
A Software Engineering Approach to Constraint ProgrammingSystems

Ka Boon Kevin Ng
Advanced Application Technologies

Honeywell Automation and Control Solutions
kevin.ng@honeywell.com

Chiu Wo Choi
Dept. of Computer Science and Engineering

The Chinese University of Hong Kong
cwchoi@cse.cuhk.edu.hk

Martin Henz
School of Computing

National University of Singapore
henz@comp.nus.edu.sg

Abstract

Constraint programming (CP) systems are useful for
solving real-life combinatorial problems, such as schedul-
ing, planning, rostering and routing problems. The design
of modern CP systems has evolved from a monolithic to an
open design in order to meet the increasing demand for
application-specific customization. It is widely accepted
that a CP system needs to balance various design factors
such as efficiency versus customizability and flexibility ver-
sus maintenance. This paper captures our experience with
using different software engineering approaches in the de-
velopment of constraint programming systems. These ap-
proaches allow us to systematically investigate the different
factors that affect the performance of a CP system. In par-
ticular, we review the application of reuse techniques, such
as toolkits, framework and patterns, to the design and im-
plementation of a finite-domain CP system.

1. Introduction

During the past decades, software engineering has been
successfully applied to the development of information sys-
tems software and systems software. Information sys-
tems software are characterized by data transaction, storage
and search. Systems software are characterized by hard-
ware/software interfacing. The goal of software engineer-
ing is to improve software quality with criteria such as high
maintainability and absence of faults.

In this paper, we focus on another class of software sys-
tems, namely knowledge systems software, such as decision
support systems and other artificial intelligence systems.
These systems are characterized by specialized software al-
gorithms, otherwise known as engines, that drive the sys-

tem. These software engines include algorithms for image
recognition, constraint solving, machine learning, etc. Un-
like conventional research where there is a time lag between
research and application, research in knowledge systems
software is on-going and continuously being transfered to
industrial practice. By applying the right software engineer-
ing approaches to knowledge systems, we could strive for a
smoother transition from research into actual applications.

The recent proliferation of knowledge systems happens
because of several reasons. First, there are niche application
areas where knowledge systems have proven to be highly
effective compared to alternative techniques (e. g. , see [3]).
Second, the increase in performance of personal computers
has led to competitive performance without expensive cap-
ital investment. Finally, there is a movement towards open
software concepts and research systems are written using
directly deployable software architecture, such as C++/Java.

Differing software engineering practices in research and
industry results in a gap between the quality level and tech-
nology level of knowledge systems software. The focus
in research has mostly been on theoretical improvements.
Hence, there is a lack of appreciation of the software engi-
neering aspects of such systems, which in turn means that
such research systems often have poorly designed software
architectures. Ultimately, they are not flexible enough to
adapt to new improvements in the software algorithms.

As the software industry moves towards a customer-
centric market, fast deployment becomes essential. Knowl-
edge systems are further exacerbated by the fact that cus-
tomers are unfamiliar with the technology and may eas-
ily substitute one knowledge system with another without
knowing the differentiating features of each system. To sur-
vive in the current marketplace, rapid development method-
ologies is critical in engineering such systems and these
methodologies must be adaptive to new advancements in

research. Careful software reuse appears to be a solution to
support the effective transfer of research results into indus-
trial practice.

In this paper, we use a case-study approach to evaluate
the contributions of current software engineering concepts.
We also provide insights on how to apply software engineer-
ing approaches for knowledge systems and how we could
further improve the process.

In the case study, we recall the experience of developing
a type of knowledge systems known as constraint program-
ming (CP) systems. CP systems exhibit properties of a typ-
ical knowledge systems software. It is driven by two key
engines, the propagation (or inferencing) engine and search
engine. From an algorithmic stand-point, the algorithms be-
hind the engines are fundamental to artificial intelligence
research. Current ongoing research aims to improve CP by
having more flexible modeling and improving speed perfor-
mance, both of which will be important for solving real-life
combinatorial problems.

From a software engineering perspective, it is interesting
that CP concepts can be easily mapped into objects. Even
the reuse of constraints has been widely encouraged since
the early days of CP research. Hence, the CP system soft-
ware provides an interesting case study on applying soft-
ware engineering methodology, software reuse in particular,
into knowledge systems.

The rest of the paper is organized as follows. Section 2
gives an overview of CP systems. Section 3 discusses our
experience in applying different reuse techniques to the
development of CP(FD) system. Section 4 discusses the
lessons that we learned. In Section 5, we conclude our
study.

2. Finite-Domain Constraint Programming

Constraint programming is a declarative programming
paradigm combining local consistency algorithms and
heuristic search algorithms in artificial intelligence. Given
a problem, a constraint program models the specification in
terms of constraints that describe the relationships between
the problem variables. The CP system accepts the constraint
program and finds solutions that satisfy all the stated con-
straints.

In this paper, we focus on the branch of CP calledfinite-
domain constraint programming(CP(FD)), where all prob-
lem variables are restricted to a finite domain of values. Re-
cent research shows that CP(FD) is competitive to conven-
tional operations research techniques in solving combina-
torial problems such as planning, scheduling, time-tabling,
resource allocation, routing, configuration and placement
problems. Here, we will highlight the important concepts in
CP(FD) to facilitate our discussion. A more detail overview
could be found in [13].

In CP(FD), avariable, also called alogic variable, binds
to the set of possible values it can take. We call the set of
possible values thefinite-domainof the variable. The finite-
domain is a subset of the predefined finite set of symbols,
usually integers with pre-defined minimum and maximum,
for direct representation during computation. Aconstraint
specifies the relationship over a set of variables, whilecon-
straint propagationis the basic technique for constraint in-
ferencing. To better understand constraint propagation, let
us consider only binary constraints. Then, we can view the
collection of variables and constraints as a graph called a
constraint graph, where nodes represent variables and arcs
between nodes represent a binary constraint between the
variables. When a value is removed from a variable, con-
straint propagation inspects neighboring variables (linked
by the arcs/constraints) to remove values from their finite-
domain that is inconsistent with the constraints. This de-
ductive reasoning process can be generalized to n-ary con-
straints. In addition to restricting the finite-domain of vari-
ables, the deductive reasoning process could infer new con-
straints to add to the constraint model.

Usually, constraint propagation alone is insufficient to
solve a problem.Searchcomplements constraint propaga-
tion. It employs a systematic process of enumerating all
the possible solutions in the form of a tree, and explores the
tree in a top-down fashion, usually carrying out propagation
(or inferencing) at each step of the exploration. We use the
term branchingto describe the former process of creating
branches to form a tree,explorationfor the latter process
of traversing the tree, andtree searchto denote this type of
search.

3. Reuse Techniques

Over the years, the monolithic design of CP(FD) sys-
tems has given way to a more open and modularized de-
sign. These open systems provide the interfaces for easy
extension of user-defined constraints and search algorithms.
However, with increasing demand for shorter development
cycle and high maintainability to support ongoing research
technology transfers into practice, it will be useful to apply
reuse techniques to the development of CP(FD) systems.
The reuse techniques that we have applied include: software
toolkit, scripting, software components and framework, and
design patterns.

3.1. Software Toolkit

A toolkit is a set of related and reusable routines de-
signed to provide useful and general purpose functionality.
The emphasis is oncodereuse. It does not impose design
restrictions on the use of them. The design of CP(FD) sys-
tems encourages the reuse of constraints provided by the

system to model problems. Such a library of constraints is
already a toolkit by itself.

Search is another important aspect of CP(FD). Exist-
ing CP(FD) systems support the programming of search
through programming abstractions. The Mozart/Oz Sys-
tem [17] provides several search engines, extended in di-
mensions such as interaction, visualization, and optimiza-
tion. However, such extensions are monolithic in design,
not catering for systematic reuse. It becomes a major ef-
fort to implement a new search engine and equip it with
useful facilities like visualization of search tree. A search
toolkit [5] modularizes search in such a way that the differ-
ent design dimensions can be implemented separately. The
architecture of the toolkit allows to plug together a custom
search engine by reusing the modules provided.

The search toolkit considers the following six different
design dimensions:

Memory Policy concerns with the policy to restore the
state when encountering a failure during search. It is
also called thestate restoration policy[7]. Most exist-
ing CP(FD) systems uses trailing, with the exception
of Mozart/Oz which uses copying/recomputation.

Exploration states the order in which nodes are visited
in the search tree. The most common exploration is
depth-first. Other useful explorations include breadth-
first, iterative deepening, and limited discrepancy.

Interaction dictates the way in which the user controls the
exploration. The most common interactions are first-
solution, all-solution, and last-solution. There are also
next-solution and tracer for interactively exploring the
search tree.

Optimization allows to modify an engine such that differ-
ent pruning behaviors are achieved when searching for
the most optimal solution. The two well-known opti-
mization methods are branch-and-bound and restart.

Visualization is responsible for visualizing the search tree
in a graphical interface. This is similar to the Oz Ex-
plorer [24]. The toolkit provides two types of visual-
ization, the simple display only displays the search tree
as it is being explored, while standard display allows
to interactively explore the search tree using the tracer
interaction.

Information enhances interaction and visualization by
providing the facility for accessing the information in a
given node in the tree. These include node information
and edge information.

Figure 1 shows a snapshot of a custom search engine
constructed with the toolkit code generator by combining
limited discrepancy search with recomputation, node-level

Figure 1. Engine Generator and the Resulting
Custom Search Engine

tracing, edge information, branch-and-bound optimization,
and simple display visualization. The current implemen-
tation makes use of Oz’s advanced object-oriented fea-
tures [12] where classes are first-class citizens. The toolkit
accepts the classes that describe the different modules as
parameters and generates the class definition of the desired
search engine at runtime. Such a toolkit can be compared
to a set of comparison functions for a sort algorithm. In
this case, we have a set of parameters that characterizes
the search algorithm. This technique can also be seen
as generic algorithms found in generic programming [1]
which is supported by the C++ STL toolkit [25]. E. g. ,
sort(v.begin(), v.end(), compfunctor()) .

3.2. Scripting Approach

Scripting languages, like Tcl [22] and Perl [26], are
very high-level languages made for “gluing” components
together. The scripting approach is built on the philoso-
phy that combining different types of software components
should be made as convenient and simple as possible. This
philosophy conveniently supports the requirement for rapid
application development. The scripting approach requires
that the components are highly reusable. As we shall see in
the next section, the heart of CP(FD) is such a component-
based system.

For a real-life application, building a prototype as
quickly as possible for evaluation is very important. Of-
ten, such prototype design stresses on common functional-
ities such as user interface, database connectivity and web-
enabling. The scripting approach to CP(FD) systems [20] is
an ideal way for rapid prototyping a constraint application.
We can show both common functionalities and problem-
solving capabilities in such a constraint application.

The scripting language chosen for implementation is

proc nqueen {R n} {
for {set i 1} {$i <= $n} {incr i +1} {

set row($i) [$R newvar 1 $n]
lappend ids "row($i)"
lappend vars "$row($i)"

}
set pub [makesoln $R $ids $vars]
set L1N ""
set L1MN ""
for {set i 1} {$i <= $n} {incr i +1} {

lappend L1N "#$i"
lappend L1MN "#-$i"

}
new_distinct $R $vars
FD_distinctoffset $R $vars $L1N
FD_distinctoffset $R $vars $L1MN
drawboard
naive $R $vars $pub 0 7

}

Figure 2. A generic n-queen problem formu-
lation in Tcl

Figure 3. A screen shot of the solved solution
for 8-queens

Tcl/Tk [22]. The Tcl scripting language provides ease of
integration with different libraries, which are useful in de-
veloping constraint application. In particular, the Tcl exten-
sion, Tk, provides rich visualization support with little pro-
gramming effort. The Standard Wrapper and Interface Gen-
erator (SWIG) [2] provides an easy way for interfacing Tcl
and the core CP(FD) system. By providing the class defini-
tions, SWIG automatically generates the wrapper code for
the class method to interface with Tcl language internals.

For example, we would like to construct a prototype to
visualize the solving of the 8-queens problem. In this prob-
lem, we must place eight queens on a 8x8 chess board such
that no two queens attack each other. Figure 2 gives the sim-
ple Tcl scripts formulating the constraints for the problem.
The call to proceduredrawboard draw the chess board
using the canvas widget in Tk. Figure 3 is a screen shot
showing a solved solution.

PROPAGATION
ENGINE

STORE

PROPAGATORS VARIABLES

Constraint Reasoning

Domain Reduction

Triggers Propagation

Information Passing

Domain Reduction

Propagation Request

Domain Reduction

FINITE−DOMAIN

Figure 4. System Model of Framework

Closely related to the scripting approach is the Struc-
tured Query Language (SQL) used in relational database
systems [9]. The intricate details of query search is com-
plex but when building database applications, the applica-
tion programmers are not interested in the algorithmic de-
tails, but the functionality. Similarly, in knowledge systems
like CP(FD) systems, the inferencing details may be com-
plex but the application programmers are only interested in
modeling the problem.

3.3. Component-based framework

A component is a self-contained functional unit that has
a clear interface and is highly reusable. A component-based
framework describes a system as a collection of components
and their interfaces. Reuse is achieved by providing an es-
tablished contract on how the different components can in-
teract. Examples of the CP framework is seen in the design
of ILOG Solver [15]. However, ILOG Solver only provides
an interface for extending the CP library. To have more flex-
ibility, we conceived the idea of a component-based frame-
work for CP(FD) called Figaro [14, 18, 6]. It is an experi-
mental platform designed to systematically study the differ-
ent aspects of CP(FD). Our CP(FD) framework allows the
exploration of interesting combinations of components for
customized CP(FD) systems.

The framework views the CP(FD) system as a reactive
system. For simplicity, we work on a sequential CP(FD)
system. Figure 4 shows the system model of the framework.
The constraint store, simply calledstore, hostsvariables,
constraints calledpropagators, andpropagation enginefor
performing constraint propagation. A variable represents
an unknown in the problem. A variable contains afinite-
domainthat represents the set of feasible values the variable
can take. When the finite-domain of a variable is reduced,
the variable wakes up the propagators linked to it and places
them in the propagation engine. The propagation engine
propagates the woken up propagators until a fixed-point is
reached. A fixed-point is reached when filtering cannot re-
move any further values from all the finite domains. A prop-
agator uses its filtering rules to reduce its variables’ finite-

store branching

store branching

store branching

feasible
solution

nonfeasible
solution

nonfeasible
solution

nonfeasible
solution

constraint
add

constraint
add

constraint
add

constraint
add

constraint
add

constraint
add

Figure 5. Search in Framework

domains. The domain reduction is communicated from the
propagator to the store and onto the variables. The propa-
gator can modify its form to a more simple one or replace
itself with another propagator with stronger reasoning upon
certain conditions. These replacements need to be commu-
nicated to the store. The store mediates the communication
among three basic elements: variable, propagator and prop-
agation engine.

Search finds solutions that satisfy the constraints of the
problem. Figure 5 shows the design of search in the frame-
work. A solution is the set of feasible assignments of value
to variable without violating any of the constraints. Search
systematically tries for all possible value assignments by
adding constraints (e. g. , binding values to variables) along
the paths of the search tree. In between search, constraint
propagation reduces the search space. The store, together
with the branching object, describe a search state. The
branchingobject represents a choice point, which adds con-
straint to a store to produce the next search state. Upon
adding of constraint to a store, which triggers constraint
propagation, the computation state results to one of the fol-
lowing possible states: feasible solution, non-feasible solu-
tion, or cannot be determined, and the search carries on.

Based on the above system model, the framework iden-
tifies five major customizable components of a CP(FD) sys-
tem:

Finite-Domain component defines the internal represen-
tation of finite-domain. Common representations in-
clude bit vector or list of intervals [4].

Propagator component encodes the propagation algo-
rithm. Recent research in specialized filtering algo-
rithms [23] provides better propagation performance
for specific constraints. To improve reusability, we de-
signed a generic interface, GIFT [19], for reusing fil-
tering algorithms across different CP(FD) systems pro-
vided that they have a C/C++ interface for program-
ming constraints.

Propagation Engine component dictates the interaction

between variables and propagators to reach a fixed
point. Examples include propagator-based propaga-
tion in Mozart/Oz or variable-based propagation in
ILOG Solver.

Store component defines the memory policy for state
restoration in search. Besides trailing and copy-
ing/recomputation, the framework also allows us to
come up with new policies, namely lazy-copying and
batch recomputation [7].

Search component, parameterized by the branching algo-
rithm, defines the search aspects of CP(FD) (see Sec-
tion 3.1). Common branching algorithms include a
simple labeling procedure (naive enumeration of vari-
ables) and variable ordering (such as first-fail). The
framework allows us to design a new framework for
describing complex search scenarios [8].

The first widely used framework is the
Model/View/Controller (MVC) framework [16] and
this CP(FD) framework design bears semblance to the
MVC framework. There are three components in the
framework where the interactions involve keeping consis-
tency among the different components. For example, the
presentation layer (the view) must be made consistent with
the application object (the model). Propagation to fixed
point is nothing but an operation to maintain consistency
between the variables and constraints.

3.4. Design Patterns

The use of design patterns is popularized by [10]. A de-
sign pattern describes a recurring solution to a software de-
velopment problem using a systematic documentation stan-
dard. Design patterns are at a more abstract level of reuse.
Each reuse of a design pattern requires are-implementation
and design patterns serve to capture the design considera-
tions to facilitate the re-implementation.

A framework will usually consist of a variety of design
patterns. For example, the design of the proposed frame-
work in the previous section applies existing design pat-
terns found in [10]. The propagation triggering mechanism
makes use of the Observer pattern. The store uses the Medi-
ator pattern to mediate the interaction between the propaga-
tors and variables during constraint propagation. However,
a design pattern should not be confused with a framework.
A program code is an instance of a design pattern but a pro-
gram code can be part of the framework.

Beside making use of design patterns, we propose the
constraint propagation as a new design pattern for reuse
in different types of software applications. In industrial
research, the use of constraint propagation techniques has
been applied to a variety of domains such as planning [11],

intelligent user-interfaces [11] and scheduling [3]. Our ex-
perience with such constraint-based approaches is that there
is too much variability in the design of propagation engines.
Component-based framework and software toolkit are too
rigid to describe the possible propagation paradigms. It is
in our view that to support reuse of constraint propagation
engines, the level of abstraction should lie at the level of de-
sign patterns. Design patterns capture our experience in de-
signing and implementing constraint propagation engines.

We describe the Propagation Engine pattern in brief and
a more detailed version could be found in [21].

Intent Manage the many-to-many dependencies among
objects so that when one object changes state, the state
can be propagated withreasonable efficiencyto direct
and indirect dependents till either a fixed-point or a
failure condition.

Motivation Managing dependencies among a set of ob-
jects is complicated. There is a need to factor in ef-
ficiency, guaranteed termination and handling of lo-
cal inconsistencies. We could achieve consistency by
making a monolithic system but that will decrease
reusability.

For example, a user interface propagation engine prop-
agates a set of geometrical constraints. As constraints
are added, the propagation engine manages the propa-
gation by calling theaffectedpropagators one by one
from a queue. When a propagation affects a variable
that is linked to other propagators, the propagation en-
gine is notified with the new propagators. It is the role
of the propagation engine to schedule these propaga-
tors in the propagation queue and to detect any vio-
lations in the user interface and resolve them in the
best possible way (in terms of presenting widgets in a
graphical user interface).

Applicability Use the Propagation Engine pattern in the
following situations:

� When a set of objects, whose states are dependent
on one another, needs to be made consistent.

� When a monolithic algorithm is decomposed into
separate classes to facilitate the reuse of parts of
the algorithm, and there are strong interconnec-
tions among these subparts.

Structure and Participants The PropagationEngineen-
sures propagation to fixed point or failure. TheProp-
agator defines the propagating interface forCon-
cretePropagator, which propagate information based
on changes in theSmartVariable state.

ConsequencesThe Propagation Engine pattern has the fol-
lowing consequences. First, it allows flexible combi-
nations of propagators. Second, efficiency concerns is
modularized. Third, there is reflection of the propa-
gation process. Fourth, exceptions are monitored and
handled by the propagation engine.

Like the Mediator pattern, Propagation Engine pattern
centralizes control. The coupling is not as loose as the Me-
diator pattern because a Propagator manipulates a specific
class of SmartVariable. We could simplify interconnections
at the expense of efficiency by incorporating this pattern
with the Mediator pattern.

Like the Observer pattern, Propagation Engine pat-
tern handles the dependencies among objects. Specifi-
cally, Propagation Engine pattern handles objects which
have many-to-many relationships. Unlike Observer pattern,
Propagation Engine pattern directly manages the complex-
ity.

4. Discussion

Through our experience in applying reuse techniques to
the development of CP(FD) systems, we learnt several im-
portant lessons. The specific insights from each approach
will be covered before we give the general themes of the
lessons we learnt.

4.1. Software Toolkit

The success of the toolkit approach shows that algorith-
mic behavior can be parameterized. A program is composed
of code and data. By regarding code as another form of data,
we are able to characterize the exploration behavior of the
search algorithm. For example, breadth-first search uses a
queue of nodes compared to depth-first search which uses a
stack of nodes. By changing a queue to a stack, we change
the algorithmic behavior of the code.

One drawback is that by imposing a set of design dimen-
sions on an algorithm, it makes it difficult to introduce new

dimensions. This difficulty arises from the fact that these
design dimensions create a rigid framework for designing
new algorithms. Of course, in some cases, the design may
be flexible enough to handle new dimensions. In general,
adding new dimensions is not trivial, and because of this
reason, it may stifle creativity in searching for fundamental
improvement to the algorithms. For the case of search algo-
rithms, there has been significant research in programmable
and parameterizable search algorithms, and hence, the di-
mensions are well-understood, justifying the design deci-
sion.

4.2. Scripting Approach

Extending a scripting language like Tcl to support
CP(FD) allows the application programmers to spend time
on other equally important aspects of the application devel-
opment such as user interface, web-enabling and database
connectivity. This paradigm succeeds because there are
many readily available components/interfaces built for
scripting languages.

Another way to look at it is to view a knowledge system
containing aspects such as modeling, solution approach and
computation. Modeling and solution approach can be quite
independent of computation and a scripting approach brings
this principle to it natural conclusion by creating a layer that
does only modeling and solution approach. The invisibility
of the computation aspects is best highlighted by the use
of SQL. It is quite common for application programmers
to be unaware of the specific query optimization technique
and yet are able to create complex databases and perform
equally complex queries.

Despite improvements in computer performance, effi-
ciency is still an important issue in scripting languages. In
particular, in the scripting approach, even though search
(solution approach) is not a bottleneck operation, it still
takes up significant time in scripting-based CP(FD) applica-
tions simply because we implement search at the scripting
level. The more obvious pitfall is that like most prototype
systems, it is easy to view the script application as the fi-
nal system. Although scripting applications work in many
cases, it is often a sub-module and may require further in-
tegration with a larger system. Hence, there may be even
more speed performance issues. Another evil worth point-
ing out is that scripting does sometimes promote poor pro-
gramming practices because of their lack of strict typing.

4.3. Component-based Framework

The component-based framework was a natural exten-
sion to a library of propagators implementing the different
constraints. By characterizing the algorithmic behaviorsof
each CP(FD) aspect into modularized components, we are

able to provide more expressivity in integrating the compo-
nents. Though there is overhead in the design, it is surpris-
ing from some (not all) anecdotal evidences that due to the
expressivity, there are improvements in speed performance.
We are also able to experiment with different designs with
greater ease.

As mentioned, despite improvement in expressivity and
algorithm design, overheads impose a heavy penalty of the
runtime performance. For example, the memory manage-
ment of objects can be difficult to handle, especially when
using a programming system without automatic garbage
collection. However, it is possible that some of the over-
heads are unnecessary and can be removed [6]. Another
potential failure is that the framework introduces a mecha-
nistic process to the design of CP(FD) systems and may end
up again as stifling creativity in the design of new systems.

4.4. Design Patterns

The necessity of the propagation engine design pattern
was a result of our “failure” in creating a flexible, reusable
propagation engine. Propagation engines are the bottleneck
operations of a CP system and therefore, a generic design,
even if possible, would be the main cause of inefficiency
in the CP system. In addition, the great variability of the
design of propagation engines makes it difficult to come up
with a set of reusable components for propagation engines.
However, from experience in developing propagation-based
systems, there are some themes and common pitfalls that
we often run into. It seems to make sense to document these
design decisions and pitfalls to avoid in the form of a design
pattern.

The implicit use (based on our repeated experiences
in implementing propagation-based systems) of the design
pattern has been effective in the past in developing new
propagation-based systems, but it is hard to determine that
if the experience can be transferred to another programmer
through documentation. Interestingly, the use of the exist-
ing design patterns has been helpful in the implementation
of the CP(FD) systems and based on this knowledge, we
can hope that documenting the propagation engine pattern
down can lead to the same kind of benefits.

4.5. General Themes

From the specific lessons, we gather some general
themes in developing knowledge systems and list them be-
low.

1. We can generally divide the algorithmic behavior into
coherent subunits. For instance, we split CP(FD) sys-
tems into two parts, namely constraint propagation and
search. These two parts are further subdivided into

different functional units or components in our frame-
work. Such a divide-and-conquer approach makes the
system more maintainable by localizing the impact to
the system for changes made during ongoing research.
It also makes the system more adaptable to changes.

2. The architecture design of knowledge systems can be
decomposed into several layers. The kernel operation
in CP(FD) systems is the propagation engine. Search
sits on top of the propagation engine and there is an
application layer that sits on top of search. We describe
the propagation engine using design patterns, search
using toolkit and a scripting approach to provide an
application front-end. Such a layering approach allows
us to systematically study the different issues involved
in the development of a CP(FD) system using different
software engineering concepts.

3. Using known design patterns makes system-specific
issues reusable, proving that design patterns is appli-
cable in knowledge systems. In our CP(FD) frame-
work, casting the store object as the Mediator pattern
makes state restoration in search more reusable. Be-
side existing state restoration policies, we were able
to derive new state restoration policies. However, the
implementation cannot achieve the level desired in the
“original” implementation. For instance, we can only
implement trailing at a coarse level of granularity [7]
in comparison to the conventional trailing. This in-
stance is a trade-off against level of details in the use
of a software framework.

4. Although it is not discussed in detail in the previous
subsections, memory management deserves more at-
tention, even for automatic garbage collection systems.
We implement each functional units in the framework
as objects. However, the complex interaction among
these objects during search makes memory manage-
ment rather difficult to handle (or predict, if we are us-
ing a automatic garbage collector). Effective memory
management among these objects requires considering
a macro perspective. Having the objects use its own lo-
cal memory management policies may cause memory
problems such as memory leaks or pointing to null ob-
jects. These problems are the consequences of lacking
coordination in memory management.

5. We discover that reusable operations is not a silver
bullet to the problems involved in the development of
CP(FD) systems and most likely, knowledge systems.
There are four known problems.

First, as we strive to partition the system into local-
ized functional units, there are still times where subtle
changes in the algorithm features may lead to a signif-
icant re-implementation of most of the operations. For

instance, the different schemes to support the logical
operators to combine constraints, can be completely
different from each other Switching from one scheme
to another would require a lot of re-implementation ef-
fort.

Second, the rigidity of some of the framework or
toolkit limits creativity in software design. Program-
mers usually end up thinking in the constraints of the
framework or toolkit. As mentioned in the first reason,
even if the programmers has the creativity, it is often a
tedious process to exercise that creativity.

Third, the overheads created by software engineer-
ing may be crucial to the implementation of knowl-
edge systems. These systems often require efficient
space and time performance. However, as practition-
ers, we should be able to make good estimates on the
final acceptable performance based on known histori-
cal trends, such as Moore’s Law, and hence, the level
of software engineering we should apply.

Fourth, well-designed system framework is not a sub-
stitute for good programming. Especially for the
scripting approach, it is very easy to create an unman-
ageable system if we do not program with discipline ei-
ther using structured programming or object-oriented
programming concepts.

Some answers to the problems above may depend on
the use of design patterns. Rather than providing rigid
frameworks or toolkits, we use design patterns to ar-
ticulate the thoughts of the framework and toolkit de-
sign. A design pattern also allows the programmer
to decide the level of abstraction needed. It remains
an open question if knowledge system design patterns
could help us shorten the development time when we
need to re-implement parts of the system.

Even with design patterns, it is not surprising that
the fourth problem mentioned above still remains.
More self-awareness on the need of having good pro-
gramming practice rather than relying on processes or
frameworks may be the best option we can take in
overcoming the problem.

5. Conclusion

Knowledge systems usually come out of research but
these systems are applicable to the real world. Unfortu-
nately, software engineering has not been a priority in re-
search. Hence, there is a disparity in terms of quality be-
tween knowledge system software and other system soft-
ware. Applying software engineering techniques to knowl-
edge systems bears the potential of significantly improving
their quality. Here, we concentrated on reuse techniques for

constraint programming systems, a typical class of knowl-
edge systems. Our research in this area covers toolkit,
scripting, component-based framework and design patterns
approaches. We showed how these approaches are applied,
highlighted their impact on software reuse and provided evi-
dences and suggestions for the potential benefits of applying
these techniques in industrial practice.

References

[1] M. Austern. Generic Programming and the STL. Addison-
Wesley, Reading, MA, 1998.

[2] D. M. Beazley. SWIG: An Easy to Use Tool for Intergrating
Scripting Languages with C and C++. In4th Annual Tcl/Tk
Workshop, Monterey, July 1996.

[3] M. S. Boddy. Temporal reasoning for planning and schedul-
ing in complex domains: Lessons learned. In A. Tate, edi-
tor, Advanced Planning Technology Technological Achieve-
ments of the ARPA/Rome Laboratory Planning Initiative,
1996.

[4] M. Carlsson. Finite domain constraints in sics-
tus prolog. Presentation Slides, Invited Talk at
CICLOPS 2001: Colloquium on Implementation of
Constraint and LOgic Programming Systems, a post-
conference workshop of ICLP 2001/CP 2001, 2001.
available athttp://www.cs.nmsu.edu/˜complog/
conferences/iclp01/ciclops2001.ppt .

[5] T. Y. Chew, M. Henz, and K. B. Ng. A toolkit for constraint-
based inference engines. In E. Pontelli and V. S. Costa,
editors,Practical Aspects of Declarative Languages, Sec-
ond International Workshop, PADL 2000, Lecture Notes
in Computer Science 1753, pages 185–199, Boston, MA,
2000. Springer-Verlag, Berlin.

[6] C. W. Choi. Advanced Components for Finite Domain Con-
straint Programming. Master’s thesis, School of Computing,
National University of Singapore, 2002.

[7] C. W. Choi, M. Henz, and K. B. Ng. Components for state
restoration in tree search. In T. Walsh, editor,Principles and
Practice of Constraint Programming—CP 2001, Proceed-
ings of the Seventh International Conference, Lecture Notes
in Computer Science 2239, pages 240–255, Cyprus, 2001.
Springer-Verlag, Berlin.

[8] C. W. Choi, M. Henz, and K. B. Ng. A compo-
sitional framework for search. InProceedings of CI-
CLOPS 2001: Colloquium on Implementation of Constraint
and LOgic Programming Systems, a post-conference work-
shop of ICLP 2001/CP 2001, appears as Technical Report
NMSU-CSTR-003/2001, Laboratory for Logic, Databases,
and Advanced Programming, New Mexico State Univer-
sity, 2001. available athttp://www.cs.nmsu.edu/
TechReports/ .

[9] C. J. Date.An Introduction to Database Systems. Addison-
Wesley, Reading, MA, 6th edition, 1995.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison-Wesley, Reading, MA, 1994.

[11] R. P. Goldman, K. Z. Haigh, D. J. Musliner, and M. Pelican.
MACBeth: A Multi-Agent Constraint-Based Planner. In

2000 AAAI workshop ”Constraints and AI Planning”, pages
11–17, 2000.

[12] M. Henz. Objects for Concurrent Constraint Programming.
The Kluwer International Series in Engineering and Com-
puter Science, Volume 426. Kluwer Academic Publishers,
Dordrecht / Boston / London, 1998.

[13] M. Henz and T. Müller. An overview of finite domain con-
straint programming. InProceedings of the Fifth Conference
of the Association of Asia-Pacific Operational Research So-
cieties Within IFORS, Singapore, 2000.

[14] M. Henz, T. Müller, and K. B. Ng. Figaro: Yet another con-
straint programming library. InProceedings of the Workshop
on Parallelism and Implementation Technology for Con-
straint Logic Programming, Las Cruces, New Mexico, USA,
1999. held in conjunction with ICLP’99.

[15] ILOG Inc., Mountain View, CA 94043, USA,
http://www.ilog.com . ILOG Solver 5.0, Refer-
ence Manual, 2000.

[16] W. R. LaLonde and J. R. Pugh.Inside Smalltalk, Volume II.
Prentice Hall, Englewood Cliffs, NJ, 1991.

[17] Mozart Consortium. The Mozart Programming Sys-
tem. Documentation and system available from
http://www.mozart-oz.org , Programming Systems
Lab, Saarbrücken, Swedish Institute of Computer Science,
Stockholm, and Université catholique de Louvain, 1999.

[18] K. B. Ng. A Generic Software Framework For Finite Do-
main Constraint Programming. Master’s thesis, School of
Computing, National University of Singapore, 2001.

[19] K. B. Ng, C. W. Choi, M. Henz, and T. Müller. GIFT:
A generic interface for reusing filtering algorithms. In
Proceedings of TRICS: Techniques foR Implementing Con-
straint programming Systems, a post-conference workshop
of CP 2000, appears as Technical Report TRA9/00, School
of Computing, National University of Singapore, 55 Sci-
ence Drive 2, Singapore 117599, Sept. 2000. available at
http://techrep.comp.nus.edu.sg .

[20] K. B. K. Ng. A scripting approach to finite domain con-
straint programming. Honours Year Project Report, School
of Computing, National University of Singapore, 1999.

[21] K. B. K. Ng and C. W. Choi. The propagation engine design
pattern. draft, 2002.

[22] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
Reading, Maassacusetts, 1994.

[23] J.-C. Régin. A filtering algorithm for constraints of differ-
ence in CSPs. InProceedings of the AAAI12th National
Conference on Artificial Intelligence, pages 362–367. AAAI
Press, 1994.

[24] C. Schulte. Oz Explorer: A visual constraint programming
tool. In L. Naish, editor,Proceedings of the International
Conference on Logic Programming, pages 286–300, Leu-
ven, Belgium, July 1997. The MIT Press, Cambridge, MA.

[25] A. Stepanov and M. Lee.The Standard Template Library.
Hewlett Packard, 1995. STL has since been incorporated
into the C++ standard, ISO/IEC 14882-1998.

[26] L. Wall, T. Christiansen, and R. L. Schwartz.Programming
Perl. O’Reilly, Cambridge, second edition, 1996.

