
Global Constraints for Round Robin Tournament
Scheduling

Martin Henz Tobias Müller Sven Thiel

School of Computing, National University of Singapore, Singapore 117543
Programming Systems Lab, Saarland University, 66041 Saarbr̈ucken, Germany
Max-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken, Germany

Abstract

In the presence of side-constraints and optimization criteria, round robin tournament prob-
lems are hard combinatorial problems, commonly tackled with tree search and branch-and-
bound optimization. Recent results indicate that constraint-based tree search has crucial
advantages over integer programming-based tree search for this problem domain by ex-
ploiting global constraint propagation algorithms during search. In this paper, we analyze
arc-consistent propagation algorithms for the global constraints “all-different” and “one-
factor” in the domain of round robin tournaments. The best propagation algorithms allow
us to compute all feasible perfectly mirrored pattern sets with minimal breaks for inter-
mural tournaments of realistic size, and to improve known lower bounds for intramural
tournaments balanced with respect to carry-over effects.

Key words: timetabling, constraints satisfaction, graph theory

1 Introduction

In round robin sport competitions, each team plays each other team a fixed num-
ber of times and the matches are organized in rounds. Round robin schedules can
be characterized as one-factorizations of complete graphs and are studied in graph
theory and combinatorial design. Numerous results have been obtained on vari-
ants of the round robin scheduling problem, including intermural tournaments,
facility-sharing tournaments and bipartite tournaments; extensive references are
given in [2,23]. The techniques in this field are constructive in a sense that in-
teresting properties of tournaments are identified and then—by employing graph-
theoretical and combinatorial arguments—methods to construct corresponding tour-
naments are described.

Preprint submitted to EJORS Special Issue on Timetabling 29 July 2002

This works well for highly regular tournaments. However, in the presence of irregu-
lar constraints which occur in tournament planning practice and which are difficult
to capture as properties of graphs, constructive methods fail and the problem degen-
erates to a combinatorial search problem. Techniques that have been used to solve
such problems include integer programming [20,15], local search [24] and con-
straint programming [19,11,7]. Constraint programming has been shown recently
to outperform integer programming on practical problems [8,7]. Constraint pro-
gramming allows to systematically exploit the round robin and other constraints,
often leading to relatively small search trees for medium-sized tournaments.

To solve large problems, stronger propagation algorithms for pruning the search
trees become important. In finite domain programming systems such as Ilog Solver
[10] and Mozart [13], where constraints are encoded as propagators that operate on
a constraint store which stores domains of variables, arc-consistency is the strongest
kind of propagation that can be achieved for a given constraint. The most important
constraints for round robin tournaments are

the all-different constraint, which expresses that the rows in a tournament contain
every team only once, and
the one-factor constraint, called symmetric all-different by Régin [17], which
expresses that every column groups the teams into matches.

Régin gives arc-consistent propagation algorithms for both problems, which we
will review in Section 5, after introducing graph-theoretical notation in Section 2,
presenting the basic ideas of constraint programming in Section 3, and giving a
formal description of the two constraints in Section 4.

A practical consideration in modeling of combinatorial search problems using con-
straint programming is the trade-off between the strength of propagation at each
node of the search tree and its computation time. For example, a naive non-arc-
consistent propagation algorithm for all-different constraint sometimes outperforms
the arc-consistent one; in such cases, the decrease in the size of the search trees does
not outweigh the increase of time that is spent at each of their nodes. This situation
is common in constraint programming and necessitates an experimental evaluation
for a given application domain.

An extensive experimental evaluation of propagation algorithms for the round robin
tournaments is given in Section 6. Using the empirically best propagation algo-
rithms, we are able to compute all feasible perfectly mirrored pattern sets with min-
imal breaks for intermural tournaments of realistic size, and to improve a known
lower bound for intramural tournaments balanced with respect to carry-over effects.

2

2 Round Robin Tournaments and Graphs

In round robin sport competitions, each team plays each other team a fixed number
of times during the competition. Let us first assume , thus we are dealing
with single round robin tournaments (SRR). A temporally dense single round robin
(DSRR) for teams distributes the matches over a minimal number of
rounds such that every team plays at most one match per round. If is even, the
number of rounds is . A DSRR with an odd number of teams consists of
rounds in each of which teams play and one team does not. This team is said
to have a bye. In the following, we are limiting ourselves to an even number of
teams, since the problem for an odd number of teams can be reduced to the
case by introducing an additional team that always “plays” against the team with

a bye. When , we speak of a dense double round robin (DDRR).

The planning of a DSRR consists of assigning for each round an opponent team
to each team. Often other decisions have to be taken as well, such as the place
in which the matches are carried out. For intermural tournaments, this amounts
to the question whether a team plays home or away.
For intramural tournaments, a court may need to be
selected. We first concentrate on opponent team as-
signment and discuss intermural tournaments in Sec-
tion 6.

The single round robin schedule on the right shows
a valid assignment of opponent teams for and

in each round. The value in row and column
tells the team against which team plays in round .

rounds
1 2 3 4 5

1 2 4 6 3 5
2 1 3 5 6 4
3 5 2 4 1 6
4 6 1 3 5 2
5 3 6 2 4 1

te
am
s

6 4 5 1 2 3

In order to characterize the mathematical properties of round robin schedules, we
need to introduce some terminology on graphs.

Let be an undirected graph with vertex set and edge set where
(no self-loops). The degree of is the maximal number of edges inci-

dent to some vertex in . is called complete, if there is an edge from any vertex to
any other. A factor of is a subgraph of with vertex set . A factorization of
is a set of factors of which are pairwise edge-disjoint and whose union of edges
is . A set is called a matching in , if no two distinct edges in share a
common endpoint. We call a vertex matched by if it is incident to some edge
in , and free otherwise. A matching is called perfect if it covers all vertices
of , i.e. there are no free vertices. A perfect matching is also called a one-factor,
because it is a factor with degree 1. A one-factorization of is a factorization of
consisting of one-factors.

A one-factorization of the complete graph with nodes (being even) corresponds

3

to a DSRR for teams as follows. Every node represents a team, every one-factor
represents a round, and an edge in a one-factor fixes a match between teams
and in round . The properties of factorizations guarantee that every team plays
every other team exactly once. This fact is employed in constructive methods for
tournament planning, see references in [23].

3 Constraint Programming

We represent round robin tournament problems as a constraint satisfaction problem
(CSP). A CSP is a triple , where is a finite set of variables,
and assigns to each variable a finite domain of possible values.
Each element of expresses a constraint on some variables , and thus

.

A solution to the constraint problem assigns to each variable a value
such that each constraint is satisfied. This means that for every constraint on
variables , holds. The set of all solutions to a constraint
problem is denoted by sol .

The constraint programming approach to solving combinatorial search problems
such as round robin scheduling problems works as follows. Encode the problem
as a constraint satisfaction problem , find a new problem that has the same
set of solutions by applying so-called consistency techniques. Now augment in
two ways, by adding a new constraint and its negation, respectively, to . To
the resulting problems and , apply again consistency techniques,
find new constraints for each of the problems, and so on. This process leads to
a binary search tree at whose leaves are either problems that have no solution, or
problemswhere contains only singletons, which directly correspond to solutions.

There are many degrees of freedom in this process, including the original encoding
of the problem, the consistency techniques to be applied, the choice of new con-
straints at each step and the order in which the resulting search tree is explored. The
success of constraint programming relies on good choices for all these components.
However, we are here mainly concerned with consistency techniques. For the other
aspects of constraint-based round robin scheduling, see [7,8].

A propagation technique is a function that maps constraint problems
to new constraint problems , where for every , ,
and where sol sol .

A CSP is arc-consistent with respect to the constraint on variables ,
if for each index , and each value , there exists an element

. A CSP is arc-consistent, if it is arc-consistent

4

with respect to all of its constraints. Arc-consistent propagation is a propagation
technique that turns a given CSP into an arc-consistent CSP.

4 Constraints for Round Robin Scheduling

The canonical constraint satisfaction problem for opponent team assignment in
DSRR represents the target timetable by an matrix of variables,
whose variables tell the opponent team against which team plays in round .
More formally, we define a DSRR problem as DSRR , where con-
tains all variables in and for every team and round . The set
contains the following constraints.

all-different for every , and (1)
one-factor for every . (2)

where the constraints all-different and one-factor are defined as follows:

all-different
(3)

one-factor
(4)

Propagation algorithms for all-different and one-factor vary in strength. For the
all-different constraint, we consider the following two propagation algorithms:

(1) splitting the constraint up into inequality constraints of the form
according to its definition in formula (3) (arc-consistency with respect

to such inequalities is trivial), and
(2) arc-consistent propagation with respect to the all-different constraint itself.

For the one-factor constraint, we consider three propagation algorithms:

(1) after introducing a half-matrix of auxiliary variables , where
, whose domains are , arc-consistent propagation correspond-

ing to the constraints

for (5)
eq for (6)
eq for (7)

(the constraint eq reflects the equality of the first two arguments into the third
argument),

5

(2) arc-consistent propagationwith respect to these constraints, plus arc-consistent
propagation with respect to the redundant constraint all-different ,
and

(3) arc-consistent propagation with respect to the one-factor constraint itself.

The propagation behavior of (1) is strictly weaker than arc-consistent propagation
for the one-factor constraint.

Example 1 For , let , ,
, , , . Arc-con-

sistency with respect to the neq constraints removes from and from ,
and arc-consistency with respect to the eq constraints removes from , from

and from . Arc-consistency with respect to the neq and eq constraints
fails to reach arc-consistency with respect to the one-factor constraint, which fur-
ther removes , and from , and from , , and from , and
and from .

Adding the redundant constraint all-different with arc-consistent prop-
agation, as done in propagation algorithm (2), improves the propagation behavior
in some cases. In Example 1, arc-consistent propagation with respect to this con-
straint and the neq and eq constraints achieves arc-consistency with respect to the
one-factor constraint. The next example shows that this is not always the case.

Example 2 For , let , , ,
, , . Here, arc-consistency with respect to

the neq and eq constraints and the all-different constraint is not able to remove any
values from any domain, whereas arc-consistency with respect to the one-factor
constraint removes and from , from , and from , from ,
from , and from , thus fixing the one-factor , and .

We conclude from these examples that arc-consistent propagation for the one-factor
constraint deserves consideration and—assuming that there is an efficient algorithm
for it—has the potential for improving round robin scheduling beyond the addition
of an arc-consistent redundant all-different constraint.

Most previous work on constraint-based tournament planning [19,11,8,7] used only
algorithm 1 for the all-different constraint and algorithm 1 for the one-factor con-
straint. Trick [22] suggests to use algorithm 2 for the all-different constraint and
algorithm 2 for the one-factor constraint. Our goal is to evaluate the propagation
algorithms to achieve guidelines for using propagation algorithms in round robin
scheduling.

6

5 Propagation Algorithms

Consider the constraint all-different . The value graph of this constraint
is the bipartite graph with and

.

Lemma 1 (Régin [16]) The following algorithm is a propagation technique for
arc-consistent propagation with respect to the constraint all-different .
Construct the value graph of the constraint. For every variable and value , such
that is not a matchable edge in , remove from .

Régin gives an algorithm for identifying non-matchable edges in a value graph with
variables and values with complexity . For round robin tournaments,

both and are bounded by the number of teams , resulting in a complexity of
.

Now, consider the constraint one-factor . The variable graph of this
constraint is the graph with the vertex set and the
edge set .

Looking at the definition of the one-factor constraint, it is easy to derive a one-to-
one correspondence between the solutions of the constraint and the perfect match-
ings in its variable graph :

Let one-factor denote a solution. The set
is well-defined, a subset of and a perfect match-

ing in .
The matching corresponds to the solution of the constraint where
is the index of the mate of the node in the matching .

This observation motivates the following definitions:We call an edge of match-
able if there is a perfect matching in containing and unmatchable otherwise.

Lemma 2 (Régin [17]) The following algorithm is a propagation technique for
arc-consistent propagation with respect to the constraint one-factor .
Iterate over the domains to enforce constraints

for and for (8)

and construct the variable graph for the constraint. For every pair of values
and , such that is not a matchable edge in , remove from and
remove from .

The problem of finding the unmatchable edges was presented in [1, Exercise 12.42].
It was stated that the problem can be solved with a variation of Edmonds’ blossom-
shrink algorithm [5,6]. Régin’s algorithm follows these ideas. The running time of

7

the resulting algorithms is , where denotes the number of nodes and the
number of edges of the variable graph. In round robin tournaments, is bounded
by the number of teams and is bounded by , resulting in a complexity of the
propagation algorithm of .

6 Experimental Evaluation

For the experimental evaluation, we use the programming systemMozart 1.1.0 [13]
for the concurrent constraint language Oz [21], which provides extensive support
for finite domain constraint programming. We implemented the propagation al-
gorithms all-different and one-factor described in the previous sections using the
LEDA library [12] and made them available to the Mozart system throughMozart’s
Constraint Propagator Interface [14]. The run times given in this section are always
the average user time of five runs on a 256 MB 400MHz Pentium II PC running
Linux. The coefficient of deviation (standard deviation arithmetic mean) was al-
ways below 3 %.

The C++ and Oz source code for generating and running these benchmarks is avail-
able at [9]. The goals of the experimental evaluation are as follows:

evaluate the usefulness of the arc-consistent one-factor constraint for round robin
applications by comparing the sizes of search trees and run times resulting from
searches that use the new constraint with searches that use arc-consistent all-
different or simply the encoding using neq and eq,
investigate the range of round robin problems to which arc-consistent one-factor
provides advantages over other techniques, and
evaluate the efficiency of the arc-consistent one-factor constraint for practical
applications.

We observe from all experiments that the use of the arc-consistent all-different
constraint is crucial. It typically leads to a reduction of the size of the search tree
and the runtime by one or two orders of magnitude. Large tournament problems
can only be solved using arc-consistent propagation for all-different, and thus we
fix this propagation algorithm in the rest of this section.

Unconstrained Single Round Robin Tournaments

Here, we compare the performance of arc-consistent one-factor versus the encoding
using neq and eq and the redundant all-different constraint. In this and all following
benchmarks, we use constraint-based tree search by using constraints of the form

as branching constraints (see Section 3), which means that we enumer-

8

Table 1 Benchmarks on unconstrained DSRR; : number of teams; F: number of
failures in the search tree; UT: user time; the ? symbols indicate that 30 minutes of
runtime were exceeded

neq / eq all-diff one-factor
F UT F UT F UT

6 0 0.030 0 0.048 0 0.020
10 3 0.428 1 0.558 0 0.220
14 62 3.18 0 4.35 0 1.13
18 20 5.82 0 8.86 0 4.37
22 675 81.3 2 25.0 0 12.7
26 ? ? 2 57.1 0 32.0
30 ? ? 0 122. 0 71.2
34 ? ? 17 241. 0 145.
38 ? ? 5 429. 0 272.
42 ? ? 4 742. 0 484.

ate the opponent variables. We order the variables round-wise. At each node, we
enumerate the first variable that has a non-singleton domain. The value is always
the smallest element of this domain. More sophisticated enumeration techniques
such as first-fail do not improve the search. Table 1 compares the encodings using
neq / eq from Section 4, Formula (4), the addition of a redundant arc-consistent
all-different constraint as discussed in Example 1, and the algorithm one-factor, for
finding the first DSRR.

We observe that for these kinds of benchmarks, arc-consistent one-factor achieves
optimal propagation in a sense that there are no failures in the search trees, whereas
the encoding using neq / eq requires search. From 26 teams onward, this method
fails to produce solutions within reasonable time. Arc-consistent all-different oc-
casionally requires a bit of search, but the performance difference to arc-consistent
one-factor is not dramatic here.

Tightly Constrained Round Robin Tournaments

The next set of benchmarks looks at tightly constrained problems. We constrain
the problems by randomly forbidding opponent teams, until there are very few or
no solutions to the problem. Table 2 compares the three remaining propagation
algorithms for finding all solutions, or proving unsatisfiability. The problems s_*
are single round robin problems as described throughout the paper, whereas the
problems d_* are double round robin problems. For the latter, we have instead of
an all-different constraint per team (requiring that each team plays each other team
once) constraints that force the number of occurrences of all other teams in each
row of the matrix to be 2. There is no restriction on the distance between first leg
and return match.

9

Table 2 Benchmarks on tightly constrained DSRR and DDRR; : number of teams;
S: number of solutions; F: number of failures in the search tree; UT: user time

neq / eq all-diff one-factor 2
file S F UT F UT F UT
s_6_yes 6 4 7 0.088 5 0.124 4 0.060
s_8_yes 8 5 47 0.540 24 0.606 10 0.200
s_10_yes 10 1 37 0.704 17 0.686 1 0.106
s_12_yes 12 1 3216 77.9 1452 64.1 179 6.26
s_14_yes 14 1 8407 242. 1328 75.3 527 20.4
s_6_no 6 0 4 0.048 4 0.066 4 0.022
s_8_no 8 0 13 0.172 12 0.246 6 0.086
s_10_no 10 0 20 0.530 13 0.646 6 0.168
s_12_no 12 0 241 6.64 111 5.37 25 0.794
s_14_no 14 0 537 16.7 182 10.9 69 2.54
s_16_no 16 0 1467 64.5 213 18.0 86 5.37
s_18_no 18 0 593 38.6 95 9.57 30 2.29
s_20_no 20 0 ? ? 2755 314. 254 23.0
d_6_yes 6 4 21 0.066 4 0.084 2 0.020
d_8_yes 8 32 5776 19.2 2736 28.1 226 0.93
d_10_yes 10 2 76646 409. 38251 677. 5956 35.6

Although the results vary considerably, we note that in these tightly constrained
problems, arc-consistent one-factor results in a reduction of the size of search trees
by a factor of up to 10, and of the runtime by even more. The difference between
the two techniques increases with the problem size. Note that for the double round
robin problems, the reduction of the search tree afforded by the redundant all-
different constraint does not justify its computational effort.

Minimizing Carry-Over

We consider sports, in which a match between two teams and has an im-
pact on the performance of these teams in the next round, an effect called carry-
over. In such a sport, each sequence of two teams should appear at most once
in such a schedule, leading to a schedule balanced with respect to carry-over
effects. For example, this is not the case for the schedule on page 3; the se-
quence appears three times. Since this ideal is not always achievable,

10

the goal is to minimize
the carry-over effect us-
ing a cost function. Rus-
sell [18] gives a construc-
tive method for generat-
ing tournaments with no
carry-over effect where
is a power of two, and
conjectures the non-exi-
stence of such tournaments
in all other cases. He gives
a constructive method to
generate tournaments with
small carry-over effects lead-

rounds
1 2 3 4 5 6 7 8 9

1 6 5 10 9 4 8 7 2 3
2 7 4 9 10 6 3 8 1 5
3 8 9 7 6 5 2 4 10 1
4 9 2 8 7 1 10 3 5 6
5 10 1 6 8 3 7 9 4 2
6 1 7 5 3 2 9 10 8 4
7 2 6 3 4 10 5 1 9 8
8 3 10 4 5 9 1 2 6 7
9 4 3 2 1 8 6 5 7 10

te
am
s

10 5 8 1 2 7 4 6 3 9

small carry-over schedule for
ing to a carry-over effect of 60 for , 138 for and 196 for
according to a canonical cost measure. With constraint-based branch-and-bound
using arc-consistent propagation for one-factor constraints, we are able to prove
the optimality of his schedule for . However, for , we obtain a sched-
ule with a better cost (136) after 26.2 seconds. The best values that we obtain is
128 for shown on the previous page, which is obtained using a randomized
search strategy (the runtime of about 30 minutes is therefore not very informative).
Trick [22] reports an even better cost (122) after 1 day of runtime, also using con-
straint programming. For , we improve the best known schedule (cost 196)
given in [18] and achieve a schedule with a cost of 188, which is given in [9].

In this study, the use of arc-consistent propagation for the one-factor constraint is
again crucial.

Feasible Pattern Sets

Here, we consider intermural dense double round robins (DDRR) (), where
the second part of the double round robin repeats the first part with opposite venues.
A team is said to have a break, if it either plays two consecutive matches home or
away. We consider the problem of finding all schedules that minimize the overall
number of breaks. A widely accepted method of searching for intermural tourna-
ments is to generate pattern sets first [20,15,7,8]. These are sets of home/away pat-
terns that satisfy simple row and column constraints [7]. However, not all such pat-
tern sets lead to schedules even if there are no other side constraints. De Werra [4]

11

gives a construction of feasible pattern sets with breaks,
proves their optimality and states that no constructive method
is known to enumerate all feasible pattern sets. In this situa-
tion, it is useful to enumerate feasible pattern sets, which—
surprisingly—has to our knowledge not been tackled so far.
For this task we use the constraint model given in [7] and add
the model for opponents given in Section 4. The table on the
right gives the number of pattern sets for ; the pattern
sets are listed in [9]. The column P gives the number of pattern
sets that fulfill the pattern set constraints, the column F gives

P F
4 0 0
6 1 1
8 4 2
10 15 4
12 56 10
14 210 17
16 792 46
18 3003 84

the number of pattern sets that fulfill the model for opponents. For all , there
exists a schedule for every computed pattern set. For , there are 4 cases, for
which we could neither prove infeasibility nor generate a schedule.

For the use of the arc-consistent one-factor constraint or the redundant
arc-consistent all-different constraint for one-factor was not crucial and the pattern
sets were obtained faster with trivial propagation for the one-factor constraint. For

, the arc-consistent propagation for the one-factor constraint allows to prove
the infeasibility of 17 pattern sets; without it, the number of pattern sets generated
is 101.

Intermural Tournaments

The intermural benchmarks in this section show that the pruning obtained from
arc-consistent one-factor not always outweighs its computational effort. The best
strategy for intermural tournament problems is to first find so-called pattern sets [3].
Table 3 shows the run times for finding all solutions of intermural tournament prob-
lems, all of which except the last one are randomly constrained as in the previous
section. The last problem is the ACC 1997/98 problem [15,8], which is tightly
constrained by a variety of conditions. Since we are not concerned with the compu-
tation of the pattern sets, we fix a particular pattern set for the benchmarks, except
for the ACC 1997/98 problem. The numbers for this last problem include the effort
for generating pattern sets, since the one-factor constraint already achieves some
additional pruning during pattern set generation.

We observe that the effort for neither arc-consistent one-factor nor arc-consistent
all-different is is justified for these intermural tournaments. The reason is that
pattern sets already enforce one-factor to such an extent that arc-consistent one-
factor achieves almost no additional pruning of the search trees. Note that the arc-
consistent one-factor constraint could be sped up in this case by exploiting that the
variable graph is bipartite, which would lead a complexity of , similar to
the arc-consistent all-different.

12

Table 3 Benchmarks on intermural tournaments; : number of teams; S: number of
solutions; F: number of failures in the search tree; UT: user time

neq / eq all-diff one-factor 2
file S F UT F UT F UT
i_8_yes 8 7 0 0.138 0 0.182 0 0.142
i_12_yes 12 3 0 0.440 0 0.510 0 0.436
i_16_yes 16 4 6 1.30 4 1.51 4 1.22
i_20_yes 20 10 35 4.23 22 4.63 22 3.61
acc97/98 9 179 273 19.5 273 28.4 268 22.1

7 Conclusion

We analyzed the use of the global constraints all-different and one-factor for con-
straint-based search for round robin tournament schedules. We conclude from an
extensive experimental evaluation that arc-consistent propagation for the all-different
constraint is crucial for efficient solution of all tournament scheduling problems
considered.

Arc-consistent propagation for the one-factor constraint is essential for intramural
tournaments. For large unconstrained and tightly constrained single and multiple
round robin tournaments, we observe a typical reduction of the search tree and
runtime by one order of magnitude. Intermural tournaments do not benefit much
from the arc-consistent one-factor constraint.

Using these algorithms, we could establish new lower bounds for the minimization
of carry-over effects for intramural single round robin tournaments and enumerate
the all feasible pattern sets for intramural tournaments with a minimal number of
breaks for up to 16 teams. For 18 teams, there are 4 open cases.

Acknowledgments

The authors would like to thank Ernst Althaus, Kurt Mehlhorn and Tony Tan for
many helpful discussions, Jan A. M. Schreuder for providing the motivation for
the work on pattern sets, Michael Trick for pointing out omissions and mistakes,
Marleen van Brandenburg for carrying out initial experiments on round robin tour-
nament benchmarks, and the reviewers for pointing out the potential of the opti-
mization for intermural tournaments.

13

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows : theory, algorithms and
applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] I. Anderson. Combinatorial Designs and Tournaments. Oxford University Press,
1997.

[3] W. O. Cain, Jr. The computer-assisted heuristic approach used to schedule the major
league baseball clubs. In S. P. Ladany and R. E. Machol, editors, Optimal Strategies
in Sports, number 5 in Studies in Management Science and Systems, pages 32–41.
North-Holland Publishing Co., Amsterdam, New York, Oxford, 1977.

[4] D. de Werra. Scheduling in sports. In P. Hansen, editor, Studies on Graphs and
Discrete Programming, pages 381–395. North-Holland, Amsterdam, 1980.

[5] J. Edmonds. Maximum matching and a ployhedron with 0,1-vertices. Journal of
Research of the National Bureau of Standards, 69B:125–130, 1965.

[6] J. Edmonds. Paths, trees, and flowers. Canadian Journal on Mathematics, pages
449–467, 1965.

[7] M. Henz. Constraint-based round robin tournament planning. In D. De Schreye, editor,
Proceedings of the International Conference on Logic Programming, pages 545–557,
Las Cruces, New Mexico, 1999. The MIT Press, Cambridge, MA.

[8] M. Henz. Scheduling a major college basketball conference—revisited. Operations
Research, 49(1), Jan. 2001.

[9] M. Henz, T. Müller, S. Thiel, and M. van Brandenburg. Benchmarks and
results for round robin tournaments. http://www.comp.nus.edu.sg/˜henz/
roundrobin_benchmarks, 2000.

[10] ILOG Inc., Mountain View, CA 94043, USA, http://www.ilog.com. ILOG
Solver 4.0, Reference Manual, 1997.

[11] K. McAloon, C. Tretkoff, and G. Wetzel. Sports league scheduling. In Proceedings of
the 1997 ILOG Optimization Suite International Users’ Conference, Paris, July 1997.

[12] K. Mehlhorn and S. Näher. LEDA: a Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, November 1999.

[13] Mozart Consortium. The Mozart Programming System. Documentation and
system available from http://www.mozart-oz.org, Programming Systems
Lab, Saarbrücken, Swedish Institute of Computer Science, Stockholm, and Université
catholique de Louvain, 1999.

[14] T. Müller. Constraint extensions tutorial. available from http://www.
mozart-oz.org, Programming Systems Lab, Saarbrücken, Swedish Institute of
Computer Science, Stockholm, and Université catholique de Louvain, 1999.

[15] G. L. Nemhauser and M. A. Trick. Scheduling a major college basketball conference.
Operations Research, 46(1):1–8, 1998.

[16] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings
of the AAAI National Conference on Artificial Intelligence, pages 362–367. AAAI
Press, 1994.

[17] J.-C. Régin. The symmetric alldiff constraint. In T. Dean, editor, Proceedings of the
International Joint Conference on Artificial Intelligence, volume 1, pages 420–425,
Stockholm, Sweden, Aug. 1999. Morgan Kaufmann Publishers, San Mateo, CA.

14

[18] K. G. Russell. Balancing carry-over effects in round robin tournaments. Biometrika,
67(1):127–131, 1980.

[19] A. Schaerf. Scheduling sport tournaments using constraint logic programming.
Constraints, 4(1):43–65, 1999.

[20] J. A. M. Schreuder. Combinatorial aspects of construction of competition dutch
professional football leagues. Discrete Applied Mathematics, 35:301–312, 1992.

[21] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer Science
Today, Lecture Notes in Computer Science 1000, pages 324–343. Springer-Verlag,
Berlin, 1995.

[22] M. A. Trick. A schedule-then-break approach to sports timetabling. In E. Burke and
W. Erben, editors, Practice and Theory of Automated Timetabling III, Selected Papers
of PATAT 2000, Lecture Notes in Computer Science 2079, Konstanz, Germany, 2000.
Springer-Verlag, Berlin.

[23] W. D. Wallis. One-Factorizations. Kluwer Academic Publishers, Dordrecht / Boston
/ London, 1997.

[24] J. P. Walser. Domain-Independent Local Search for Linear Integer Optimization. PhD
thesis, Universität des Saarlandes, D 66041 Saarbrücken, Germany, Aug. 1998.

15

