
P.Y.K. Cheung et al. (Eds.): FPL 2003, LNCS 2778, pp. 488–496, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Hardware Implementations
of Real-Time Reconfigurable WSAT Variants

Roland H.C. Yap, Stella Z.Q. Wang, and Martin J. Henz

School of Computing, National University of Singapore
Singapore

{ryap,wangzhan,henz}@comp.nus.edu.sg

Abstract. Local search methods such as WSAT have proven to be successful
for solving SAT problems. In this paper, we propose two host-FPGA (Field
Programmable Gate Array) co-implementations, which use modified WSAT
algorithms to solve SAT problems. Our implementations are reconfigurable in
real-time for different problem instances. On an XCV1000 FPGA chip, SAT
problems up to 100 variables and 220 clauses can be solved. The first
implementation is based on a random strategy and achieves one flip per clock
cycle through the use of pipelining. The second uses a greedy heuristic at the
expense of FPGA space consumption, which precludes pipelining. Both of the
two implementations avoid re-synthesis, placement, routing for different SAT
problems, and show improved performance over previously published
reconfigurable SAT implementations on FPGAs.

1 Introduction

Stochastic local search (SLS) algorithms have been successful for solving
prepositional satisfiability problems (SAT). The WalkSAT family (WSAT) of
algorithms [1, 2] contains some of the best performing SLS algorithms. SLS
algorithms like WSAT have a very simple structure and are composed of essentially
three steps which are iterated until a satisfiable solution is found: (i) evaluate clauses;
(ii) choose a variable; and (iii) flip the variable’s boolean value.

Since each of the steps is simple, and as the SAT clauses can be directly
represented in hardware, it is tempting to build a hardware-based SLS solver. There
are a number of such hardware designs and implementations [3, 4, 5, 6] using
reconfigurable FPGA hardware. Hardware approaches to systematic search
procedures for SAT problems are beyond the scope of this paper; see [7] for an
overview.

The use of a hardware SAT solver only makes sense if there is a significant
performance advantage compared to software. Software can make use of state of the
art processors built with the latest processor technology. A hardware SAT solver, on
the other hand, is less likely to have the same level of process technology, and hence
longer cycle times. Earlier hardware implementations like [3, 4] did not outperform
optimized software. For example, a reimplementation of the design in Hamadi and
Merceron [3] which was done in Henz et al. [6] had flip rates between 98 – 962 K
flips/s. In some problems, this was a bit faster than software and in other cases slower.

Hardware Implementations of Real-Time Reconfigurable WSAT Variants 489

In [6], it was shown that GSAT SLS solvers running at one flip per clock cycle was
achievable with performance gains of about two orders of magnitude over software.
That implementation makes use of the reconfigurable nature of FPGAs to build a
custom design specific to a particular SAT problem instance. The contribution of [6]
is to show that large speedups are feasible. This approach, however, is not practical as
a general SAT problem solver because the time needed to re-synthesize, place and
route the specific FPGA design is likely to exceed the runtime improvement from the
faster solver.

This paper explores hardware designs for WSAT, which are not instance-specific
and thus do not require re-synthesis. In addition to this requirement, a hardware
implementation faces interesting design tradeoffs due to the inherently limited logic
resources on the chip. We propose two versions of WSAT, which allow real-time
reconfiguration. The differences of the WSAT versions lead to different design
choices for maximal performance. The first design emphasizes fast cycle times (one
flip per clock cycle), employing random variable selection to allow for a pipelined
design. The second uses a greedy variable selection heuristic, which precludes
pipelining, exemplifying a tradeoff between flip rate and effectiveness of variable
selection. Both designs have improved performance over other published non-re-
synthesis SLS FPGA implementations.

2 Hardware Implementation Issues

2.1 Cost of Re-synthesis FPGA Implementations

SLS SAT algorithms exhibit large amounts of parallelism and hence are a good match
for a hardware solver, which can use the large amounts of parallelism available in the
hardware. We focus here on WSAT implementations using Field Programmable Gate
Arrays (FPGAs), which provide the benefits of customized hardware but avoid
fabrication cost, and thus allow for convenient prototyping of the hardware design.
Unlike software, a hardware implementation has to deal with the inherent resource
limitations for combinatory logic, memory and routing on an FPGA.

One approach is to maximize performance by making full use of parallelism,
exemplified in [6], where clause evaluation and variable selection are parallelized for
a GSAT SLS implementation. However, such a high degree of parallelism is
expensive in terms of hardware resources. That implementation optimizes the
hardware design specifically for a given SAT problem instance, taking advantage of
the reconfigurability of FPGAs. This instance-specific approach enabled a
performance of one flip per clock cycle, more than two orders of magnitude faster
than software. The drawback, however, is that a new solver has to be re-synthesized
for each SAT problem instance. With current CAD tools, the synthesis, placement and
routing for SAT instances with 200 variables can take several hours, while the
resulting SAT solver may only take seconds or minutes to find a solution to the
instance. Thus, while instance-specific hardware implementations demonstrate the
feasibility of very high performance hardware approaches, they are impractical as
general-purpose SAT solvers.

A general-purpose hardware SAT solver should instead not require re-synthesis,
and be able to handle different SAT instances with only small overheads. One non-re-

490 R.H.C. Yap, S.Z.Q. Wang, and M.J. Henz

synthesis approach is given in [4], which takes advantage of the fact that the FPGA
configuration file can be altered directly to modify the design. This provides a
shortcut to re-synthesis since only small modifications to the definitions of the SAT
clauses are necessary. However, this implementation is mostly sequential and does
not outperform optimized software. A more serious issue is that current FPGA chips
do not have an open architecture. The configuration file for these chips is a black box,
which renders this approach unfeasible.

Leong et al [5] achieved a bitstream reconfigurable FPGA implementation for a
WSAT variant. Their implementation stores clauses for a SAT problem in the 16x1-
bit ROM available in the Logic Cells (LC) of the Xilinx FPGA. A different SAT
instance requires various ROM definitions to be modified. Normally, this would
require re-synthesis of the FPGA to generate a new bitstream configuration for
downloading. Leong et al were able to achieve a non re-synthesis implementation,
using a tool to extract the locations of the relevant LCs in the bitstream, and then
directly modify the corresponding data for the ROM values in the bitstream file. This
approach requires analysis of the bitstream file to figure out how to rebuild the
configuration without re-synthesis.

Both of these implementations [4, 5] simulate re-synthesis in a very efficient
fashion. However, they are dependent on the ability to modify the FPGA
configuration.

The aim of this paper is to obtain a more portable reconfigurable implementation,
which nevertheless is capable of providing good search performance, and which
exhibits short reconfiguration times.

2.2 A Clause Evaluator without Re-synthesis

The key to avoid re-synthesis is to be able to handle any SAT instance. Hence the
clause evaluator in WSAT must be general rather than instance-specific. Our goal is a
general clause evaluator, which fits well within an FPGA architecture and can be
reconfigured quickly in a portable fashion.

We will focus on the Xilinx Virtex FPGA chips. The basic building block of Virtex
FPGA [8] is a LC, which includes a 4-input function generator, carry logic and a
storage element. The 4-input function generator is implemented as 4-input look-up
table (LUT). Each Virtex CLB (Configurable Logic Block) contains four LCs,
organized in two slices. Two LUTs in a slice can be combined to create a 16x1-bit
dual port RAM. Our clause evaluator represents the clauses in the SAT instance in a
16x1-bit dual port RAM array, which can be generated from the Xilinx RAM16x1D
primitive. The Xilinx RAM16x1D primitive is a 16-word by 1-bit static dual port
random access memory with synchronous write capability. The device has two
separate address ports; the read address port (DPRA3-DPRA0) and the write address
port (A3-A0).

We describe the clause evaluator by example. Consider a SAT clause, 3c , of the

form, 1 2 5x x x∨ ∨ , and let us assume that 3c is a clause of a SAT problem over 8

variables. The clause can be written as a disjunction of two simpler functions,

1 2 3 4 5 6 7 83,1 3,2(, , ,) (, , ,)f fx x x x x x x x∨

Hardware Implementations of Real-Time Reconfigurable WSAT Variants 491

where 1 2 3 4 1 23,1(, , ,)f x x x x x x= ∨ and 5 6 7 8 53,2(, , ,)f x x x x x= . Thus each SAT clause,

ic , can be decomposed into a disjunction of boolean functions on fewer variables.

We map each ,i jf arising from the j-th part of clause i to a RAM16x1D primitive,

treating the four variables as the address to the read port (DPRA3-DPRA0). The
function ,i jf is configured by using the write port (A3-A0) to define its truth table.

One advantage of this representation is that negated variables are handled
automatically inside the ,i jf block. Figure 1(a) shows an overall block diagram of

the reconfigurable clause evaluator for 100 variables and 220 clauses. Figure 1(b)
shows each ,i jf block, which is configured using the controller in Figure 1(c). The

result of each RAM primitive is ORed and stored in the array all_clause[].The clause
evaluator evaluates all clauses in parallel in one cycle.

address [11..8]

RAM 16x1D RAM 16x1D RAM 16x1D
x [99..0] 0 1 24

 SAT

clause_wen [0]
clock

all_clause [219]

RAM 16x1D RAM 16x1D RAM 16x1D

0 1 24

clause_wen [219]
clock

 to the input of OR

 A3 DPO

 A2

 A1

 A0

 D RAM 16x1D clause_wen [219..0]

 DPRA3

 DPRA2

 DPRA1

 DPRA0 WCLK WE

clause_wen [i]

clock

clause_wdata
[24..0]

(b) Clause_i, RAM_ j: f i,j ()

(a) 220x25 RAM_Array

 x [j*4+3]

 address [8]

CLAUSE_0

CLAUSE_219

 clause_wdata [j]

 x [j*4]

 address [11]

 address [10]

 address [9]

all_clause [0]

 read/write

(c) Read/Write Controller

. .
 .

. .
 .

. .
 .

. .

 x [j*4+1]

 x [j*4+2]

Read/Write
Controller

 address [7..0]

 clock

 reset

Fig. 1. Block Diagram of the Reconfigurable Clause Evaluator

492 R.H.C. Yap, S.Z.Q. Wang, and M.J. Henz

3 Two FPGA Implementations without Re-synthesis

The reconfigurable clause evaluator requires O(mn) CLBs for an implementation with
m clauses and n variables. This component consumes a significant fraction of the
available CLBs (as much as 80%). As we would like to be able to handle as large a
problem as feasible within the constraints of the FPGA, it is impractical to consider
implementations that require multiple clause evaluators. This would consume too
much of the chip real estate, even if there is considerable parallelism gain. We present
two implementations of WSAT for 3-SAT problems, which represent different
tradeoffs in using a single reconfigurable clause evaluator.

3.1 A Pipelined FPGA Implementation Using a Random Selection Heuristic

One strategy is to produce an implementation with a fast cycle time. Given that we are
constrained to a single clause evaluator, we are left with pipelining as the only option
for increasing the flip rate. For maximal reuse of the clause evaluator, it is important
that the pipeline be well balanced with simple pipeline stages. Given that we already
have a fully parallel clause evaluator, the most expensive step in WSAT is variable
selection. A particularly simple WSAT variant chooses the variable randomly in a
selected unsatisfied clause. This strategy is also used in the WSAT implementation of
Leong et al [5].

Figure 2 depicts a five-stage pipelined implementation. Stage 1 finds a random
unsatisfied clause (this checks all clauses in parallel). Stage 2 generates three variable
indices for the selected clause. Stage 3 implements the random selection heuristic,
flipping of its input variables. Stage 5 checks for satisfiability. There are a number of
storage buffers used. Buffer 1 stores the clause table which gives the mapping of
clause to variables used within that clause as represented by a variable index. The
SAT problem is initially loaded into buffer 2, which then is used to initialize the ,i jf

blocks in the clause evaluator. The result is a one flip per cycle implementation.

 4 Clause Equations
 3 Initial Variable Assignments
 2

1 Return Result
on-board

SRAM

 FPGA

S1 S2 S3 S4 S5

Vars
[99..0]

Clauses
[219..0]

 Old (0,1,2)

 Variable

 Assignment

Variable_2 [6..0]

 Pseudo Random

 Number Generator

Clause
Evaluator

Check
SAT

Clause
Selector

Select &
Flip

Clause Number
[7..0]

Variable_0 [6..0]

Variable_1 [6..0]

HOST

Variable
Index

Generator

Fig. 2. Pipelined Random WSAT

Hardware Implementations of Real-Time Reconfigurable WSAT Variants 493

3.2 A FPGA Implementation Using a Greedy Selection

A more typical WSAT variable selection heuristic is to select the variable, which best
improves the score. In terms of the constraints of the hardware, this corresponds to a
design with more complex operations. We have chosen to use a pure greedy heuristic
without noise (but a noise component can be easily added).

Figure 3 shows the block diagram of a sequential implementation. Since we are
dealing with 3-SAT, it is only necessary to determine at most which of the three
variables in a clause to select. However, any kind of parallel implementation of this
step would require computing the score of each of the three possibilities. This would
require three clause evaluator units, which we deem too space consuming for the
targeted SAT problem size. Thus, we are restricted to a sequential implementation for
the variable selection (Stages 4-6), which reduces the flip rate. Our current
implementation performs one flip in nine cycles, as opposed to one cycle achieved by
the design for random selection heuristic.

Fig. 3. Sequential Greedy WSAT

4 Results

Our hardware SAT solver is implemented on Celoxica’s RC1000-PP standard PCI
bus board, which is equipped with a Xilinx XCV1000 FPGA. This board has 8Mb of
SRAM directly connected to the FPGA in four 32-bit wide memory banks. Each of
the four banks may be granted to either the host CPU or the FPGA at any time. Data
can therefore be shared between the FPGA and the host CPU by placing it in the
SRAM. It is accessible to the host CPU by DMA transfer across the PCI bus.

As host we use a PC with an AMD Athlon 1.2GHz CPU. Our prototype generates
the clause configuration for a new SAT instance in software in about 7ms (this is
unoptimized and is probably dominated by file I/O and hence could possibly be
faster). Transferring the clause configuration from the host PC to the on-board SRAM
takes 0.6ms. The FPGA takes 220 x 16 clock cycles to read the SRAM. With an
FPGA clock frequency of 20MHz, this corresponds to 0.176ms. Thus the
configuration overhead for solving a new SAT instance is 7.776ms. In contrast, the
time to download a new bitstream to the FPGA is around 0.14s.

The prototype implementations investigate the two designs on two SAT problem
sizes; a 50 variable/170 clause format and a 100 variable/220 clause format, the latter
chosen to such that its reconfigurable clause evaluator fits on the FPGA used. Table 1
gives the hardware costs in terms of slices for the various implementations. The

S1 S2 S3 S4,5,6 S7 S8 S9

Clause
Selector

Clause
Evaluator

Compute
Score Update

Determine
the Index

of the
Variable
to Flip

New Variable
Assignments
Generator

Variable
Index

Generator

494 R.H.C. Yap, S.Z.Q. Wang, and M.J. Henz

minimum gate delay is as reported by the Xilinx place and route tools. There is only a
small difference in gate delay between the two implementations. The larger influence
is the increased delay due to larger problem sizes.

Table 1. Time/Space Cost Comparison of FPGA-based Implementation

 Random-Strategy WSAT Greedy-Strategy WSAT
System Size Delay (ns) Cost of Slices Delay (ns) Cost of Slices
50-var/170-c 24.097 4946 (40%) 24.842 6408 (52%)
100-var/220-c 31.005 10396 (85%) 31.639 11834 (96%)

Table 2 shows the flip rate performance comparison given in number of flips per

second (fps). We compare FPGA-based hardware implementations versus software
for various 3-SAT benchmarks. The benchmarks used are simply those, which fit
within the required problem sizes. As the main purpose of the benchmarks is to
measure flip rate performance, the difficulty of the benchmarks is not so relevant, as
such a mix of more difficult problems and the easier AIM benchmarks are used. Our
FPGA implementations were clocked at 20Mhz. The software WSAT implementation
is WalkSAT35 by Kautz and Selman [11] running on a Pentium4 1500Mhz PC.

Table 2. Flip Rate Speedups: FPGA-based Hardware versus Pure Software

Random-Strategy Greedy-Strategy
Hardware Speedup

SAT Problems
Software
Flip Rate
(Kfps)

Ours,
Pipelined

Leong et al.
[5]

Software
Flip Rate
(Kfps)

Hardware
Speedup

Uf20-9 407.6 49.91 0.89 265.8 8.38
Uf20-31 390.9 52.06 0.93 251.8 9.84
Uf20-37 405.8 50.11 0.90 303.2 7.34
Uf50-01 536.2 37.95 - 409.4 5.45
Uf50-010 466.2 43.70 - 459.6 4.84
aim-50-2_0-yes1-1 865.4 23.49 0.41 775.4 2.87
aim-50-2_0-yes1-2 859.8 23.73 0.45 775.3 2.89
aim-50-3_4-yes1-1 618.6 33.36 0.98 609.2 3.66
aim-50-3_4-yes1-2 612.6 33.56 1.58 596.0 3.74
aim-50-3_4-yes1-3 613.1 33.55 0.65 572.4 3.89
aim-50-3_4-yes1-4 609.3 33.83 0.42 561.2 3.97
aim-100-1_6-yes1-1 962.5 21.37 - 814.2 2.74
aim-100-1_6-yes1-2 968.4 21.09 - 787.4 2.86
aim-100-1_6-yes1-3 972.9 21.05 - 805.4 2.76
aim-100-1_6-yes1-4 1014.4 20.29 - 872.2 2.55
aim-100-2_0-yes1-1 838.5 24.07 - 744.9 3.00
aim-100-2_0-yes1-2 814.3 24.92 - 747.7 3.00
aim-100-2_0-yes1-3 812.6 24.93 - 731.4 3.06
aim-100-2_0-yes1-4 834.4 24.25 - 744.6 3.00

Hardware Implementations of Real-Time Reconfigurable WSAT Variants 495

The flip rate for the random and greedy variable selection heuristics is constant
throughout the problems – 20M flips for random, and 2.2M flips for the greedy
heuristics, due to its 9-stage implementation. We also measured actual timings as a
reality check. The "Hardware Speedup" columns represent the ratio of measured flip
rate versus the software flip rate. Note that the software flip rate varies with the
problem, while it is constant in our implementations.

The fourth column compares our pipelined random strategy with the WSAT
reconfigurable FPGA implementation from Leong et al. [5], which also uses a random
strategy. Their implementation uses a smaller FPGA with problems of up to 50
variables and hence could be clocked at a faster speed of 33Mhz. The speedup has
been recomputed using the average timing results in their paper. Where timings or
benchmarks are not available, this is indicated by a (-). A major difference between
their implementation and the greedy pipelined one here is that our implementation is
based on a constant flip rate. Their implementation, on the other hand, has a variable
flip rate, because of the use of sequential clause selection and is bounded by a
maximum flip rate of 364Kfps.

With the random variable selection heuristic, the preliminary results show that our
reconfigurable FPGA implementation is significantly faster than software and
previous hardware implementations. This implementation achieves one flip per clock
cycle at 20Mhz. The greedy variable selection implementation has more modest
speedups. The speedup is likely comparable to software or slightly faster, if the fastest
state of art microprocessors are used, since performance scales at a lower rate with
clock speed for microprocessors. However, the reduced flip rate may be offset by the
increased effectiveness of the variable selection strategy. The greedy heuristic
typically gives a better success rate than a random heuristic for WSAT. A detailed
analysis of the effect of different variable selection heuristics is given in [9].

5 Conclusion

We demonstrate two prototype hardware solvers implemented on the Xilinx Virtex
XCV1000 FPGA with significantly better performance than software and previous
hardware WSAT solvers. Furthermore, the solvers are reconfigurable in real-time,
with a reconfiguration time of a few milliseconds for problems with 100 variables.
Our two implementations illustrate the tradeoff between time, space and effectiveness
of the SLS algorithm. The random solver achieves an optimal flip rate at the cost of a
simple variable selection strategy, while the greedy solver uses the more expensive
and effective strategy but is not amenable to pipelining and is hence slower.

Both implementations are limited by the size of the Xilinx Vertex XCV1000 chip
used, which can accommodate a reconfigurable clause checker only for problems with
100 variables and 220 clauses. This chip, dating from 1999, is fabricated using a 5-
layer metal 0.22µm CMOS process. In comparison, the current Virtexm CMOS process. In comparison, the current Virtex-II generation
uses an 8-layer 0.15µm CMOS pm CMOS process. The XC2V10000 has about 10 times more
system gates than the XCV1000 and has significantly faster clock speeds. For
example, a 100 variable/600 clause evaluator requires about 30K slices and fits in a
XC2V6000 which has 6M system gates.

An FPGA implementation will have more limitations on problem sizes even when
larger FPGAs are used. A fast hardware based solver can however still be useful for

496 R.H.C. Yap, S.Z.Q. Wang, and M.J. Henz

general SAT solving. One approach is with hybrid search and stochastic solvers. For
example, Zhang et al. [10] combine Davis Putnam with stochastic search. Their
approach uses Davis Putnam to generate smaller sub-problems which are then solved
with WSAT.

Another route to deal with larger problems is to use ASICs rather than FPGAs. Our
implementation is not restricted to FPGAs since the reconfiguration for different SAT
instances is not dependent on the reconfigurable logic of FPGAs. The prototype uses
FPGAs simply because they are more cost effective for development. Given the real-
time reconfiguration capability, this may be a promising candidate for direct ASIC
implementation, which means higher clock speeds and much more resources for
dealing with larger problems.

References

[1] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. Proc.
National Conference on Artificial Intelligence, 337-343, 1994.

[2] David McAllester, Bart Selman, and Henry Kautz. Evidence for invariants in local search.
Proc. Fourteenth National Conference on Artificial Intelligence (AAAI-97), 1997.

[3] Youssef Hamadi and David Merceron. Reconfigurable architectures: A new vision for
optimization problems. Principles and Practice of Constraint Programming, 209-221,
1997.

[4] Wong Hiu Yung, Yuen Wing Seung, Kin Hong Lee, and Philip Heng Wai Leong. A
runtime reconfigurable implementation of the GSAT algorithm. Field-Programmable
Logic and Applications, 526-531, 1999.

[5] P. H. W. Leong, C. W. Sham, W. C. Wong, H. Y. Wong, W. S. Yuen, and M. P. Leong.
A bistream reconfigurable FPGA implementation of the WSAT algorithm. IEEE Trans.
on Very Large Scale Integration (VLSI) Systems, 9(1): 197-200, 2001.

[6] Martin Henz, Edgar Tan, Roland Yap. One flip per clock cycle. Proc. of the Seventh
International Conference on Principles and Practice of Constraint Programming, 509-
523, 2001.

[7] M. Abramovici and A. Sousa. A SAT solver using reconfigurable hardware and virtual
logic, Journal of Automated Reasoning 24(1/2): 5-36, 2000.

[8] Xilinx. Virtex 2.5 Field programmable gate arrays, 1999.
[9] H. Hoos and T. Stützle. Local search algorithms for SAT: An empirical evaluation

Journal of Automated Reasoning, 24:421-481, 2000.
[10] Wenhui Zhang, Zhuo Huang, Jian Zhang. Parallel Execution of Stochastic Search,

Procedures on Reduced SAT Instances. Proc. of the Seventh Pacific Rim International
Conference on Artificial Intelligence, 108-117, 2002.

[11] H. Kautz and B. Selman, Walksat homepage,
http://www.cs.washington.edu/homes/kautz/walksat/

	1 Introduction
	2 Hardware Implementation Issues
	2.1 Cost of Re-synthesis FPGA Implementations
	2.2 A Clause Evaluator without Re-synthesis

	3 Two FPGA Implementations without Re-synthesis
	3.1 A Pipelined FPGA Implementation Using a Random Selection Heuristic
	3.2 A FPGA Implementation Using a Greedy Selection

	4 Results
	5 Conclusion
	References

