A Compositional Framework for Search

Chiu Wo Choi!, Martin Henz', Ka Boon Ng?

1 School of Computing, National University Of Singapore, Singapore
{choichiu,henz}@comp.nus.edu.sg
2 Honeywell Singapore Laboratory
kevin.ng@honeywell.com

Abstract. Recent developments in constraint programming systems
show an increasing emphasis on providing abstractions for configuring
search. Existing frameworks for tree search offer customized exploration,
branching and state restoration policies. We argue, however, that most
of these frameworks do not provide adequate abstractions for more com-
plex search scenarios, where different search techniques are used in dif-
ferent phases of the search, where parts of search trees are systemati-
cally discarded, or where tree search is embedded in a context of local
optimization. In this paper, we propose to describe complex search sce-
narios using a compositional framework, realized in the Figaro library,
with an abstraction called engine. We demonstrate its expressivity by
re-formulating two complex search scenarios from the literature.

1 Introduction

Finite domain constraint programming (CP(FD)) systems provide software ar-
chitectures for the integration of algorithms for propagation and tree search to
solve combinatorial search problems. Recent research in constraint program-
ming (CP) systems is paying increasing attention to the software design in
order to match application-specific requirements. One important aspect is to
provide abstractions for configuring search. CP systems like ILOG [Per99] and
OPL [VPPOO] describe tree search in terms of search goals, which are inherited
from logic programming. The language Oz allows programming of tree search
algorithms using the built-in data structure called spaces [Sch97,Sch00]. SAL-
SA [LC98] is a language designed for specifying search algorithms using the
concept of choice points. ' The Figaro library provides a modular architectures
for customizing the state restoration policies, in addition to the branching and
exploration of tree search [HMN99,CHN00,Ng01,CHNO1].

Among the existing frameworks for tree search, we observe that abstractions
are limited to customized exploration, branching and state restoration policies.
We argue, however, that as the complexity of application-specific search algo-
rithms increases, it becomes more difficult to describe the corresponding search
scenarios. Typical complex search scenarios include dividing the search into mul-
tiple phases where each phase employs a different search technique; systematical-
ly discarding parts of search trees; and embedding tree search in a context of local

1 'SALSA also supports local search, but this paper only focuses on tree search

optimization. The existing frameworks focus on low-level abstraction details and
thus make it tedious for programmers to apply the right search algorithms and
techniques. Furthermore, programming low-level details adds additional com-
plexity to the code and is usually an error-prone process.

Modern engineering practice allows engineers to build complex systems by
composing small and well-defined units. Such a compositional framework leads
to a better understanding of the desired functionality and structure of the overall
system. Moreover, it encourages reuse, leading to both a faster development cycle
and a more robust system.

Search can be thought of as such a complex system, which can be decom-
posed into smaller functional units called engines. We propose a compositional
framework for describing complex search scenarios using engines. Each engine
performs a single function (e.g. , search, print), and engines can be composed
together to form more complex search scenarios. We are designing and imple-
menting the framework using Figaro [HMN99,CHN00,Ng01,CHNO01], a C++ CP
library, further pursuing its objective of high reusability and rapid prototyping
for search components. Notice that we design our framework within the object-
oriented paradigm rather than the logic paradigm.

We present the compositional framework in Section 2. Sections 3 and 4 discuss
the details of engines. Sections 5 and 6 discuss the operators that we apply to
engines. The first case study (Section 7) discusses engines for embedding tree
search in the context of local optimization. The second case study (Section 8)
on the three-phase approach of round-robin tournament scheduling demonstrates
the practicality of our framework. Section 9 compares the approach with existing
frameworks.

2 Framework

The framework identifies different engines for describing search, and how they
interact with each other. Each engine should be a coherent functional unit and
loosely coupled with one another. Specific design requirements of the framework
are as follows:

1. a standard interface for combining engines to form more complex engines,

2. a mechanism to explicitly control the execution of engines for coherent inte-
gration,

3. support for engines to maintain stateful information as the consequence of
explicit control,

4. orthogonal concepts to provide high reusability, and

5. support for extension to search scenarios other than simple tree search.

The BNF grammar in Figure 1 gives an overview of the design. Rule 1 is
a composition rule that specifies that two engines are combined to from a new
engine using the — operator. Engines communicate with each other using con-
straint stores. This fulfills our design requirement (1). To achieve requirement
(2) and (3), we implement an engine object using a demand-driven approach for

Fig.1 The Syntax of Engine

(engine) ::= (engine) — (engine) (Rule 1)
| ModelEngine({model)) (Rule 2)
| PrintEngine({model)) (Rule 3)
| TreeSearchEngine(...) (Rule 4)
| First({engine)) (Rule 5)
| Last({engine)) (Rule 6)

producing output. The demand-driven approach will be discussed in the next
section. Rule 2, 3, and 4 specify how to build primitive engines ModelEngine,
PrintEngine, and TreeSearchEngine. A TreeSearchEngine (details in Section 4) is
composed of orthogonal search components, which design fulfills requirement (4).
Rule 5 and 6 specify solution filtering operations over engine: First and Last. The
ability to define with new engines using our object-oriented framework achieves
requirement (5). We discuss the details of engines in the subsequent sections.

The simple example below shows how to use our framework for solving the
N-Queen puzzle:

ModelEngine(N-Queen) — TreeSearchEngine(...) — PrintEngine(N-Queen)

The framework divides the problem solving process into three phases. In the
first phase (line 1), ModelEngine generates a constraint store that contains the
N-Queen problem model. In the second phase (line 2), TreeSearchEngine takes
in the constraint store and looks for all the possible solutions using tree search.
In the third phase (line 3), PrintEngine transforms the solutions obtained from
the tree search engine to the desired output format.

3 Engines

In CP(FD), a constraint store (or simply store) represents a computational state,
hosting finite-domain variables and constraints for performing constraint propa-
gation to eliminate inconsistent values. Refer to [Ng01] for a detailed discussion
of stores.

Engine is the basic unit of abstraction in our framework. The basic operation
of an engine is to manipulate or transform stores. We can view engine as a
machinery that takes in a store for processing; and produces a stream of stores
as output. Output of stores is demand-driven, meaning that the next store to
output is only computed upon request from a subsequent engine.

Fig. 2 The Design of an Engine

next solution()

Engine !

init(store) | -
|
|

Fig. 3 The Class Hierarchy of Engines

Abstract Engine

‘ Abstract Primitive Engine ‘ ‘ Abstract Composite Engine ‘

‘ Model Engine ‘ Tree Search Engine ‘ Last Operator

Print Engine ‘ First Operator ‘ ‘ Composition Operator

The two main functions of engines are init and next solution. Figure 2 shows
the design of an engine. The init function accepts a store as argument and pre-
pares the engine for generating the output stream of stores. The next solution
function requests the next output store in the stream, realizing the demand-
driven approach. In the engine context, solutions of the engine are represented
by stores. For the discussions of engines, we use the terms solution and store
interchangeably.

The class hierarchy of engines is shown in Figure 3. Engines are instances
of an abstract class (Program 1). There are two types of engines: primitive
engines and composite engines, also implemented as an abstract class. Primitive
engines are built from basic orthogonal components. Primitive engines include
ModelEngine, PrintEngine, and TreeSearchEngine. Composite engines are build
from one or more other engines. We can view composite engines as wrappers
around engines to form new engines. They include filtering operators (First and
Last), and the composition operator —. Notice that the operators are themselves
engines, so that the resulting type after applying the operator is still engine, and
can be further manipulated (refer to the BNF grammar in Figure 1).

ModelEngine is a trivial engine, whose function is to return a store contain-
ing the problem description. ModelEngine is the component that contains the
description of the problem to be solved. It takes model as an argument and
performs no operation during init. When there is a request for next solution, it
returns a store imposed with the problem model.

PrintEngine is a trivial engine, whose function is to transform solutions to

the desired output format. PrintEngine accepts a model as an argument. During
init, it makes a function call to model to print the solution.

Program 1 C++ Abstract Class Declaration of Engine
1 class Engine {

2 public:

3 virtual void init(store*) = 0;

4 virtual store* next_solution() = 0;
5 };

Program 2 Actual C++ Implementation of N-Queen

1 Compose(Compose (new ModelEngine (N_Queen),

new TreeSearchEngine (N_Queen->first_fail(),
new Copying_Node(),
new Depth_First())),

gD W N

new PrintEngine(N_Queen));

4 Tree Search Engines

Tree search is a search algorithm for finding all solutions of a problem. In
CP(FD), the solutions reside on the leaves of the search tree, which together
form the output stream of stores in the engine context. The primitive engine
TreeSearchEngine for performs tree search.

TreeSearchEngine is composed of three orthogonal components: branching,
node, and exploration as discussed in [CHNO1]. Branching describes the shape of
the search tree. Common branching algorithms include naive enumeration and
first-fail. A (search tree) node encapsulates the store and branching, and defines
the state restoration policies such as copying and trailing. Exploration controls
the order of traversal of the search tree.

Program 2 shows the actual C++ implementation of tree search for solving
the N-Queen puzzle. This corresponded to the high level syntax we gave in
Section 2. Compose is the prefix function for implementing the — operator due
to the limitation of C++ operator overloading. For this example, Tree Search
Engine takes in first-fail branching, copying state restoration and depth first
exploration as components.

In our framework, exploration needs to adopt a demand-driven approach of
traversing the search tree to match the design of the engine. Thus, an implemen-
tation requires the exploration to explicitly maintain a state during the course
of search. The function one step requests the exploration to perform a single step
of traversal. Refer to [CHNOO] for implementation details.

Figure 4 shows the design of a TreeSearchEngine. It takes a branching, a
node, and an exploration as arguments. During init, it uses branching to create
a root node to initialize exploration. When there is a request for next solution,

Fig. 4 The Design of TreeSearchEngine

exploration: next solution()

- — ==onestep()

node:

I
I
I
I
|
init(store) ,
I
I
I
I
I
I
I
I

it repeatedly calls one step on the exploration until it finds the next leaf node.
Then, it returns the store kept within the leaf node as a solution.

The concept of limit in tree search [Per99,VPP00] is a useful facility to control
the amount of tree search we want to perform. In our architecture, it is easy to
extend the TreeSearchEngine to take in another component called limit. Within
one step, we then check the current exploring node against the limit to verify if
the search must be terminated.

5 Filtering Operator

The default behavior of an engine is to output all solutions. This behavior is
not desirable, when only one particular solution is needed. The unary filtering
operators act as a wrapper to control the out-flow of solutions, and thus to
systematically discard parts of the overall search tree. Here, we discuss two
common filtering operators: First and Last. It is straightforward to apply the
idea to other filtering operators.

The unary First operator (left side of Figure 5) is applied to an engine and
yields a new engine, which keeps a flag to determine if it has already given out
a solution. When the new engine receives a request for next solution, and if the
flag is true, it indicates that there is no further solution (in our implementation
by returning the null pointer). Otherwise, it will return the first solution from
the engine. The example:

First(Tree Search Engine(naive,Copying Node,Depth-First))

shows a typical scenario where we are only interested in the first solution of
depth-first search.

The unary Last operator (right side of Figure 5) yields a new engine, which
has a buffer to keep track of the last solution coming out from the argument
engine. When the new engine receives a request for next solution, it exhausts all
solutions of the argument engine while keeping track of the latest solution in
its buffer. When the argument engine has exhausted its search space, the new
engine returns the buffered solution. The example:

Last(Tree Search Engine(naive,Copying Node,Branch-and-Bound))

shows a typical scenario of solving an optimization problem where we are only

Fig.5 The Design of Filtering Operator

First Operator next Last Operator
o R . solution() init(dore) - - 1 next
|n|t(st:ore) ' Engine ! | (‘) Engine ' : ~ ! solution()
[| Lo oo e

Fig. 6 The Effect of Composition Operator

| init(next next solution()
ini T ' solution()) | _ — >
(a) |n|t(st¢1re),w Engine :—hu ton0) Engine' : |
| Lo - - - - o Lo -2
3 init(ext ______ next solution()
| solution()) ' Engine' &
: Lo — :
A | == ===-= | R !
(b) *v_ﬂlnlt(stpre) . Engine ————! Engine! 1 |

interested in the last solution (i. e. , the optimal solution) of branch-and-bound
search.

6 Composition Operator

The previous two sections show that a unary engine operators can yield in-
teresting functionality. However, in order to build more complex engines, we
must provide a way for combining engines together, which is the main feature
of our compositional framework. The — operator, also called Composition op-
erator, provides a standard interface to plug engines together. We can view
the — operator as an engine to direct the flow of solution streams between
two engines. As a consequence, the — operator is associative, meaning that
(A-B)-C=A— (B—-0C).

The Composition operator takes two engines as argument to form a composite
engine. During init, the composite engine initializes the first engine. When there
is a request for next solution, if the second engine is not initialized, it will take in
the next solution from the first engine and initialize the second engine. Then, it
will return the next solution from the second engine. If the second engine has no
more solutions, it will request the next solution from the first engine, re-initialize
the second engine, and the cycle will repeat until the first engine has no more
solution.

Figure 6 shows the effect of the Composition operator. Part (a) shows the
effect of composing two engines, when the first engine can only generate a single
solution. The result is a sequential processing of stores from the first engine to
the second engine. When the first engine can generate more than one solution
as shown in Part (b), the Composition operator enumerates all possible solu-
tions from the first engine and feeds them into the second engine, each time
re-initializing it with a different store.

The following example demonstrates how to divide a single tree search into
two phases, with each phase employing a different tree search technique:

ModelEngine(model) —
First(TreeSearchEngine(Naive,CopyingNode,DFS) —

TreeSearchEngine(FirstFail, TrailingNode, LDS)) —
PrintEngine(model)

N R R

The search tree is divided into two parts, upper and lower. The upper part
(line 2) performs depth-first search (DFS) using naive enumeration with copy-
ing, while the lower part (line 3) performs limited-discrepancy search (LDS)
using first-fail with trailing.

7 Embedding Tree Search for Local Optimization

Tree search is useful beyond the usual role as a complete search algorithm.
In [NP98], an approximation algorithm is presented based on tree search using
ILOG SCHEDULER, whose results exhibit a performance that is competitive
with other local search algorithms for solving the job shop scheduling problem
(JSSP). The key idea of the approximation algorithm is embedding tree search
inside a loop to perform local optimization. During each iteration, the algorithm
randomly keeps parts of the best solution before restarting the tree search. This
section shows that it makes sense to introduce new engines and components to
describe this kind of algorithm in our framework.

We introduce two new engines: the RelaxEngine and Iteration operator, and
give their BNF grammar in Figure 7. The RelaxEngine (Rule 7) takes a model
as argument and uses it to compute the parts of the best solution to keep for the
next iteration of tree search. The Iteration operator (Rule 8) takes a controller
and an engine as arguments for performing the iteration process. The controller
represents a termination condition, while the engine defines the action to be
performed in each iteration. We propose the generic Iteration operator as a
means to compose engines into a loop.

The design of the Iteration engine is depicted in Figure 8. The init opera-
tion initializes the controller. The controller holds a store in its buffer. When
the iteration engine receives a request for next solution, and if its engine is not
initialized, the engine is initialized with the store in the buffer. The iteration en-
gine then retrieves the next solution from its engine, updates the controller and
returns the solution. If the engine has no more solution, it checks the controller’s
stopping condition. If the condition is not satisfied, the iteration engine repeats
the process by re-initializing the engine with the buffered store.

The RelaxEngine is a primitive engine used to keep the parts of the best
solution. The design of the RelaxEngine is simple. Upon init, it keeps the best

Fig.7 The Syntax of Iterative Relaxation

(engine) ::= RelaxEngine({model)) (Rule 7)
| Iteration((controller),(engine)) (Rule 8)

Fig. 8 The Design of Iteration Operator

next 1so|ution()

___ " .l Controller

—| (buffer)

L—»! Engine ——
******** update(next solution())

-
|
|

T
|
I
I
|
|
|
|
|
|

solution found. When there is a request for next solution, it returns a store by
keeping parts of the best solution using certain heuristics.

The following example shows how to implement the approximation algorithm
mentioned earlier, using our framework with the newly introduced engines:

ModelEngine(JSSP) —

First(TreeSearchEngine(...) —

Last (Iteration(Controller,(RelaxEngine(JSSP) —
First(TreeSearchEngine(...))))) —

T W N

PrintEngine(JSSP)

The process starts by requesting next solution from this composite engine. The
sequence of requests are cascaded to the ModelEngine (line 1), which passes the
store containing the job shop scheduling model to the TreeSearchEngine (line 2)
to look for the first feasible solution. Then, the feasible solution is passed to the
composite engine (lines 3-4). The composite engine uses the Iteration operator
to perform local optimization until the controller stopping condition is met. The
local optimization is made up of a RelaxEngine that keeps random parts of the
best solution and a TreeSearchEngine that looks for a better solution. The best
solution is then passed to PrintEngine (line 5) for appropriate display.

8 Round Robin Tournament Scheduling

The literature on planning of intermural round robin sports tournaments
[Cai77,dW88,Sch92] generally agrees on a decomposition of the scheduling pro-
cess into three phases, namely pattern generation, pattern set generation and
timetable generation. Recently, constraint programming has been applied to all
three phases [Hen01] and achieved a significant improvement over integer pro-
gramming on a difficult benchmark problem [NT98].

The first phase consists of generating all possible patterns, each of which
indicate a possible sequence in which a team can play home or away in the
round robin. The second phase consists of generating feasible sets of patterns,
and the third phase consists of assigning opponent teams to time slots in the
timetable, which finally leads to the desired round robin schedule.

This process can be cast in our compositional framework for search as follows:

ModelEngine(PatternSet(ModelEngine(Round-Robin) —

TreeSearchEngine(...))) —
TreeSearchEngine(Naive,CopyingNode, DFS) —
TreeSearchEngine(FirstFail,CopyingNode,LDS) —
PrintEngine(...)

T W N =

The overall model is generated by using an auxiliary engine (lines 1-2) which
generates all patterns. The auxiliary engine represents the first phase of the so-
lution process. The resulting patterns are used by the model engine to generate
constraints for pattern sets. The second and third phases are represented by
the engines in lines 3 and 4. Here, naive enumeration is used for pattern set
generation and first-fail for the timetable generation.

9 Comparison with Related Works

This work relates closely to SALSA, a language for search algorithms [LC98],
and the search part of OPL [Per99,VPPO00].

The key behind SALSA is that search is essentially a transition from one state
to another based on the choice made. By following this principle, SALSA main
abstraction is the choice point. Choice points can be combined together to form
a search algorithm. To provide for branch-and-bound optimization, there are
ways to combine the choice points with a function evaluation. By using a choice
point abstration, it makes it easy for SALSA to describe both local and global
(tree) search. Unfortunately, as pointed out in [Per99], some search exploration
like LDS requires an unnatural implementation. The key abstraction presented
in this paper is an engine, which encapsulates not only the branching algorithm,
but also the state restoration policy and the exploration algorithm. This leads
to a more flexible way of composing different search phases. Engines encapsulate
the internal aspects of branching, restoration and exploration, and thus allow the
software designer to concentrate on the macro view, the composition of engines
to form the overall solution. We hope that this information hiding leads to a
more efficient way to design new innovative constraint-based search techniques.

The search part in OPL is similar to Perron’s search procedures. The key idea
in this case is the search goals. Beside goals, there are evaluators, selectors and
limits. Evaluators provide the search exploration and selectors serve as filters.
Goals are similar to engines, but do not encapsulate the state restoration policy.
An important characteristic is that in our demand-driven model, an engine does
not need to collect all the possible solutions before passing them onto the next
engine. In other words, after a solution is found, we can pass the control to the
next engine. Although we do not know the implementation details of OPL, our
experience suggests that a demand-driven approach would yield better flexibility
and reusability.

10 Conclusion and Future Work

We developed a compositional framework based on engine for describing com-
plex search scenarios. Tree search was encapsulated within an engine. With the
operators on engines, the framework allowed to build complex search engines
by composing the different engines together. Examples and two case studies
demonstrated the expressivity of our framework.

The compositional framework will probably incur some overhead to the over-
all system. The investigation to minimize such overhead is an interesting direc-
tion in the near future. Moreover, the future direction of this work is to realize
the extension to other dimensions of search. Visualization is a specific extension
that is of particular interest as there is a need to provide tools for performance
debugging. The facilities and abstractions to provide parallel search based on
the concept of engine are also worth investigation. Lastly, it is interesting to see
if it is possible to provide engines that facilitate the integration of local search
algorithms to tree search.

References

[Cai77] William O. Cain, Jr. The computer-assisted heuristic approach used to sched-
ule the major league baseball clubs. In Shaul P. Ladany and Robert E.
Machol, editors, Optimal Strategies in Sports, number 5 in Studies in Man-
agement Science and Systems, pages 32-41. North-Holland Publishing Co.,
Amsterdam, New York, Oxford, 1977.

[CHNOO] Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for constraint-
based inference engines. In Enrico Pontelli and Vitor Santos Costa, editors,
Practical Aspects of Declarative Languages, Second International Workshop,
PADL 2000, Lecture Notes in Computer Science 1753, pages 185-199, Boston,
MA, 2000. Springer-Verlag, Berlin.

[CHNO1] Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state
restoration in tree search. In Toby Walsh, editor, Principles and Practice of
Constraint Programming—CP 2001, Proceedings of the Seventh Internation-
al Conference, Lecture Notes in Computer Science, Cyprus, 2001. Springer-
Verlag, Berlin. to appear.

[dW88] D. de Werra. Some models of graphs for scheduling sports competitions.
Discrete Applied Mathematics, 21:47-65, 1988.

[Hen01] Martin Henz. Scheduling a major college basketball conference—revisited.
Operations Research, 49(1):163-168, January 2001.

[HMN99] Martin Henz, Tobias Miiller, and Ka Boon Ng. Figaro: Yet another constraint
programming library. In Proceedings of the Workshop on Parallelism and
Implementation Technology for Constraint Logic Programming, Las Cruces,
New Mexico, USA, 1999. held in conjunction with ICLP’99.

[LC98] Francois Laburthe and Yves Caseau. SALSA: A language for search al-
gorithms. In Michael Maher and Jean-Frangois Puget, editors, Principles
and Practice of Constraint Programming, pages 310-324, Pisa, Italy, 1998.
Springer-Verlag, Berlin.

[Ng01] Ka Boon Kevin Ng. A Generic Software Framework For Finite Domain
Constraint Programming. Master’s thesis, School of Computing, National
University of Singapore, 2001.

[NPOS]
[NT98]

[Per99]

[Sch92]

[Sch97]

[Sch00]

[VPP0O]

Wim Nuijten and Claude Le Pape. Constraint-based job shop scheduling
with ILOG SCHEDULER. Journal of Heuristics, 3:271-286, 1998.

George L. Nemhauser and Michael A. Trick. Scheduling a major college
basketball conference. Operations Research, 46(1):1-8, 1998.

Laurent Perron. Search procedures and paralleism in constraint program-
ming. In Joxan Jaffar, editor, Principles and Practice of Constraint Pro-
gramming, Alexandria, VA, USA, 1999. Springer-Verlag, Berlin.

Jan A. M. Schreuder. Combinatorial aspects of construction of competition
dutch professional football leagues. Discrete Applied Mathematics, 35:301—
312, 1992.

Christian Schulte. Programming constraint inference engines. In Gert Smol-
ka, editor, Principles and Practice of Constraint Programming—CP97, Pro-
ceedings of the Third International Conference, Lecture Notes in Comput-
er Science 1330, pages 519-533, Schloss Hagenberg, Linz, Austria, Octo-
ber/November 1997. Springer-Verlag, Berlin.

Christian Schulte. Programming Constraint Services. Doctoral disserta-
tion, Universitdt des Saarlandes, Naturwissenschaftlich-Technische Fakultat
I, Fachrichtung Informatik, Saarbriicken, Germany, 2000. To appear in Lec-
ture Notes in Artificial Intelligence, Springer-Verlag.

Pascal Van Hentenryck, Laurent Perron, and Jean-Frangois Puget. Search
and strategies in OPL. ACM Transactions on Computational Logic, 1(2):285—
320, October 2000.

