Playing with Constraint Programming and Large
Neighborhood Search for Traveling Tournaments

Martin Henz

National University of Singapore
henz@comp.nus.edu.sg

Abstract. Constraint programming can be used to solve small tourna-
ment scheduling problems to optimality. Beyonds its low size limits, local
search techniques have been shown to yield close-to-optimal schedules,
when augmented with simulated annealing, reheating, strategic oscilla-
tion and other techniques. In these approaches, the local moves are rel-
atively small, making the moves fast, but requiring sophisticated mech-
anisms to escape local minima. This paper explores the possibility of
making use of constraint programming as a technique for achieving large
moves in local search. The proposed technique falls within the algorithm
scheme known as very large scale neighborhood search.

1 Introduction

Local search [1] has been applied successfully to large scale optimization prob-
lems. Its applications include a wide variety of timetabling problems, including
highly structured problems. The only disadvantage, its inability to prove the
optimality of a solution, vanishes as the problem size grows and complete search
techniques fail to deliver optimal solutions. The main technical problem of local
search is to escape local minima in the search. The techniques proposed to allevi-
ate the problem include simulated annealing, where uphill moves are performed
with decreasing probability, and tabu lists, where recent moves are stored and
avoided.

Very large scale neighborhood search [2] (VLNS) addresses the problem of
local minima by defining very large neighborhoods, and exploring these neigh-
borhoods with efficient algorithms to constitute single move during the search.
Often, the neighborhoods chosen for VLNS are amenable to algorithms with low
polynomial complexity, exploiting techniques such as dynamic programming.

In this paper, we propose to employ constraint programming as a mechanism
for making local moves. The idea is that the constraints in a given schedule
are relaxed by keeping only certain variable assignments and relaxing all other
variables. A step in the local search then constitutes a branch-and-bound search
for the optimal assignment of the relaxed variables. The motivation is to make use
of constraint programming in order to explore very large neighborhoods, hoping
that the resulting search escapes from local minima more easily compared to
local search variants with smaller neighborhoods.



This technique might work well for tightly constrained problems, where con-
straint programming is known to be able to efficiently solve small instances.
One such an application is the scheduling of round robin tournaments [6]. The
traveling tournament problem [5, 13] (TTP) is a set of benchmark problems that
combines round robin tournaments with a cost function that is affected by ev-
ery slot of the schedule. This problem provides an ideal testing ground for the
proposed search technique. The competition from local search is strong. The
work in [3,11] shows that local search can come within a few percent of proven
lower bounds for even large problems. We currently cannot reach the quality of
solutions achieved by local search with our approach, but nevertheless think the
proposal justifies serious consideration.

The following section describes the TTP in detail. Section 3 describes the
technique of constraint programming to prepare the reader for a constraint pro-
gramming model of the TTP in Section 4. Section 5 introduces VLNS in more
detail. Section 6 describes different ways to define neighborhoods for TTP in a
VLNS setting. Section 7 proposes an algorithm for solving TTP with VLNS using
constraint programming for local moves, and finally Section 8 gives preliminary
experimental results.

2 The Traveling Tournament Problem

The TTP [5] asks for an optimal intermural double round robin tournament
schedule for an even number of teams n. Every team i plays against every other
team exactly twice during the competition, once at the place of team ¢ (a home
match for ¢) and once at the other team’s place (an away match for ¢). The first
of the two matches is called the first leg, the second is the return match. In each
round of the tournament, every team plays exactly once. Therefore, the n(n —1)
matches must be distributed over 2n — 2 rounds. A team may have at most three
home games in consecutive rounds and at most three away games in consecutive
rounds. Return matches cannot be in the round immeditately following the cor-
responding first legs. The aim of the traveling tournament problem is to generate
a schedule such that the overall travel cost incurred by the teams is minimized.
An instance of the traveling tournament problem consists of an even number
n of teams, and a symmetric n X n distance matrix d, such that each integer
value d; ; represents the travel distance between the home stadiums of teams %
and j. The travel distance for a team throughout the tournament is the distance
to be traveled from its home to the first venue (if the first match is an away
match), then on to the second venue, etc, to the last venue, and finally back
home again (if the last match was an away match). The overall travel distance
to be minimized is simply the sum of the travel distances of all teams.

To get the constraints even tighter (which we deem beneficial for the success
of our approach), we focus on the mirrored variant of the problem, as described
in [13,11]. In this version, the return leg occurs always n — 1 rounds after the
corresponding first match, which means that the schedule consists of a single
round robin followed by the same single round robin with inverted venues.



The traveling tournament problem attracted the attention of timetabling re-
searchers, because it captures the essence of an important class of sports schedul-
ing problems, and because it represents a highly structured timetabling problem
with a large search space, and with a cost function that is directly affected by
every slot in the timetable.

3 Constraint Programming

Finite-domain constraint programming is a technique designed for solving com-
binatorial search problems. Stuckey and Marriott [8] explain the approach in
detail and Wallace [15] presents an overview of applications of finite-domain
constraint programming.

Every variable of a model is represented by a finite-domain variable. A con-
straint store stores information on such a variable in the form of the set of
possible values that the variable can take; this set is called the current domain
of the variable. Some constraints can be directly entered in the constraint store.
For example, the constraint z # 5 can be expressed in the constraint store by
removing 5 from the domain of . More complex constraints are translated by
the programmer into computational agents called propagators. Each propaga-
tor observes the variables given by the corresponding constraint in the problem.
Whenever possible, it strengthens the constraint store with respect to these
variables by excluding values from their domain according to the corresponding
constraint. The process of propagation continues until no propagator can further
strengthen the constraint store. At this point, many problem variables typically
have still non-singleton domains. Thus the constraint store does not represent a
solution, and search becomes necessary.

Search for solutions is implemented by choice points. A choice point generates
a constraint c. From the current stable constraint store cs, two new constraint
stores are created by adding ¢ and —c, respectively, to cs. In each branch, prop-
agation leads to further domain reductions and possibly to empty domains of
some variables, in which case the branch can be pruned.

The choice of the constraint ¢ at each branching determines the shape and
size of the search tree. A mechanism to systematically generate these constraints
is called a search strategy. A common search strategy is called variable enumer-
ation, where the constraints ¢ have the form x = v for some variable z and some
value v from its domain.

In order to optimize solutions with respect to a cost function, the usual
depth-first search is modified by a bounding constraint. To this aim, a bound
variable cost is constrained such that it reflects the cost of the solution. Whenever
a new solution is found with a cost C' the constraint cost < C is added to
every store to be considered afterwards. We shall denote this branch-and-bound
algorithm by an operator branchandbound which is applied to a given model with
a distinguished cost variable and returns the optimal solution, and the usual
constraint-based depth-first search algorithm without optimization by depthfirst
with the same signature.



A constraint programming system takes care of activating propagators, reach-
ing stability and performing the branch-and-bound search. The programmer
can concentrate on translating the constraints into appropriate propagators and
specifying the search strategy. Finite-domain constraint programming systems
support this task through libraries of propagators and search strategies.

4 Constraint Programming Model for the Traveling
Tournament Problem

Our constraint programming model ttp is defined as follows. For every team i
and every round j of the tournament, a finite domain variable op; ; represents
the opponent against which team ¢ plays in round j. Each variable op; ; has the
initial domain of {1,...,7 —1,i 4+ 1,...,n}, allowing team 7 to play any other
team in round j. To determine the venues, for every every team i and round j,
a 0/1 variable home; ; expresses whether team ¢ plays home in round j, and a
0/1 variable away; ; expresses whether team i plays away in round j.

The double round robin constraints are expressed with straightforward prop-
agators. For some constraints, there is a choice between propagators of different
strength.

— The symmetric all-different constraint that forces proper team matchings
in a round is implemented by an all-different constraint and inequalities,
instead of the constraint given in [10], since in practice the additional pruning
does not justify the computational effort needed; see [7] for a more detailed
analysis.

— The constraint that forces a team to play all other teams twice is imple-
mented by a cardinality constraint [14], instead of a more complex scheme
that would allow to use the all-different constraint, again as a result of a
performance analysis.

The cost function is implemented by constraints that collaborate to restrict
the variable totaldistance. This variable is used as bound variable in constraint-
based branch-and-bound. To compute totaldistance, the travel distance for team ¢
between round j—1 and round j is represented by a matrix distance; j, 1 < i < n,
0 <7 <2n—2, of finite domain variables.

Each variable distance; o represents the distance traveled for a team 4 to reach
its first destination. To constrain this variable, we first access the distance vector
d; via an element constraints [4] to obtain a preliminary distance distanceao as
follows.

element(op; o, d;, distance; )

The final distance distance; is a result of multiplying the appropriate away
variable with the preliminary distance variable.

. . ’ .
times(away; ,, distance; o, distance; o)

The variable distance; on—2, representing the distance traveled for a team ¢ from
the venue of its last match back home, is constrained in a similar way.



The computation of the internal travel distance distance; ; for team ¢ between
rounds j—1 and j is more complex, but similar in style. There are four cases, dis-
tinguished by the corresponding venue variables home; j_1, home; j, away; ;_q,
and away; ;. If both home; j_; and home;; are 1, we can set distance;; to 0.
The case where one of home; j_1 and home; ; is 0 and the other one is 1 is sim-
ilar to the situation at the beginning and end of the schedule, and implemented
using an element constraint involving either op; ; or op; ; ;. In the case where
both home variables are 0, we need to access the distance matrix using a two-
dimensional variant of the element constraint, using both opponent variables
op; j—1 and op; ; as indices.

Finally, all variables distance; ; are summed to the bound variable totaldistance.

As branching technique, we proceed team by team in random order. We first
enumerate all home variables for the current team, and then all op variables,
again in random order.

In our experiments, we can solve the smallest two benchmark problems n =
4,6 using constraint programming alone (see Section 8).

5 Very Large Scale Neighborhood Search

Local search starts with an initial schedule and repeatedly applies local moves
to it. Local moves are typically small changes to the schedule that improve the
overall cost function. By moving to better and better schedules, local search
quickly finds local minima. Much attention is devoted to the question how to
escape local minima in search for more global minima. Many different factors
determine the success of local search, including the chosen model and the escape
mechanism. The factor that we are focussing on here is the size of the neighbor-
hood from which the next move is chosen. Ahuja et al [2] describe the issue as
follows:

A critical issue in the design of a neighborhood search approach is
the choice of the neighborhood structure, that is the manner in which
the neighborhood is defined. This choice largely determines whether the
neighborhood search will develop solutions that are highly accurate or
whether they will develop solutions with very poor local optima. As a
rule of thumb, the larger the neighborhood, the beter is the quality of
the locally optimal solutions, and the greater is the accuracy of the final
solution that is obtained. At the same time, the larger the neighborhood,
the longer it takes to search the neighborhood at each iteration. (R.K.
Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen ([2])

The focus of very large scale neighborhood search is to define neighborhoods
large enough to easily escape local minima while still being able to search the
neighborhood for an optimal move. Ahuja et al [2] categorize the algorithms for
exploring the neighborhoods into three classes:

— Heuristic search methods that explore exponentially large neighborhoods,
defined by a suitably chosen “depth” (neighborhood size),



— Network flow-based improvement algorithms, and
— Polynomial algorithms resulting from suitably restricted NP-hard problems.

In this paper, we propose to define the neighborhood of a given schedule by keep-
ing the values of certain variables as constraints. Since constraint programming
has been shown to be a suitable technique for efficiently solving small tourna-
ment problems, we choose this technology to explore the resulting neighborhoods
for optimal schedules.

6 Defining Neighborhoods

In large neighborhood search, a neighborhood is defined by relaxing the con-
straints given by a candidate schedule. We are exploring different techniques for
relaxing a given schedule, denoted by an operator relax, which is applied to a
given model and a solution and returns a model in which the variables that are
not relaxed are fixed as in the given solution.

Relazxing rounds. In this relaxation technique, all variables of a set of rounds are
relaxed. We can often relax the majority of rounds, leaving only the opponents
and venues of a few rounds fixed as given in the current schedule. This relax-
ation allows the optimization to shuffle entire rounds of the schedule as in the
SwapRounds move operation in [3], as well as rearrangements of opponents and
venues within the relaxed rounds.

Relaxing teams. Here, all variables of a set of teams are relaxed. Again, we can
often relax the majority of teams, leaving only the opponents and venues of a few
teams fixed. This relaxation allows the optimization to shuffle the schedule of en-
tire teams as in the Swap Teams move operation in [3], as well as rearrangements
of opponents and venues within the relaxed teams.

Random Relazation. In this relaxation technique, we randomly choose team /round
slot coordinates and relax all opponent and venue variables that belong to the
chosen slots.

Relazing Opponents. Here, all opponent variables op; ; are relaxed, which means
that the home/away patterns are kept for the teams, and the opponents are
rearranged. If that does not lead to a sufficiently small neighborhood, we can
combine this relaxation technique with any of the previous, for example random
relaxation.

Relazing Venues. Here, all home variables home; ; and away variables away; ;
are relaxed, which means that the opponents are kept for the teams, and the
venues are rearranged. If that does not lead to a sufficiently small neighborhood,
we can combine this relaxation technique with any of the previous, for example
random relaxation.

To get a good coverage of the search space during the search, it is useful to
alternate between different relaxation techniques.



7 Putting it all together

The VLNS techniques we are proposing generates a first solution and then re-
peatedly relaxes the solution and computes the best solution within the neigh-
borhood defined by the relaxation. Our VLNS algorthms are therefore instances
of the following algorithm scheme.

s = depthfirst(ttp)
while —(termination condition)
s = branchandbound(relaz(ttp, s))

Escape mechanism. The search usually gets stuck in a local minimum regardless
how large a neighborhood size is chose. We therefore regularly restart the search
with a fresh initial solution.

Tabu list. We want to avoid that branch-and-bound finds the current solution
as best solution. We therefore implement a simple tabu mechanism that ex-
cludes solutions with a cost that was encountered already before. Tabu tenure
is indefinite in our implementation.

Time limit. The computing time for a branch-and-bound search in a neighbor-
hood defined by relaxation is not predictable. In order to force the local search to
progress at a predictable rate, we impose a time limit on each branch-and-bound
search. There are four possible results of the branch-and-bound.

1. Branch-and-bound finds the optimal solution and terminates.

2. Branch-and-bound finds solutions but does not manage to prove the opti-
mality of the last solution within the time limit.

3. Branch-and-bound finds no solution and terminates, which means that it
proves that there is no solution. This is possible due to the tabu mechanism.

4. Branch-and-bound finds no solution, but does not manage to prove that
there is no solution.

In the last two cases, we simply ignore the corresponding neighborhood search.
In the first two cases, we adopt the last solution as the new current solution.
In the second case, an alternative approach would be to accept the last solution
only if it is not much worse than the previous solution.

Self-tuning neighborhood size. The size of the neighborhood defined by each of
the relaxation techniques in Section 6 can be tuned by parameters. This makes
the algorithm difficult to handle. Using the time limit approach just described, we
can make these parameters self-tuning. If the neighborhood search exhausts the
time limit without finding any solutions (case 4 above), the neighborhood is too
large, and we reduce the corresponding relaxation parameter. On the other hand,
if the neighborhood search proves that there are no solutions, the neighborhood
is too small, and we increase the corresponding relaxation parameter.



Simulated annealing and strategic oscillation. Using some ideas from [3], we can
employ simulated annealing. One possibility would be to increase the time limit
over time, which will force the search to be more focussed as time goes by. The
techniques of reheating and strategic oscillation in [3] can also be used in the
context of VLNS.

8 Preliminary Results

The results obtained so far are very preliminary. They were obtained using an
experimental implementation in the constraint programming language Oz [12]
using the Mozart programming system [9] on a Pentium IV with 2.4GHz and
512MB running Windows XP.

For the problem sizes of 4 and 6 teams, constraint programming alone (with-
out local search) can generate the optimal solution. For 4 teams, the computing
time is a few microseconds and a few dozens of search nodes, whereas 6 teams
takes more than 10 minutes and more than 100,000 nodes.

All VLNS experiments were done using the simplest constraint programming
model using the basic algorithm, augmented by a rotating neighborhood selection
scheme. We restart every 100 moves and use a time limit of 1 second (for the
smallest problems) to 1 minute (for the largest problems). We alternate between
opponent relaxation, venue relaxation and random relaxation, using self-tuning
neighborhood size selection.

For 8 teams, we have obtained a solution with cost of 42142 (the best solution
obtained in [11] is better at 41928). For 10 teams, we achieve a cost of 65464
(again, the best solution by Ribeiro is better at 64976), and for 12 teams 135950
(120696).

We have experimented with simulated annealing with strategic oscillation as
described in the previous section, but have not achieved an improvement over
the basic algorithm.

More work is needed to be able to compete with more conventional local
search techniques. However, we are convinced that if constraint programming is
to continue to contribute to tournament scheduling, it may be along the lines of
very large neighborhood search.

Acknowledgements
Zhang Da contributed to this work with helpful discussions. This work was
supported in part by FriarTuck Pte Ltd.
References
1. E.L. Aarts and J. K Lenstra. Local Search in Combinatorial Optimization. Prince-
ton University Press, 1997.

2. R.K. Ahuja, O. Ergun, J.B. Orlin, and A.P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123:75-102, 2002.



10.

11.

12.

13.

14.

15.

A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados. A simu-
lated annealing approach to the traveling tournament problem. In Proceedings of
the 5th International Workshop on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CP-AI-OR 2003),
Montreal, Canada, May 2003.

. Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving the car-

sequencing problem in constraint logic programming. In Yves Kodratoff, editor,
Proceedings of the European Conference on Artificial Intelligence, pages 290-295,
Munich, Germany, August 1988. Pitman Publishers, London.

. K. Easton, G. Nemhauser, and M. Trick. The traveling tournament problem de-

scription and benchmarks. In Toby Walsh, editor, Principles and Practice of Con-
straint Programming—CP 2001, Proceedings of the Seventh International Con-
ference, Lecture Notes in Computer Science 2239, pages 580-589, Cyprus, 2001.
Springer-Verlag, Berlin.

. Martin Henz. Scheduling a major college basketball conference—revisited. Oper-

ations Research, 49(1), January 2001.

. Martin Henz, Tobias Miiller, and Sven Thiel. Global constraints for round robin

tournament scheduling. FEuropean Journal for Operational Research, 153(1):92—
101, February 2004.

. Kim Marriott and Peter J. Stuckey. Programming with Constraints. The MIT

Press, Cambridge, MA, 1998.

. Mozart Consortium. The Mozart Programming System. Documentation and

system available from http://www.mozart-oz.org, Programming Systems Lab,
Saarbriicken, Swedish Institute of Computer Science, Stockholm, and Université
catholique de Louvain, 2004.

Jean-Charles Régin. The symmetric alldiff constraint. In Thomas Dean, edi-
tor, Proceedings of the International Joint Conference on Artificial Intelligence,
volume 1, pages 420-425, Stockholm, Sweden, August 1999. Morgan Kaufmann
Publishers, San Mateo, CA.

C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament
problem. In Edmund Burke and Michael Trick, editors, Practice and Theory of Au-
tomated Timetabling, Fifth International Conference, PATAT 2004, Lecture Notes
in Computer Science, Pittsburgh, USA, 2004. Springer-Verlag, Berlin.

Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer
Science Today, Lecture Notes in Computer Science 1000, pages 324-343. Springer-
Verlag, Berlin, 1995.

Michael Trick. Challenge traveling tournament instances.
http://mat.gsia.cmu.edu/TOURN/, 2004.

P. Van Hentenryck and Y. Deville. The cardinality operator: A new logical con-
nective for constraint logic programming. Report CS-90-24, Brown University,
November 1990.

Mark Wallace. Practical applications of constraint programming. Constraints,
1(1&2):139-168, 1996.



