
A Compositional Framework for Sear
h

Chiu Wo Choi

1

, Martin Henz

1

, Ka Boon Ng

2

1

S
hool of Computing, National University Of Singapore, Singapore

f
hoi
hiu,henzg�
omp.nus.edu.sg

2

Honeywell Singapore Laboratory

kevin.ng�honeywell.
om

Abstra
t. Re
ent developments in 
onstraint programming systems

show an in
reasing emphasis on providing abstra
tions for 
on�guring

sear
h. Existing frameworks for tree sear
h o�er 
ustomized exploration,

bran
hing and state restoration poli
ies. We argue, however, that most

of these frameworks do not provide adequate abstra
tions for more 
om-

plex sear
h s
enarios, where di�erent sear
h te
hniques are used in dif-

ferent phases of the sear
h, where parts of sear
h trees are systemati-


ally dis
arded, or where tree sear
h is embedded in a 
ontext of lo
al

optimization. In this paper, we propose to des
ribe 
omplex sear
h s
e-

narios using a 
ompositional framework, realized in the Figaro library,

with an abstra
tion 
alled engine. We demonstrate its expressivity by

re-formulating two 
omplex sear
h s
enarios from the literature.

1 Introdu
tion

Finite domain 
onstraint programming (CP(FD)) systems provide software ar-


hite
tures for the integration of algorithms for propagation and tree sear
h to

solve 
ombinatorial sear
h problems. Re
ent resear
h in 
onstraint program-

ming (CP) systems is paying in
reasing attention to the software design in

order to mat
h appli
ation-spe
i�
 requirements. One important aspe
t is to

provide abstra
tions for 
on�guring sear
h. CP systems like ILOG [Per99℄ and

OPL [VPP00℄ des
ribe tree sear
h in terms of sear
h goals, whi
h are inherited

from logi
 programming. The language Oz allows programming of tree sear
h

algorithms using the built-in data stru
ture 
alled spa
es [S
h97,S
h00℄. SAL-

SA [LC98℄ is a language designed for spe
ifying sear
h algorithms using the


on
ept of 
hoi
e points.

1

The Figaro library provides a modular ar
hite
tures

for 
ustomizing the state restoration poli
ies, in addition to the bran
hing and

exploration of tree sear
h [HMN99,CHN00,Ng01,CHN01℄.

Among the existing frameworks for tree sear
h, we observe that abstra
tions

are limited to 
ustomized exploration, bran
hing and state restoration poli
ies.

We argue, however, that as the 
omplexity of appli
ation-spe
i�
 sear
h algo-

rithms in
reases, it be
omes more diÆ
ult to des
ribe the 
orresponding sear
h

s
enarios. Typi
al 
omplex sear
h s
enarios in
lude dividing the sear
h into mul-

tiple phases where ea
h phase employs a di�erent sear
h te
hnique; systemati
al-

ly dis
arding parts of sear
h trees; and embedding tree sear
h in a 
ontext of lo
al

1

SALSA also supports lo
al sear
h, but this paper only fo
uses on tree sear
h



optimization. The existing frameworks fo
us on low-level abstra
tion details and

thus make it tedious for programmers to apply the right sear
h algorithms and

te
hniques. Furthermore, programming low-level details adds additional 
om-

plexity to the 
ode and is usually an error-prone pro
ess.

Modern engineering pra
ti
e allows engineers to build 
omplex systems by


omposing small and well-de�ned units. Su
h a 
ompositional framework leads

to a better understanding of the desired fun
tionality and stru
ture of the overall

system. Moreover, it en
ourages reuse, leading to both a faster development 
y
le

and a more robust system.

Sear
h 
an be thought of as su
h a 
omplex system, whi
h 
an be de
om-

posed into smaller fun
tional units 
alled engines. We propose a 
ompositional

framework for des
ribing 
omplex sear
h s
enarios using engines. Ea
h engine

performs a single fun
tion (e.g. , sear
h, print), and engines 
an be 
omposed

together to form more 
omplex sear
h s
enarios. We are designing and imple-

menting the framework using Figaro [HMN99,CHN00,Ng01,CHN01℄, a C++ CP

library, further pursuing its obje
tive of high reusability and rapid prototyping

for sear
h 
omponents. Noti
e that we design our framework within the obje
t-

oriented paradigm rather than the logi
 paradigm.

We present the 
ompositional framework in Se
tion 2. Se
tions 3 and 4 dis
uss

the details of engines. Se
tions 5 and 6 dis
uss the operators that we apply to

engines. The �rst 
ase study (Se
tion 7) dis
usses engines for embedding tree

sear
h in the 
ontext of lo
al optimization. The se
ond 
ase study (Se
tion 8)

on the three-phase approa
h of round-robin tournament s
heduling demonstrates

the pra
ti
ality of our framework. Se
tion 9 
ompares the approa
h with existing

frameworks.

2 Framework

The framework identi�es di�erent engines for des
ribing sear
h, and how they

intera
t with ea
h other. Ea
h engine should be a 
oherent fun
tional unit and

loosely 
oupled with one another. Spe
i�
 design requirements of the framework

are as follows:

1. a standard interfa
e for 
ombining engines to form more 
omplex engines,

2. a me
hanism to expli
itly 
ontrol the exe
ution of engines for 
oherent inte-

gration,

3. support for engines to maintain stateful information as the 
onsequen
e of

expli
it 
ontrol,

4. orthogonal 
on
epts to provide high reusability, and

5. support for extension to sear
h s
enarios other than simple tree sear
h.

The BNF grammar in Figure 1 gives an overview of the design. Rule 1 is

a 
omposition rule that spe
i�es that two engines are 
ombined to from a new

engine using the ! operator. Engines 
ommuni
ate with ea
h other using 
on-

straint stores. This ful�lls our design requirement (1). To a
hieve requirement

(2) and (3), we implement an engine obje
t using a demand-driven approa
h for



Fig. 1 The Syntax of Engine

henginei ::= henginei ! henginei (Rule 1)

j ModelEngine(hmodeli) (Rule 2)

j PrintEngine(hmodeli) (Rule 3)

j TreeSear
hEngine(...) (Rule 4)

j First(henginei) (Rule 5)

j Last(henginei) (Rule 6)

produ
ing output. The demand-driven approa
h will be dis
ussed in the next

se
tion. Rule 2, 3, and 4 spe
ify how to build primitive engines ModelEngine,

PrintEngine, and TreeSear
hEngine. A TreeSear
hEngine (details in Se
tion 4) is


omposed of orthogonal sear
h 
omponents, whi
h design ful�lls requirement (4).

Rule 5 and 6 spe
ify solution �ltering operations over engine: First and Last. The

ability to de�ne with new engines using our obje
t-oriented framework a
hieves

requirement (5). We dis
uss the details of engines in the subsequent se
tions.

The simple example below shows how to use our framework for solving the

N-Queen puzzle:

ModelEngine(N-Queen) ! TreeSear
hEngine(...) ! PrintEngine(N-Queen)

The framework divides the problem solving pro
ess into three phases. In the

�rst phase (line 1), ModelEngine generates a 
onstraint store that 
ontains the

N-Queen problem model. In the se
ond phase (line 2), TreeSear
hEngine takes

in the 
onstraint store and looks for all the possible solutions using tree sear
h.

In the third phase (line 3), PrintEngine transforms the solutions obtained from

the tree sear
h engine to the desired output format.

3 Engines

In CP(FD), a 
onstraint store (or simply store) represents a 
omputational state,

hosting �nite-domain variables and 
onstraints for performing 
onstraint propa-

gation to eliminate in
onsistent values. Refer to [Ng01℄ for a detailed dis
ussion

of stores.

Engine is the basi
 unit of abstra
tion in our framework. The basi
 operation

of an engine is to manipulate or transform stores. We 
an view engine as a

ma
hinery that takes in a store for pro
essing; and produ
es a stream of stores

as output. Output of stores is demand-driven, meaning that the next store to

output is only 
omputed upon request from a subsequent engine.

Fig. 2 The Design of an Engine

Engine
init(store) ...

next solution()



Fig. 3 The Class Hierar
hy of Engines

Abstract Primitive Engine

Model Engine Tree Search Engine

First Operator

Abstract Engine

Print Engine

Last Operator

Composition Operator

Abstract Composite Engine

The two main fun
tions of engines are init and next solution. Figure 2 shows

the design of an engine. The init fun
tion a

epts a store as argument and pre-

pares the engine for generating the output stream of stores. The next solution

fun
tion requests the next output store in the stream, realizing the demand-

driven approa
h. In the engine 
ontext, solutions of the engine are represented

by stores. For the dis
ussions of engines, we use the terms solution and store

inter
hangeably.

The 
lass hierar
hy of engines is shown in Figure 3. Engines are instan
es

of an abstra
t 
lass (Program 1). There are two types of engines: primitive

engines and 
omposite engines, also implemented as an abstra
t 
lass. Primitive

engines are built from basi
 orthogonal 
omponents. Primitive engines in
lude

ModelEngine, PrintEngine, and TreeSear
hEngine. Composite engines are build

from one or more other engines. We 
an view 
omposite engines as wrappers

around engines to form new engines. They in
lude �ltering operators (First and

Last), and the 
omposition operator!. Noti
e that the operators are themselves

engines, so that the resulting type after applying the operator is still engine, and


an be further manipulated (refer to the BNF grammar in Figure 1).

ModelEngine is a trivial engine, whose fun
tion is to return a store 
ontain-

ing the problem des
ription. ModelEngine is the 
omponent that 
ontains the

des
ription of the problem to be solved. It takes model as an argument and

performs no operation during init. When there is a request for next solution, it

returns a store imposed with the problem model.

PrintEngine is a trivial engine, whose fun
tion is to transform solutions to

the desired output format. PrintEngine a

epts a model as an argument. During

init, it makes a fun
tion 
all to model to print the solution.

Program 1 C++ Abstra
t Class De
laration of Engine

1 
lass Engine {

2 publi
:

3 virtual void init(store*) = 0;

4 virtual store* next_solution() = 0;

5 };



Program 2 A
tual C++ Implementation of N-Queen

1 Compose(Compose(new ModelEngine(N_Queen),

2 new TreeSear
hEngine(N_Queen->first_fail(),

3 new Copying_Node(),

4 new Depth_First())),

5 new PrintEngine(N_Queen));

4 Tree Sear
h Engines

Tree sear
h is a sear
h algorithm for �nding all solutions of a problem. In

CP(FD), the solutions reside on the leaves of the sear
h tree, whi
h together

form the output stream of stores in the engine 
ontext. The primitive engine

TreeSear
hEngine for performs tree sear
h.

TreeSear
hEngine is 
omposed of three orthogonal 
omponents: bran
hing,

node, and exploration as dis
ussed in [CHN01℄. Bran
hing des
ribes the shape of

the sear
h tree. Common bran
hing algorithms in
lude naive enumeration and

�rst-fail. A (sear
h tree) node en
apsulates the store and bran
hing, and de�nes

the state restoration poli
ies su
h as 
opying and trailing. Exploration 
ontrols

the order of traversal of the sear
h tree.

Program 2 shows the a
tual C++ implementation of tree sear
h for solving

the N-Queen puzzle. This 
orresponded to the high level syntax we gave in

Se
tion 2. Compose is the pre�x fun
tion for implementing the ! operator due

to the limitation of C++ operator overloading. For this example, Tree Sear
h

Engine takes in �rst-fail bran
hing, 
opying state restoration and depth �rst

exploration as 
omponents.

In our framework, exploration needs to adopt a demand-driven approa
h of

traversing the sear
h tree to mat
h the design of the engine. Thus, an implemen-

tation requires the exploration to expli
itly maintain a state during the 
ourse

of sear
h. The fun
tion one step requests the exploration to perform a single step

of traversal. Refer to [CHN00℄ for implementation details.

Figure 4 shows the design of a TreeSear
hEngine. It takes a bran
hing, a

node, and an exploration as arguments. During init, it uses bran
hing to 
reate

a root node to initialize exploration. When there is a request for next solution,

Fig. 4 The Design of TreeSear
hEngine

s b

s b

s b

s b

s b

s b

store branching

node:

next solution()

init(store)

exploration:
 = one step()



it repeatedly 
alls one step on the exploration until it �nds the next leaf node.

Then, it returns the store kept within the leaf node as a solution.

The 
on
ept of limit in tree sear
h [Per99,VPP00℄ is a useful fa
ility to 
ontrol

the amount of tree sear
h we want to perform. In our ar
hite
ture, it is easy to

extend the TreeSear
hEngine to take in another 
omponent 
alled limit. Within

one step, we then 
he
k the 
urrent exploring node against the limit to verify if

the sear
h must be terminated.

5 Filtering Operator

The default behavior of an engine is to output all solutions. This behavior is

not desirable, when only one parti
ular solution is needed. The unary �ltering

operators a
t as a wrapper to 
ontrol the out-
ow of solutions, and thus to

systemati
ally dis
ard parts of the overall sear
h tree. Here, we dis
uss two


ommon �ltering operators: First and Last. It is straightforward to apply the

idea to other �ltering operators.

The unary First operator (left side of Figure 5) is applied to an engine and

yields a new engine, whi
h keeps a 
ag to determine if it has already given out

a solution. When the new engine re
eives a request for next solution, and if the


ag is true, it indi
ates that there is no further solution (in our implementation

by returning the null pointer). Otherwise, it will return the �rst solution from

the engine. The example:

First(Tree Sear
h Engine(naive,Copying Node,Depth-First))

shows a typi
al s
enario where we are only interested in the �rst solution of

depth-�rst sear
h.

The unary Last operator (right side of Figure 5) yields a new engine, whi
h

has a bu�er to keep tra
k of the last solution 
oming out from the argument

engine. When the new engine re
eives a request for next solution, it exhausts all

solutions of the argument engine while keeping tra
k of the latest solution in

its bu�er. When the argument engine has exhausted its sear
h spa
e, the new

engine returns the bu�ered solution. The example:

Last(Tree Sear
h Engine(naive,Copying Node,Bran
h-and-Bound))

shows a typi
al s
enario of solving an optimization problem where we are only

Fig. 5 The Design of Filtering Operator

next
solution() ...

next
solution()init(store) Engine

First Operator

Engine
init(store)

Last Operator



Fig. 6 The E�e
t of Composition Operator

Engine

init(next
solution())

(a) init(store) Engine
...

init(next
solution())

(b) init(store) Engine Engine

Engine

Engine

...

...

...

...

next solution()

next solution()

interested in the last solution (i. e. , the optimal solution) of bran
h-and-bound

sear
h.

6 Composition Operator

The previous two se
tions show that a unary engine operators 
an yield in-

teresting fun
tionality. However, in order to build more 
omplex engines, we

must provide a way for 
ombining engines together, whi
h is the main feature

of our 
ompositional framework. The ! operator, also 
alled Composition op-

erator, provides a standard interfa
e to plug engines together. We 
an view

the ! operator as an engine to dire
t the 
ow of solution streams between

two engines. As a 
onsequen
e, the ! operator is asso
iative, meaning that

(A! B)! C � A! (B ! C).

TheComposition operator takes two engines as argument to form a 
omposite

engine. During init, the 
omposite engine initializes the �rst engine. When there

is a request for next solution, if the se
ond engine is not initialized, it will take in

the next solution from the �rst engine and initialize the se
ond engine. Then, it

will return the next solution from the se
ond engine. If the se
ond engine has no

more solutions, it will request the next solution from the �rst engine, re-initialize

the se
ond engine, and the 
y
le will repeat until the �rst engine has no more

solution.

Figure 6 shows the e�e
t of the Composition operator. Part (a) shows the

e�e
t of 
omposing two engines, when the �rst engine 
an only generate a single

solution. The result is a sequential pro
essing of stores from the �rst engine to

the se
ond engine. When the �rst engine 
an generate more than one solution

as shown in Part (b), the Composition operator enumerates all possible solu-

tions from the �rst engine and feeds them into the se
ond engine, ea
h time

re-initializing it with a di�erent store.

The following example demonstrates how to divide a single tree sear
h into

two phases, with ea
h phase employing a di�erent tree sear
h te
hnique:



1 ModelEngine(model) !

2 First(TreeSear
hEngine(Naive,CopyingNode,DFS) !

3 TreeSear
hEngine(FirstFail,TrailingNode,LDS)) !

4 PrintEngine(model)

The sear
h tree is divided into two parts, upper and lower. The upper part

(line 2) performs depth-�rst sear
h (DFS) using naive enumeration with 
opy-

ing, while the lower part (line 3) performs limited-dis
repan
y sear
h (LDS)

using �rst-fail with trailing.

7 Embedding Tree Sear
h for Lo
al Optimization

Tree sear
h is useful beyond the usual role as a 
omplete sear
h algorithm.

In [NP98℄, an approximation algorithm is presented based on tree sear
h using

ILOG SCHEDULER, whose results exhibit a performan
e that is 
ompetitive

with other lo
al sear
h algorithms for solving the job shop s
heduling problem

(JSSP). The key idea of the approximation algorithm is embedding tree sear
h

inside a loop to perform lo
al optimization. During ea
h iteration, the algorithm

randomly keeps parts of the best solution before restarting the tree sear
h. This

se
tion shows that it makes sense to introdu
e new engines and 
omponents to

des
ribe this kind of algorithm in our framework.

We introdu
e two new engines: the RelaxEngine and Iteration operator, and

give their BNF grammar in Figure 7. The RelaxEngine (Rule 7) takes a model

as argument and uses it to 
ompute the parts of the best solution to keep for the

next iteration of tree sear
h. The Iteration operator (Rule 8) takes a 
ontroller

and an engine as arguments for performing the iteration pro
ess. The 
ontroller

represents a termination 
ondition, while the engine de�nes the a
tion to be

performed in ea
h iteration. We propose the generi
 Iteration operator as a

means to 
ompose engines into a loop.

The design of the Iteration engine is depi
ted in Figure 8. The init opera-

tion initializes the 
ontroller. The 
ontroller holds a store in its bu�er. When

the iteration engine re
eives a request for next solution, and if its engine is not

initialized, the engine is initialized with the store in the bu�er. The iteration en-

gine then retrieves the next solution from its engine, updates the 
ontroller and

returns the solution. If the engine has no more solution, it 
he
ks the 
ontroller's

stopping 
ondition. If the 
ondition is not satis�ed, the iteration engine repeats

the pro
ess by re-initializing the engine with the bu�ered store.

The RelaxEngine is a primitive engine used to keep the parts of the best

solution. The design of the RelaxEngine is simple. Upon init, it keeps the best

Fig. 7 The Syntax of Iterative Relaxation

henginei ::= RelaxEngine(hmodeli) (Rule 7)

j Iteration(h
ontrolleri,henginei) (Rule 8)



Fig. 8 The Design of Iteration Operator

buffer

Engine

. . .init(buffer)

update(next solution())

.

..

next solution()

Controller
init(store)

solution found. When there is a request for next solution, it returns a store by

keeping parts of the best solution using 
ertain heuristi
s.

The following example shows how to implement the approximation algorithm

mentioned earlier, using our framework with the newly introdu
ed engines:

1 ModelEngine(JSSP) !

2 First(TreeSear
hEngine(...) !

3 Last(Iteration(Controller,(RelaxEngine(JSSP) !

4 First(TreeSear
hEngine(...))))) !

5 PrintEngine(JSSP)

The pro
ess starts by requesting next solution from this 
omposite engine. The

sequen
e of requests are 
as
aded to the ModelEngine (line 1), whi
h passes the

store 
ontaining the job shop s
heduling model to the TreeSear
hEngine (line 2)

to look for the �rst feasible solution. Then, the feasible solution is passed to the


omposite engine (lines 3-4). The 
omposite engine uses the Iteration operator

to perform lo
al optimization until the 
ontroller stopping 
ondition is met. The

lo
al optimization is made up of a RelaxEngine that keeps random parts of the

best solution and a TreeSear
hEngine that looks for a better solution. The best

solution is then passed to PrintEngine (line 5) for appropriate display.

8 Round Robin Tournament S
heduling

The literature on planning of intermural round robin sports tournaments

[Cai77,dW88,S
h92℄ generally agrees on a de
omposition of the s
heduling pro-


ess into three phases, namely pattern generation, pattern set generation and

timetable generation. Re
ently, 
onstraint programming has been applied to all

three phases [Hen01℄ and a
hieved a signi�
ant improvement over integer pro-

gramming on a diÆ
ult ben
hmark problem [NT98℄.

The �rst phase 
onsists of generating all possible patterns, ea
h of whi
h

indi
ate a possible sequen
e in whi
h a team 
an play home or away in the

round robin. The se
ond phase 
onsists of generating feasible sets of patterns,

and the third phase 
onsists of assigning opponent teams to time slots in the

timetable, whi
h �nally leads to the desired round robin s
hedule.



This pro
ess 
an be 
ast in our 
ompositional framework for sear
h as follows:

1 ModelEngine(PatternSet(ModelEngine(Round-Robin) !

2 TreeSear
hEngine(...))) !

3 TreeSear
hEngine(Naive,CopyingNode,DFS) !

4 TreeSear
hEngine(FirstFail,CopyingNode,LDS) !

5 PrintEngine(...)

The overall model is generated by using an auxiliary engine (lines 1-2) whi
h

generates all patterns. The auxiliary engine represents the �rst phase of the so-

lution pro
ess. The resulting patterns are used by the model engine to generate


onstraints for pattern sets. The se
ond and third phases are represented by

the engines in lines 3 and 4. Here, naive enumeration is used for pattern set

generation and �rst-fail for the timetable generation.

9 Comparison with Related Works

This work relates 
losely to SALSA, a language for sear
h algorithms [LC98℄,

and the sear
h part of OPL [Per99,VPP00℄.

The key behind SALSA is that sear
h is essentially a transition from one state

to another based on the 
hoi
e made. By following this prin
iple, SALSA main

abstra
tion is the 
hoi
e point. Choi
e points 
an be 
ombined together to form

a sear
h algorithm. To provide for bran
h-and-bound optimization, there are

ways to 
ombine the 
hoi
e points with a fun
tion evaluation. By using a 
hoi
e

point abstration, it makes it easy for SALSA to des
ribe both lo
al and global

(tree) sear
h. Unfortunately, as pointed out in [Per99℄, some sear
h exploration

like LDS requires an unnatural implementation. The key abstra
tion presented

in this paper is an engine, whi
h en
apsulates not only the bran
hing algorithm,

but also the state restoration poli
y and the exploration algorithm. This leads

to a more 
exible way of 
omposing di�erent sear
h phases. Engines en
apsulate

the internal aspe
ts of bran
hing, restoration and exploration, and thus allow the

software designer to 
on
entrate on the ma
ro view, the 
omposition of engines

to form the overall solution. We hope that this information hiding leads to a

more eÆ
ient way to design new innovative 
onstraint-based sear
h te
hniques.

The sear
h part in OPL is similar to Perron's sear
h pro
edures. The key idea

in this 
ase is the sear
h goals. Beside goals, there are evaluators, sele
tors and

limits. Evaluators provide the sear
h exploration and sele
tors serve as �lters.

Goals are similar to engines, but do not en
apsulate the state restoration poli
y.

An important 
hara
teristi
 is that in our demand-driven model, an engine does

not need to 
olle
t all the possible solutions before passing them onto the next

engine. In other words, after a solution is found, we 
an pass the 
ontrol to the

next engine. Although we do not know the implementation details of OPL, our

experien
e suggests that a demand-driven approa
h would yield better 
exibility

and reusability.



10 Con
lusion and Future Work

We developed a 
ompositional framework based on engine for des
ribing 
om-

plex sear
h s
enarios. Tree sear
h was en
apsulated within an engine. With the

operators on engines, the framework allowed to build 
omplex sear
h engines

by 
omposing the di�erent engines together. Examples and two 
ase studies

demonstrated the expressivity of our framework.

The 
ompositional framework will probably in
ur some overhead to the over-

all system. The investigation to minimize su
h overhead is an interesting dire
-

tion in the near future. Moreover, the future dire
tion of this work is to realize

the extension to other dimensions of sear
h. Visualization is a spe
i�
 extension

that is of parti
ular interest as there is a need to provide tools for performan
e

debugging. The fa
ilities and abstra
tions to provide parallel sear
h based on

the 
on
ept of engine are also worth investigation. Lastly, it is interesting to see

if it is possible to provide engines that fa
ilitate the integration of lo
al sear
h

algorithms to tree sear
h.

Referen
es

[Cai77℄ William O. Cain, Jr. The 
omputer-assisted heuristi
 approa
h used to s
hed-

ule the major league baseball 
lubs. In Shaul P. Ladany and Robert E.

Ma
hol, editors, Optimal Strategies in Sports, number 5 in Studies in Man-

agement S
ien
e and Systems, pages 32{41. North-Holland Publishing Co.,

Amsterdam, New York, Oxford, 1977.

[CHN00℄ Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for 
onstraint-

based inferen
e engines. In Enri
o Pontelli and V��tor Santos Costa, editors,

Pra
ti
al Aspe
ts of De
larative Languages, Se
ond International Workshop,

PADL 2000, Le
ture Notes in Computer S
ien
e 1753, pages 185{199, Boston,

MA, 2000. Springer-Verlag, Berlin.

[CHN01℄ Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state

restoration in tree sear
h. In Toby Walsh, editor, Prin
iples and Pra
ti
e of

Constraint Programming|CP 2001, Pro
eedings of the Seventh Internation-

al Conferen
e, Le
ture Notes in Computer S
ien
e, Cyprus, 2001. Springer-

Verlag, Berlin. to appear.

[dW88℄ D. de Werra. Some models of graphs for s
heduling sports 
ompetitions.

Dis
rete Applied Mathemati
s, 21:47{65, 1988.

[Hen01℄ Martin Henz. S
heduling a major 
ollege basketball 
onferen
e|revisited.

Operations Resear
h, 49(1):163{168, January 2001.

[HMN99℄ Martin Henz, Tobias M�uller, and Ka Boon Ng. Figaro: Yet another 
onstraint

programming library. In Pro
eedings of the Workshop on Parallelism and

Implementation Te
hnology for Constraint Logi
 Programming, Las Cru
es,

New Mexi
o, USA, 1999. held in 
onjun
tion with ICLP'99.

[LC98℄ Fran�
ois Laburthe and Yves Caseau. SALSA: A language for sear
h al-

gorithms. In Mi
hael Maher and Jean-Fran�
ois Puget, editors, Prin
iples

and Pra
ti
e of Constraint Programming, pages 310{324, Pisa, Italy, 1998.

Springer-Verlag, Berlin.

[Ng01℄ Ka Boon Kevin Ng. A Generi
 Software Framework For Finite Domain

Constraint Programming. Master's thesis, S
hool of Computing, National

University of Singapore, 2001.



[NP98℄ Wim Nuijten and Claude Le Pape. Constraint-based job shop s
heduling

with ILOG SCHEDULER. Journal of Heuristi
s, 3:271{286, 1998.

[NT98℄ George L. Nemhauser and Mi
hael A. Tri
k. S
heduling a major 
ollege

basketball 
onferen
e. Operations Resear
h, 46(1):1{8, 1998.

[Per99℄ Laurent Perron. Sear
h pro
edures and paralleism in 
onstraint program-

ming. In Joxan Ja�ar, editor, Prin
iples and Pra
ti
e of Constraint Pro-

gramming, Alexandria, VA, USA, 1999. Springer-Verlag, Berlin.

[S
h92℄ Jan A. M. S
hreuder. Combinatorial aspe
ts of 
onstru
tion of 
ompetition

dut
h professional football leagues. Dis
rete Applied Mathemati
s, 35:301{

312, 1992.

[S
h97℄ Christian S
hulte. Programming 
onstraint inferen
e engines. In Gert Smol-

ka, editor, Prin
iples and Pra
ti
e of Constraint Programming|CP97, Pro-


eedings of the Third International Conferen
e, Le
ture Notes in Comput-

er S
ien
e 1330, pages 519{533, S
hloss Hagenberg, Linz, Austria, O
to-

ber/November 1997. Springer-Verlag, Berlin.

[S
h00℄ Christian S
hulte. Programming Constraint Servi
es. Do
toral disserta-

tion, Universit�at des Saarlandes, Naturwissens
haftli
h-Te
hnis
he Fakult�at

I, Fa
hri
htung Informatik, Saarbr�u
ken, Germany, 2000. To appear in Le
-

ture Notes in Arti�
ial Intelligen
e, Springer-Verlag.

[VPP00℄ Pas
al Van Hentenry
k, Laurent Perron, and Jean-Fran�
ois Puget. Sear
h

and strategies in OPL. ACM Transa
tions on Computational Logi
, 1(2):285{

320, O
tober 2000.


