi as indices.
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1. For all dates j: distinct(α1,j, . . . , α9,j)

2. For all teams i, i′, i 6= i′, and dates j: (αi,j
.
= i′) = (αi′,j

.
= i)

3. For all teams i, i′, i 6= i′: (
∑

j∈{1,...,18}(αi,j
.
= i′)) = 2

4. For all teams i and dates j: αi,j 6= i

5. For all teams i and dates j: (αi,j
.
= 0) = Bi,j

6. For all teams i, i′, i 6= i′, and dates j: (αi,j
.
= i′) ⇒ ((Hi,j∧Ai′,j)∨(Ai,j∧Hi′,j))

7. For all teams i and dates j: Hi,j + Ai,j + Bi,j = 1

8. For all pairs of teams (i, i′) ∈ {(1, 4), (2, 6), (5, 8), (7, 9)}:
(αi,18

.
= i′) ∨ (αi,18

.
= 3) ∨ (αi,18

.
= 0)

9. For all pairs of teams (i, i′) ∈ {(2, 4), (2, 9), (4, 6), (6, 9)}:
(
∑

j∈{11,...,18}(αi,j
.
= i′)) ≥ 1

10. For all teams i and dates j ∈ {1, . . . , 17}:
(αi,j ∈ {2, 6}) + Ai,j + (αi,j+1 ∈ {2, 6}) + Ai,j+1 < 4,
for all teams i and dates j ∈ {1, . . . , 16}:
(αi,j ∈ {2, 6, 9}) + (αi,j+1 ∈ {2, 6, 9}) + (αi,j+2 ∈ {2, 6, 9}) < 3

11. α6,11 = 2, α6,18 = 2, α6,2 = 1, B2,16 = 1, H9,17 = 0, B9,1 = 1, A1,18 = 0,
A2,18 = 0, A5,18 = 0, A9,18 = 0, A1,1 = 0, A3,1 = 0, A4,1 = 0, A9,1 = 0,
B3,18 = 0, B7,18 = 0, B6,1 = 0.

Table 2: The Constraints for Timetables

For all teams i and dates j: Hpi,j = Hi,j, Api,j = Ai,j, Bpi,j = Bi,j

This relationship is expressible with the so-called element constraint described by

Dincbas, Simonis and Van Hentenryck (1988). The element constraint takes as arguments

a finite-domain variable k, a vector of integers v and a finite-domain variable w.

el(k, v, w)

The semantics is vk = w. A corresponding propagator can restrict the possible values for

k, if a value in v is eliminated from w, and it can eliminate a number x from w, if the

last index that pointed to an x in v is eliminated from k. Both propagation directions

are essential here. The following Constraints 12 describe the desired relationship; here Hj

(Aj , Bj) stands for the jth column of the matrix H (A, B).
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12. For all teams i and dates j: el(pi,Hj,Hi,j), el(pi, Aj ,Ai,j), el(pi, Bj ,Bi,j).

All major constraint programming systems provide propagators for all constraints re-

quired, including el, distinct, logical and reified constraints.

The search strategy of Cain’s method first assigns patterns to teams by enumerating

the variables in p. In this process, the matrices H, A and B are gradually being deter-

mined. The propagators for the element constraints, together with the propagators for

the constraints 8 through 11 in Table 2, achieve a dramatic pruning of the search tree in

this process.

Next, the variables in α are enumerated. Here, the propagators corresponding to

the constraints in Table 2 achieve further pruning. Apparently, the best strategy is to

enumerate date-wise, i.e. in the order α1,1, α2,1, . . . , αn,1, α1,2, . . . , αn,d. A constraint

program for this approach performs all solution search successively on all 17 pattern sets

in 53.7 seconds using 476 choice points, leading to 179 solutions.

8 Conclusion

Modeling and solving sports tournament scheduling problems with finite-domain con-

straint programming can lead to efficient computation of timetables. All 179 solutions

to the ACC 1997/98 tournament scheduling problem presented by Nemhauser and Trick

(1998) are found in less than one minute using constraint programming, whereas Nem-

hauser and Trick report an overall runtime of about 24 hours (both on computers with

similar performance) using exhaustive enumeration and integer programming.

Nemhauser and Trick report that problems of this kind require multiple cycles of

problem refinement in collaboration with the tournament organizers to obtain a timetable

that satisfies all parties involved. In such a scenario, the advantage of an interactive and

efficient software becomes even more obvious. The results reported in this paper show

that finite-domain constraint programming can provide the base for such a software, as

realized in the round robin scheduler Friar Tuck, Henz (1999).
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