
A framework for automated generation of questions based
on first-order logic

Rahul Singhal, Martin Henz, and Shubham Goyal

School of Computing
National University of Singapore (NUS)

Singapore
{rahulsinghal, henz, shubham }@comp.nus.edu.sg

Abstract. In this work, questions are tasks posed to students to help them understand
a subject, or to help educators assess their level of competency in it. Automated question
generation is important today as content providers in education try to scale their efforts.
In particular, MOOCs need a continuous supply of new questions in order to offer educa-
tional content to thousands of students, and to provide a fair assessment process. In this
paper we establish first-order logic as a suitable formal tool to describe question scenarios,
questions and answers. We apply this approach to mechanics (physics) domains in high
school education and our experimental results are promising.

1 Introduction and Related Work

Developing assessment material is laborious. Teachers spend countless hours scavenging text-
books and developing original exercises for practice worksheets, homework problems, remedial
material and exams. To prevent cheating, many teachers write several versions of each test, mul-
tiplying the work required for creating problems. Various standardized tests such as GRE, SAT
and GMAT regularly require new questions.

This demand has become more acute with the rising popularity of massive open online courses
(MOOCs), in which tens of thousands of students may be enrolled in a course. This massive scale
poses a significant technical challenge: creating a large and diverse set of problems of varying
difficulty, preventing cheating, and providing new practice problems to students. Hence, there is
a need of a software that can quickly generate a large number of questions.

The best developed tutoring systems—JGEX Gao and Lin [2004], Geogebra Geo [2013] and
Cinderella Cin [2013] for geometry, ActiveMath Melis and Siekmann [2004] for algebra, and
Andes Vanlehn et al. [2005] for physics—do not yet generate questions automatically. A question
generation methodology for high school algebra is proposed in Singh et al. [2012], which generates
questions similar to a given one, based on a combination of synthesizing and numerical techniques.
The generated questions in this approach resemble the given question syntactically and the
approach does not consider solution generation.

Alvin et al. [2014] propose an algorithm for generating geometry proof questions for a high
school curriculum. The problem generation approach firstly generates a hypergraph that rep-
resents all possible proofs over a given pair of user-provided figures and axioms. Later, it sys-
tematically enumerates all possible goal sets to find interesting problems. The approach is semi-
automated as the user needs to provide a figure to generate questions. Furthermore, Singhal
et al. [2014] propose a framework for automated generation of high school geometry questions.
However, the scope is limited to the geometry domain.

In this paper, we address the problem of automatically generating new questions and solutions
to the satisfaction of a user, based on a specified topic in a given, formally described domain.

Figure 1 (a) pictorial representation of the generated/predefined scenario along with the user
input; (b) logical representation of the scenario in the framework; (c) an instance of Question-
setting C.

P

B1 B2

(a)

connected (B1, R1),
connected(B2, R2),
connected(P, R1),
connected(P, R2),
connected(R1, R2),
stationary_pulley (P),
acc_block(B1, A1),
acc_block(B2, A2),
massles_pulley (P),
block (B1), block (B2),
rope(R1), rope(R2),

(b)

R1 R2

Steps Before After

Initialization
 where is the formula in

Figure 1b

Extension
 where is
the formula in Figure 1b

Enrichment

Instantiating masses of blocks and added to
scenario

Commitment
A question generated from is finding the

acceleration of block B1 given the masses of B1
and B2 as M1 and M2 respectively.

(c)

added as implicit fact

is fact of equal forces on rope added as an
implicit fact

The proposed framework generates a scenario from the user-specified input and then repeatedly
adds automatically deduced or generated consistent information, until a question is generated
that satisfies the user’s requirements.

2 Domain

A domain consists of objects, relationships between the objects and the rules that govern their
arrangement. We represent a domain by a first-order structure where we describe each object type
by a unary predicate and the relevant relationships between objects by non-unary predicates.

The properties of a domain are given by a set of axioms, which are first-order formulas. We
illustrate these concepts using mechanics domains.

We represent various domain-objects such as pulleys, ropes and blocks by unary predicates
such as pulley, rope and block, and their relationships by non-unary predicates. For example,
the first order formula connected(P,R) expresses the fact that the pulley P and the rope R are
connected. For representing quantitative relationships we use real numbers as arguments. For
example, force block(B, 10) describes the fact that the force acting on the block B is 10 units.
Figure 1b shows a partial list of first-order formulas for representing the mechanics domain. We
describe the domain rules via axioms.

SWI-Prolog (Version 7.1.2) Schrijvers and Demoen [2004] is used for implementation of predi-
cates. The axioms are represented using Constraint Handling Rules (CHR) Frühwirth and Raiser
[March 2011]. In our implementation, we use the CHR library provided by K.U.Leuven, on top
of SWI-Prolog. Mechanics domain requires linear equations solver, hence, SWI-Prolog library of
CLPR is used.

3 Scenarios

Questions are typically situated in a scenario—an arrangement of domain objects that then gives
rise to a problem to be solved by the student. We present scenarios by formulas ∃X̄ F(X̄), where
F(X̄) is a formula whose free variables are in X̄. We generate a scenario from the domain rules
for adding, removing and modifying the objects and their arrangements.

Figure 2 (a) an existing figure scenario; (b) generated by from (a) by adding a fixed wedge;
(c) generated from (a) by adding an inclined wedge; (d) generated from (a) by adding multiple
wedges, pulleys and blocks.

W1

P

B1 B
2

P

(c)

P

B1 B2

(a)

B2

B1

W1

P

B2

B1

(b)

(c)

W1

P2

B1

W2

P3

B2

PP1

(d)

Gk Axioms Hk

Figure 1a,
1b, 1c

Force diagram on block B1 T1 - m1g = m1A1

Force diagram on block B2 m2g - T2 = m2A2

Equal force acting by the
ropes

T1 = T2

Equal acceleration of blocks A1 = A2

Linear equation solver A1 = (m2-m1)*g/(m1+ m2)

(f)

In mechanics, Figure 2a shows a scenario generated from the domain rules for adding pulleys,
blocks, ropes and wedges. Figure 1b represents a partial list of facts and their conjunction forms
the scenario as shown in Figure 2a. Figure 2b, c, d and e show the generation of various new
scenarios from Figure 2a with the application of domain rules.

4 Question generation framework

Let us assume a given scenario ∃X̄ F(X̄). A question based on this scenario is a more specific
formula ∃X̄ (F(X̄)∧G(X̄)), where G(X̄) is the additional information that the question asks for
and that the student needs to provide in an answer. For example, Figure 1c shows a generated
fact H which can be converted to a quantitative question such as finding the acceleration of block
B1.

We propose a framework for producing a state sequence to generate questions where each
state is a question-setting C, which can be described as: C = (E , I,H), where E represents explicit
facts to be made known to the student, I represents implicit facts to be hidden from the student
and H represents facts that might constitute a solution to a generated question, of course also to
be hidden from the student. In terms of first-order logic, a question-setting C can be described
as a formula, as shown in Equation 1, which is the conjunction of its components E , I, and H.

C = ∃X̄((E(X̄) ∧ I(X̄) ∧H(X̄)) (1)

Note that I and H may be >. Each component of the state changes along the process of ques-
tion generation. We discuss the steps used in question generation assisted with an example in
mechanics as shown in Figure 1.

Initialization: (E0,>,>), refers to the scenario generation from the user given topic. E0 is a
scenario representing a set of generated explicit facts. For example, the first row of Figure 1c
explains the state transformation in mechanics where we generate a scenario (see Figure 1a)
from the user-given topic—pulleys, ropes and blocks. We assume E0 is sound.

Extension: (E , I,>)⇒ (E , I ∧ I ′
,>), refers to the generation of new facts from the predefined

domain axioms and explicit facts. For example, the second row of Figure 1c shows an example
of generation of a new implicit fact I ′

. The fact equal(T1, T2) implies that the forces acting on
the blocks by the rope in the scenario are equal. Our framework generates this fact through
application of an axiom that deals with the forces acting on a block by ropes. In first-order
logic, this step is represented as ∀X̄(E(X̄) ∧ I(X̄)→ I ′

(X̄))
Enrichment: (E , I,>) ⇒ (E ∧ E ′

, I,>), generates new facts E ′
and adds them to the existing

scenario. The third row of Figure 1c shows an example of an explicit fact E ′
. The formula

mass block(B1,M1) assigns the mass of block B1 to M1. We add these facts to the list of

explicit facts resulting in a specific scenario. In first-order logic, this step is represented as
∃X̄(E(X̄) ∧ I(X̄))→ ∃X̄(E(X̄) ∧ I(X̄) ∧ E ′

(X̄))
Commitment: (E , I ∧ H,>) ⇒ (E , I,H), refers to the generation of fact H which repre-

sents the answer of a question. For example, the last row of Figure 1c shows the fact
acc block(B1, (M1−M2) ∗G/(M1 +M2)) that can be converted to answer of the question of
finding the accelerations of blocks B1 and B2 given their masses as M1 and M2, respectively.

Sound question refers to the question which is internally consistent and has a solution generated
from the domain axioms. We propose the following theorem regarding our framework.

Theorem 1. Any algorithm that starts with an initialization step and generates a sequence of
extension, enrichment and commitment steps generates sound questions.

Each step is either generating implicit facts with the help of domain axioms, adding explicit facts
with the help of a function or adding a question fact. The theorem is proven by induction on the
number of steps required to generate a question. The initial question setting is sound and each
step constitutes a sound transformation in first-order logic.

Along with the question, we generate an answer from the fact H. The answer of a semantic
question is generally a proof and hence requires a set of axioms. However, the answer of a
quantitative question is the exact value that the question asks for. If c is the answer for a
question that asks for the value of Xi, then H has the shape Xi = c and answer becomes
∃X̄(S(X̄) ∧Xi = c)

5 Future Work

In this paper, we propose a notion for describing a domain to generate user-desired questions
and solutions and described a promising tool for our framework. Future work can be carried in
various directions. One major drawback of this approach would be the inability of the framework
to handle degeneracy conditions across domains. For example, the framework cannot check the
correctness of the function for adding a pulley to a given scenario. Other improvements would
involve conducting an experiment in which the teachers would be asked to differentiate between
the system generated problems from existing online and textbook questions.

References

Cinderella geometry tool (Jan 2013), http://www.cinderella.de/tiki-index.php
Geogebra geometry tool (Jan 2013), httpS://www.geogebra.org
Alvin, C., Gulwani, S., Majumdar, R., Mukhopadhyay, S.: Synthesis of geometry proof problems. In:

AAAI (2014)
Frühwirth, T., Raiser, F. (eds.): Constraint Handling Rules: Compilation, Execution, and Analysis

(March 2011)
Gao, X.S., Lin, Q.: Mmp/geometer asoftware package for automated geometric reasoning. In: Winkler,

F. (ed.) Automated Deduction in Geometry, pp. 44–66. Lecture Notes in Computer Science (2004)
Melis, E., Siekmann, J.: Activemath: An intelligent tutoring system for mathematics. In: Artificial

Intelligence and Soft Computing - ICAISC 2004. Lecture Notes in Computer Science (2004)
Schrijvers, T., Demoen, B.: The k.u.leuven chr system: Implementation and application (2004)
Singh, R., Gulwani, S., Rajamani, S.: Automatically generating algebra problems. In: AAAI (2012)
Singhal, R., Henz, M., McGee, K.: Automated generation of geometry questions for high school mathe-

matics. In: Sixth International Conference on Computer Supported Education. (2014)
Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R.H., Taylor, L., Treacy, D.J., Weinstein, A.,

Wintersgill, M.C.: The andes physics tutoring system: Five years of evaluations. In: Proceedings of
the Artificial Intelligence in Education Conference (2005)

