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Abstract. Solutions to combinatorial search problems can bene�t from

custom-made constraint-based inference engines that go beyond depth-

�rst search. Several constraint programming systems support the pro-

gramming of such inference engines through programming abstractions.

For example, the Mozart system for Oz comes with several engines, ex-

tended in dimensions such as interaction, visualization, and optimization.

However, so far such extensions are monolithic in their software design,

not catering for systematic reuse of components.

We present an object-oriented modular architecture for building infer-

ence engines that achieves high reusability and supports rapid prototyp-

ing of search algorithms and their extensions. For the sake of clarity, we

present the architecture in the setting of a C++ constraint program-

ming library. The SearchToolKit, a search library for Oz based on the

presented architecture, provides evidence for the practicality of the de-

sign.

1 Introduction

Finite domain constraint programming (CP(FD)) grew out of research in logic

programming. The �rst programming systems for CP(FD), including earlier ver-

sions of Ilog Solver [Pug94], had Prolog's depth-�rst search built-in as their only

inference engine.

The language claire [CL96] and the most recent version of Ilog Solver

[ILO99a] (see discussion in [LP99]) support the programming of backtracking-

based inference engines. Oz [Smo95] allows the programming of copying-based

engines [Sch97b] through a a built-in data type called space.

Mozart [Moz99], the most recent implementation of Oz, provides engines

for depth-�rst search (with or without branch-and-bound), limited discrepancy

search [HG95] and parallel search. The Oz Explorer [Sch97a] is a graphical tool

that allows to visualize and to interactively explore search trees.

The programming of new tree search algorithms can be a complex task.

A true software engineering problem arises when several design dimensions need

to be considered. Such dimensions include for example user interaction with the

inference engine during search, visualization of the search tree, and optimization

via a constraint-based cost function (branch-and-bound).

The engines included in the Mozart search libraries are monolithic in that

they combine a basic inference engine with a �xed set of extensions. For example,



the class Search.object combines depth-�rst search with interaction on the

level of solutions, memory utilization based on recomputation and branch-and-

bound optimization. The Oz Explorer [Sch97a] adds to these visualization and

interaction on the level of nodes. Due to the monolithic design, the e�ort spent on

implementing extensions of previous engines to support for example visualization

of search trees is virtually lost for programming a new search algorithm. In

practice, the monolithic structure discourages experimenting with application-

speci�c engines, because it becomes a major e�ort to implement such a new

engine and equip it with useful facilities like visualization of search trees.

The question that is addressed in this work is how to overcome this situa-

tion. The answer is to modularize inference engines in such a way that the basic

engines and the various design dimensions can be implemented separately, us-

ing well-de�ned interfaces between them. We shall present a design that allows

to plug together search algorithms with modules for optimization, interaction,

visualization, etc. If a search algorithm is constructed following the outlined

guidelines, it becomes trivial to equip it with branch-and-bound optimization,

node-level tracing, Oz-Explorer-like branch-and-bound optimization or visual-

ization of the search tree, and other features. Modules for individual dimensions

can be developed independently and employed by all search algorithms.

2 Scripts, Stores, Engines

Finite domain problems are problems of assigning integer values to variables

such that all given constraints are satis�ed. A simple example is

x 2 f5; : : : ; 10g; y 2 f1; : : : ; 7g; x < y; x + y = 11

In �nite domain constraint programming, the domains of variables, i.e. the set

of its possible values, are kept in a store. Initially, the domains are unrestricted.

Simple constraints such as x 2 f5; : : : ; 10g and y 2 f1; : : : ; 7g can be directly

entered in the store by restricting the domains of the variables in the store.

More complex constraints such as x < y and x + y = 11 are operationalized

using propagators, which are connected to the store. Propagators observe the

domains of their variables and strengthen the store according to a propagation

algorithm.For example, the propagator for x < y may eliminate from the domain

of x all values that are greater than or equal to the biggest value in the domain

of y.

Systems that support the programming of inference engines provide abstrac-

tions that represent the store. Ilog Solver [ILO99a] represents stores by C++ ob-

jects of class IlcManager, and Oz represents stores by data of a built-in datatype

Space. To allow a concise presentation of our results, we present them in the

setting of a C++ constraint programming library, assuming the reader to be

familiar with C++ syntax. Stores are represented by objects of class store. The

member function

var store::newvar(int low, int high);



Program 1 Representing Variables and Propagators

void main(int argc, char * argv[]) {

store * s = new store();

var x = s->newvar(5,10);

var y = s->newvar(1,7);

LessThan(s,x,y);

Sum(s,x,y,11);

...

}

introduces a new variable in a given store and returns an identi�er by which

the variable can be referred to. Propagators are represented by instances of

propagator classes, whose creation leads to installation of a propagator in a

store. For example, the following function installs a less-than propagator in a

given store s.

void LessThan(store * s, var left, var right);

A store that represents the above constraints can be created as shown in Pro-

gram 1.

The member function tell of stores is used by propagators and allows to

narrow the domain d

1

of a given variable such that it contains only values from

the domain d

2

passed to tell.

store::tell(var v, int lo, int hi);

If the intersection of d

1

and d

2

is empty, a failure occurs. Such failures are

crucial for constraint programming, since they allow to prune the search tree.

As a generic way to indicate failure to search algorithms, failing tell operations

raise the C++ exception Failure(). The design and implementation algorithms

for propagators is well developed in systems such as Ilog Solver [ILO99a] and

the Oz Constraint Programming Interface [Moz99]. In this work, we concentrate

on the design of tree search algorithms.

3 Search Trees

Usually propagation alone does not su�ce to solve constraint problems. Thus,

after exhaustive propagation, a distribution step is done, i.e. a constraint c is

chosen and search is performed recursively with two stores to which c and, re-

spectively, :c are added. An algorithm that systematically generates suitable

constraints for distribution is called a distributor, and the constraints c and :c

de�ne a choice point. Distributors are represented in our library by extension of

an abstract class choice.

class choice {

public:



Program 2 Naive Variable Enumeration

class naive : public choice {

private:

vector<var> vars; // variables to be enumerated

int idx; // index of variable to be enumerated

choice * cont; // continuation for further distribution

public:

naive(vector<var> vs,int i,choice * c ) : vars(vs), idx(i), cont(c) {}

choice * choose(store * s, int i) {

int l = s->getlo(vars[idx]); int h = s->gethi(vars[idx]);

if (i==0) {

s->tell(vars[idx],l,l);

return (idx+1==vars.size() ? cont : new naive(vars,idx+1,cont));

}

else {

s->tell(vars[idx],l+1,h);

return new naive(vars,idx,cont);

}

}

}

virtual choice * choose(store *, int)=0;

};

The member function choose of choice is given an integer i and returns its

i

th

alternative. Often, distributors �x one variable v of a given set of variables to

a value x in the left child (i = 0) and exclude x from the domain of v in the right

child (i = 1). Such distributors are called enumerators. Program 2 represents

naive enumeration, where the variables of a given vector are enumerated from

left to right, starting with the smallest values in their domains.

Note that choose returns new objects of class naive, until all variables in

vars are �xed, in which case the continuation choice cont is returned. The

continuation can be used to continue distribution with other constraints after

all variables in vars are �xed, or to collect information from the encountered

solutions. For example, if the continuation choice is an instance of the class print

in Program 3, the lower bounds of the components of a given variable vector are

displayed each time a choice is performed. The return value NULL indicates that

the search is done.

4 Search

A technical di�culty in searching for solutions is that changes on a store done in

one branch of the search tree may not a�ect the exploration of other branches.

Two solutions to this problem are in use for this. The most common approach|

following Prolog implementation tradition|is to mark a store and record all



Program 3 A Node Class for Printing Variables

class print : public choice {

private: vector<var> vars;

public:

print(vector<var> vs) : vars(vs) {}

node * choose(store * s, int i) {

for (int j = 0; j < vars.size(); j++)

cout<<"col: "<<vs[i]<<"\nrow: "<<s->getlo(vars[i])<<"\n";

return NULL;

}

changes done after a mark. A backtrack operation allows to undo changes that

were done since a given mark. The following operations on stores support this

concept.

mark store::mark();

void store::backtrack(mark m);

A depth-�rst inference engine that employs backtracking is given in Pro-

gram 4.

Using this engine, the �rst solution to the constraint problem of the previous

section can be displayed by extending Program 1 as follows.

void main(int argc, char * argv[]) {

store * s = new store();

...

vector<var> vars(2);

vars[1]=x; vars[2]=y;

solve_one(s,new naive(vars,0,new print(vars)));

}

An alternative approach to backtracking is to copy stores at each node and

start from the copy when a di�erent branch needs to be explored. This technique

Program 4 Backtracking Depth-First Search

choice * solve_one(store * s,choice * c) {

if (c == NULL) return c;

mark m = s->mark();

try {return solve_one(s,c->choose(s,0));}

catch (Failure) {

s->backtrack(m);

return solve_one(s,c->choose(s,1));

}

}



is described by Schulte in [Sch97b]. In [Sch99], Schulte analyses recomputation,

a method for reducing the space consumption of copying-based search, and com-

pares several variants of recomputation with backtracking-based search. In order

to support copying/recomputation, we allow to copy stores through the following

operation.

store * store::copy();

The implementation of depth-�rst search using the memory policy of copy-

ing unfortunately requires a re-implementation of depth-�rst search using copy

instead of mark and backtrack. This hinders the reuse of algorithms. We would

like to keep the aspects of exploration and memory policy independent from each

other.

5 Memory Policy

The �rst step towards a modular search library is to separate the memory policy

from the basic search algorithm. To this aim, we introduce a level of abstraction

between engines and stores. This level is represented by abstract stores. An

abstract store abstracts away how a store at a particular node in the search tree

is represented.

class a_store {

public:

virtual store * get_store()=0;

virtual a_store * new_store(store);

}

A class representing an abstract store for backtracking is given in Program 5.

Its instances keep a reference to a store. Initialization marks the store. Each time

the store is retrieved via get_store, backtracking is performed and a new mark

created. The member function new_store is a virtual constructor needed to

create an abstract store of the same class as a given abstract store (see next

section).

6 Search Trees

In order to describe tree search algorithms, it is useful to have a data structure

for representing nodes of search trees. A node in a search tree is determined by

an abstract store together with a distributor. The service provided by a node is

to navigate to a child node. Assuming binary choices, a corresponding node class

is given in Program 6. The creation of a child node needs to be protected from

Failure exceptions arising from corresponding choose operations on choices.

We represent leaf nodes of the search tree by the special nodes success_node

and failure_node.



Program 5 Abstract Store with Backtracking Policy

class backtrack_store : public a_store {

mark m;

store * s;

public:

backtrack_store(store * st) : s(st) {

mark = st->mark(); }

store * get_store() {

s->backtrack(mark);

mark = s->mark();

return s;

}

// virtual constructor

a_store * new_store(store * st) {

return new backtrack_store(st);

}

}

7 Exploration

The engine in Program 4 tightly integrates two aspects of a search engine, namely

the exploration|the order in which nodes are visited|and the interaction|the

way in which the exploration proceeds. The interaction is �xed to a straight �rst-

solution search. Other possibilities are all-solution search, last-solution search

(e.g. useful in combination with optimization); tools such as the Oz Explorer

allow to interactively explore the search tree. Our aim is to separate these modes

of interaction from the basic exploration algorithm. To this aim, we represent the

basic exploration algorithmby a function one_step that says how to perform one

step in the search. An interaction performs one_step as needed by the desired

mode of interaction.

Program 7 shows a depth-�rst exploration class. A stack of nodes keeps track

of the path from the root to the current node in the tree. Initially the stack

contains the root node of the tree. If the stack becomes empty, NULL is returned.

Otherwise, we pop the stack. If the top of stack is a non-leaf node, we check

whether the left child was visited before. If not, we push the node back and

create the left child. If it was visited before, we know that depth-�rst search

explored the left subtree and thus create the right child. In both cases, the new

node is pushed on the stack and returned.

An exploration can keep a representation of the tree in the state of the engine

object. For depth-�rst search, we only need to keep the path from the current

node to the root. This path is kept in a stack. Breadth-�rst search would keep

instead of a stack a queue, representing the current fringe of the breadth-�rst

tree.



Program 6 Nodes in Search Trees

class node {

private:

choice * c;

a_store * as;

public:

node * left, * right;

node(choice * ch, a_store * ast) :

left(NULL), right(NULL), c(ch), as(ast) {};

node * make_left_child() {

store * s = as->get_store();

try {

choice * c0 = c->choose(s,0);

left = c0 ? new node(c0,as->new_store(s)) : success_node;

}

catch (Failure) left = failure_node;

return left;

}

node * make_right_child() {

store * s = as->get_store();

try {

choice * c1 = c->choose(s,1);

right = c1 ? new node(c1,as->new_store(s)) : success_node;

}

catch (Failure) right = failure_node;

return right;

}

}

node * success_node = new node(NULL,NULL);

node * failure_node = new node(NULL,NULL);

8 Interaction

Given an exploration, search can be conducted by repeatedly calling one_step

and examining the resulting nodes. This task is performed by interaction func-

tions. In the simplest case, an interaction searches for the �rst, the last or all

solution nodes. For example, search for the �rst solution can be done as shown

in Program 8.

Thus, putting it all together, the �rst solution to the problem given in Sec-

tion 2 can be displayed by calling

void main(int argc, char * argv[]) {

store * s = new store();

...

first(new depth_first(new backtrack_store(s),

new naive(vars,0,new print(vars))));

}



Program 7 Depth-�rst Exploration

class depth_first : public exploration {

private:

Stack<node *> stack;

public:

depth_first(a_store * s,choice * c) {

stack.push(new node(c,s));

}

node * one_step() {

if (stack.empty()) return NULL;

node * n = stack.pop();

if (n == success_node || n == failure_node) return n;

node * n2;

if (!n->left) { // there's a no left child yet

stack.push(n); // go left

n2 = s->make_left_child();

}

else

n2 = s->make_right_child(); // go right

stack.push(n2);

return n2;

}

};

Program 8 First-solution Search

node * first(exploration * e) {

node * n;

while (n = e->one_step()) if (n==success_node) break;

return n;

}

9 STK: A Search Toolkit for Oz

The presented architecture allows to develop classes for memory policy, classes

for exploration and interaction functions independently from each other. We used

the presented concepts to develop a modular search toolkit, STK, for the con-

straint programming language Oz. STK is available in [CH99] and documented

in [Che99]. In addition to the dimensions of memory policy, exploration and

interaction, STK supports the design dimensions optimization, information and

visualization, which are brie
y described below.

9.1 Optimization

Modules of dimension \optimization"allow to modify an engine such that a prun-

ing behavior is achieved. A well-knownmethod for pruning is branch-and-bound.



After a solution is found, a constraint is added to every subsequent node that

the next solution should be better than the one already found, where \better" is

de�ned using a given optimization function. In addition to branch-and-bound,

STK provides a module for restart optimization, where the constraint is added

to the root node and search restarts from the root.

Optimization modules rely on interaction modules to indicate that a solution

has been found.

9.2 Information

When designing constraint-based solutions, it is often useful to inspect the search

tree in detail. The dimension \information" provides modules for accessing the

information in a given node in the tree. Using an information module, inter-

action modules and a visualization modules can be enhanced by the facility of

application-speci�c display of the information in a node, which is passed to the

information module in form of an Oz procedure.

In addition, STK provides an information module edgeInformation to dis-

play information on the distribution step that leads to a given node. For exam-

ple, it is possible to display which variable was enumerated and to which value

it was bound. To achieve this behavior, distributors communicate with the STK

engine to annotate choice points with information that is then stored in nodes

and displayed on demand. STK provides a suitably modi�ed version of Mozart's

distributor library FD.distribute.

9.3 Visualization

The visualization of search trees is a dimension orthogonal to exploration and

interaction. In a corresponding module, the creation of the root node leads to

opening of a display area in which the root node is graphically represented.

Similar to the Oz Explorer, this module uses an incremental tree drawing algo-

rithm inspired by [Ken96]. Figure 1 shows the display of an engine that combines

breadth-�rst search with visualization.

STK provides two visualization modules. The �rst, standardDisplay, re-

quires the tracer interaction and allows to interactively explore the search tree,

whereas the second, simpleDisplay only displays the search tree as it is being

explored, but works with any interaction module.

9.4 Generating Inference Engines

Figure 2 shows the currently available modules for each dimension available in

STK.

In STK, each module is described by two classes; a node class that speci�es

the local e�ect of the module and an engine class that speci�es its global e�ect.

In order to achieve generation of custom-made search engines at runtime, we

need to build two inheritance graphs containing the desired node and engine



Fig. 1 Visualization of Breadth-First Search. Choice nodes are represented by

circles, solutions by diamonds and failure nodes by squares.

Fig. 2 Dimensions and Modules of STK
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classes for each dimension. This results in di�erent inheritance graphs for every

desired combination of search algorithm with extension modules. Here, we are

making use of Oz's advanced object-oriented features [Hen98]. Classes are �rst-

class citizen in Oz, which means that we can decide at runtime from which

parent class a class should inherit. This feature allows us to de�ne a function

MakeEngine to which we pass the desired modules as arguments.

E={STK.makeEngine dims(exploration:STK.depthFirst
interaction:STK.last
optimization:STK.branchAndBound)}

Here the modules STK.depthFirst and STK.branchAndBound contain en-

gine and node classes, describing their global and local behavior. The func-

tion MakeEngine constructs from these classes the �nal classes from which the

desired inference engine is constructed. A graphical front-end to the function

MakeEngine as shown in Figure 3 allows the selection of the desired modules

and creates a corresponding engine upon button click.

9.5 Example

Through engine generators, STK supports experiments with di�erent combi-

nations of search algorithms and extensions. Figure 4 shows a snapshot of an

engine constructed by the engine generator in Figure 3, which combines limited

discrepancy search [HG95] with recomputation, node-level tracing, edge infor-

mation, visualization, recomputation and branch-and-bound optimization. The

tracer tool on the left displays the edge information of the three edges leading to

the left-most solution of a crypto-arithmetic problem. Using STK, engines can

be tailor-made for individual applications and embedded in their graphical user

interface.

New modules such as application-speci�c explorations and search tree visu-

alizers can be easily added to STK.

10 Related Work

Individual aspects of this work are addressed by other systems. The most recent

version of Ilog Solver [ILO99a] provides object-oriented abstractions for pro-

Fig. 3 An Interface for an Engine Generator



Fig. 4 A Custom-made Engine

gramming search engines. Tracing facilities for constraint-based search are inves-

tigated by [Mei95] and provided by the tool OPL Studio [ILO99b]. Visualization

of search trees together with tracing is provided by the Oz Explorer [Sch97a],

where earlier tools are also discussed. The Mozart system provides several dif-

ferent search engines, including limited discrepancy search and parallel search.

None of these systems address the question how to systematically reuse compo-

nents of search engines.

Compared to the engines provides by the Mozart system, our modular ap-

proach carries a certain overhead, due to late binding and extra member function

calls. However, since for typical applications, the majority of the overall runtime

is spent on propagation and cloning/recomputation, this overhead is usually

negligible. Benchmarks given in [Che99] show that STK is competitive in per-

formance with the Oz search libraries except for the search tree visualization,

where the Oz Explorer is currently signi�cantly faster.

The facility of annotating choice points and display the annotation on de-

mand provided by the module edgeInformation in Section 9.2 is not available

in the Oz Explorer, but could be supported with few changes.

11 Conclusion

We identi�ed the following dimensions for designing constraint-based inference

engines: memory policy, exploration (de�ning the search algorithm), interaction,

information, visualization and optimization. This structure provided the base for

an object-oriented software design that supports 
exible reuse and recombina-

tion of components. Evidently, we do not claim that this list of dimensions is

exhaustive. We argued, however, that it is useful to identify such dimensions in

order to obtain a modular design of search libraries.

We outlined how a constraint programming library or language can utilize

the secribed design. The toolkit STK [CH99] for search engines in Oz provides

evidence for the practicality of the approach.



Besides improving the performance of STK for visualization of search trees,

future work includes the development of a C++ constraint programming library

based on the presented design.
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