
GNOPL — An Implementation of OPL Search in Oz
An Extended Abstract

Martin Henz and Tan Woon Kiong

School of Computing
National University of Singapore, Singapore 117543

henz@comp.nus.edu.sg , tanwoonk@comp.nus.edu.sg

1 Overview of GNOPL

GNOPL is a constraint modelling system. It implements of a small subset of the OPL
language [1] in Oz [2]. GNOPL consists of an OPL compiler and a OPL program edit-
ing environment. The OPL compiler compiles an OPL program into an executable Oz
application1. The OPL editing environment is a XEmacs editing mode for the OPL
language.

We started designing and building GNOPL with two initial goals in mind. OPL is a
good specification language for describing problems in terms of constraints. The basic
OPL language features are purely declarative and intuitive. It makes a good integer
finite domain constraint programming(CP) language. As there are currently no freely
available OPL systems, our first goal is to make a free and light-weight implementation
of OPL for the general public to use. GNOPL is distributed under GPL and will be
released by the end of this year. We have a hunch that OPL can be implemented in an
efficient way using pure Oz. Our second goal is to test if this is indeed true. As GNOPL
evolves, we reached the stage where we need to implement OPL search strategies. OPL
search strategies gives the user a very fine level of control over the search for solutions.
The level of control is finer than the search facilities available in the Oz. It became
clear to us that supporting OPL search strategies was to be the most challenging and
interesting part of this undertaking. Our third goal is to implement the same level of
search control as OPL.

The OPL language is rich. It is more than a CP language. The OPL language in-
cludes features to support linear programming(LP), integer programming(IP), mixed
integer-linear programming(MIP) and scheduling. But we are not concerned with all
the powerful features of OPL, but the pure declarative CP subset of OPL, which ap-
peals to us as a good high-level CP programming language. Thus, GNOPL only at-
tempts to support the pure declarative CP features of OPL. This subset of OPL includes
OPL’s explicit search control, but omits user-programmable exploration strategies. This
is because, OPL user-programmable exploration strategies is procedural in nature, not
declarative. Future versions of GNOPL might support the scheduling and MIP features
of OPL.

1 An executable Oz application is an Oz compiled program that is directly executable program.
For this executable can run on any hosts with the Mozart-Oz system (www.mozart-oz.
org) be installed.

2

OPLStudio [3], the only existing full implementation of OPL, needs to be men-
tioned. OPLStudio comes in the form of a nice interactive environment with most of
the nice things that one would expect of a CP environment. It has a editing widget with
syntax checking and highlighting facilities. The solutions to a OPL program can be
saved for later reference. GUI apart, OPLStudio implemented an additional language,
OPLSCRIPT [4]. OPLSCRIPT is a scripting language that controls interactions between
different OPL programs. It can be considered a meta-language over OPL and has a syn-
tax that is close to OPL. Note that OPLSCRIPT is not part of the OPL language.

The rationale of OPLSCRIPT is practical. It allows OPL programs to interact with
one another. This creates the potential for modular programming. Going modular is
good. It will be easier to write and maintain larger programs. However, we do not in-
tend to support OPLSCRIPT in GNOPL. While we agree with the need to go modular,
we prefer such extension to be injected into the OPL language itself, instead of creat-
ing a separate language entity. Further, the syntax similarity between OPLSCRIPT and
OPL may confuse the users when they try to write OPLSCRIPTprograms like OPL pro-
grams. Figure 1 shows the differences between the OPL language, the GNOPL subset
of the OPL language, and the OPLStudio superset of the OPL language.

OPLStudio

The OPL Language

GNOPL Subset of OPL Language

Constraint
Programming

Linear&Integer
Programming

Scheduling

OPLScript

Fig. 1. Differences between the OPL language, the GNOPL subset of the OPL lan-
guage, and the OPLStudio superset of the OPL language.

GNOPL compiles OPL to Oz. Oz is chosen as the target language for several rea-
sons. The first reason was simply because Oz supports CP and it is fast. We can do an
almost one-to-one mapping between a simple OPL program to a equally simple Oz pro-
gram. The second second, perhaps more important than the first, was the first class space
abstraction [5] that Oz provides. This is a necessary ingredient for us to implement OPL
search control. Our task of writing specialized search engine is greatly simplified with
the space abstraction.

3

2 Related Works

The idea of GNOPL is not new. Marco Kuhlmann created the languageTiny Con-
straint Modelling Language(TCML)[6], a constraint modelling language. . The aim
of TCML is similar to GNOPL: to create an intuitive constraint modelling environ-
ment for the general public. TCML is designed to be expressive and yet light-weight in
terms of syntax. The TCML environment (Marco calls it simply as atool) is designed
to be a multiple target language compiler. Possible target languages includes the ILOG
Solver [7, 8, 9, 10], SICStus Prolog, or Mozart Oz. Currently, Marco has written a
prototype implementation2 that includes backends for Mozart Oz and the ILOG solver.

GNOPL differs from TCML in that we do not create a new constraint modelling
language. Instead, we distill such a modelling language from the larger OPL language.
Further, GNOPL does not attempt to compile OPL into multiple target languages. Oz is
our sole target language.

Pierre Flener et. al. designed an even higher level FD constraint modelling language,
called ESRA[11][12]. ESRA is an extension of a subset of the OPL language. ESRA
introduced richer type constructors into OPL. A prototype of ESRA is implement as a
compiler from ESRA to OPL. The compilation uses a set of rewrite rules.

Interestingly, ESRA also selected a CP subset of the OPL language. This is good
news. In theory, the OPL program generated by ESRA should be compilable on GNOPL.
This way, GNOPL can be used with the ESRA prototype to give us a ESRA-to-Oz com-
piler. But this has yet to be investigated in practice. Firstly, GNOPL has not implemen-
tated all data types of OPL. Once this is done, GNOPL might have a better chance of
compiling ESRA programs.

ESRA made a very different decision compared to OPL. ESRA decides thatsearch
procedures(refer to section 5) should not be defined by the user. Instead, optimal search
procedures should be generated by the system via automated analysis the constraint
problem at hand. This is a very nice idea. However, it remains an open question whether
such analysis can yield optimal search.

3 The GNOPL Architecture

GNOPL consists of two main components.

– The OPL compiler,oplc . This compiler compiles OPL models into executable Oz
applications. The compileroplc only compiles the pure declarative CP subset of
OPL.

– An OPL program editing environment. This enviroment is calledgnopl (the same
name as this project). The environment is implemented as an XEmacs major mode.
So the user actually fires up an XEmacs editor whengnopl is invoked.

Both components are available to the users. Most casual users need only be acquainted
with gnopl . Figure 3 shows a use case diagram of the GNOPL system. As for non-
Emacs fans, they might prefer to useoplc directly. Any editor can be used to code the

2 Interestingly, Marco has written his prototype in Oz using the literate programming tool,
noweb. GNOPL is also written in Oz usingnoweb.

4

OPL programs.oplc is written purely in Oz and should run on any platform that Oz
runs on andgnopl is a simple major editing mode written in elisp and should run on
any platform that XEmacs has been ported to. However, GNOPL has been tested only
on Linux RedHat and Windows boxes.

User

Mozart-Oz

XEmacs

gnopl

oplc

GNOPL SYSTEM

Fig. 2.GNOPL Use Case Diagram

The OPL compiler,oplc , first translates an OPL model into an Oz program and
then compiles the Oz program into an executable Oz application. Compiled OPL pro-
grams are executable on all platforms that the Oz system runs on. This means that user
can distribute compiled versions of their models to a wide assortment of platforms if
they do not wish to share their OPL source codes. Compiled OPL programs can be
used in two ways. They can be used in batch-mode; as simple text-mode command-line
programs. They can also be used with a GUI with which users can query for solutions
interactively.

4 A Brief Introduction to OPL

OPL is a strictly typed declarative language. Constants and variables must be declared
before use. A problem is described in terms of constraints. Constraints are described
as relational statements between variables and constants. The syntax for writing such
relational statements closely resembles the “natural way” of writing such relations in
basic mathematical notations.

With such syntatic expressiveness, a programmer’s view of constraint programming
in OPL is essentially a simple task of modeling problem using a sugared version of first-
order logic. In OPL, the aim is to allow user to describe a CP as a model rather than as a
program. For certain CP problems, the OPL specification looks just like a mathemetical
description of the CP problems. In the following, we will look at how the N-queens
problem can be solved using OPL.

Figure 3 shows an OPL program that models the the 8-queens program. In this
example, we show off the forall-statement of OPL. OPL forall-statement specifies the
values of iterators in a declarative way. The major iterator isi and the minor isj . Both
iterators lie in the domain 1 to 8. The keywordordered makes sure that within the body
of the forall-statement, the orderi < j is always true.

5

var int queen[1..8] in 1..8;

solve {
 forall(ordered i,j in Domain) {
 queen[i] <> queen[j];
 queen[i]+i <> queen[j]+j;
 queen[i]-i <> queen[j]-j;
 };
};

'queen[]' is
an array of variables
that we are trying to
find solutions for.

This is the
'solve block'
where we describe
the problem in
maths like syntax.

Fig. 3.OPL Model of The 8 Queens Problem. This OPL program is extracted from [1]

Control Over Search

In addition to providing intuitive syntax for expressing constraints, the OPL language
also provides a way for users to fine tune the way the problem space is to be searched [13].
This syntax is surprisingly simple and suitable for general users.

The concept of a search procedure consists of two components (quoted from [13]).

A search procedure typically consists of two parts: a search component defining
the search tree to explore and a strategy component specifying how to explore
this tree.

The search component is written in the form of choices. The three main kinds of
choices are thetry , tryall and theforall instructions. In OPL, search trees are
assumed to be ordered AND/OR tree. The instructionstry and tryall defines or-
dered OR-nodes. Theforall instruction defines ordered AND-nodes. Figure 4 illus-
trates thetry instruction.

1 var int x in 1..5;
2 solve {
3 x <> 1;
4 };
5 search {
6 try 2*x - 1 =11 | x*x - 20 = 5 | x = 3 | x = 4 | x = 5 endtry;
7 };
8

Fig. 4.An example illustrating OPLtry instruction.

Figure 5 illustrates OPL’s way of describing the basic 8-queen problem, this time,
with the addition search control. In this example, we show a typical usage of the
forall andtryall instructions.

6

int n = 8;
range Domain 1..n;
var Domain queen[Domain];

solve {
 forall(ordered i,j in Domain) {
 queen[i] <> queen[j];
 queen[i]+i <> queen[j]+j;
 queen[i]-i <> queen[j]-j;
 };
};

search {
 forall(i in Domain)
 tryall(v in Domain)
 queen[i] = v;
};

'n' and 'Domain'
are constants.

'queen[]' is
an array of variables
that we are trying to
find solutions for.

This is the
"solve block"
where we describe
the problem in
maths like syntax.

This is the optional
"search block" that we
control the search by
describing how the search
should proceed.

Fig. 5.OPL Model of the basic 8-queen problem.

5 An Overview of Oz

In this section, we introduce the target language, Oz. Oz is not a modelling language,
but a full fledged multiparadigm programming language. Oz has CP facilities and can be
used to solve CP problems as well. Comparing to OPL, constraint problems modelled
in Oz may seems a little verbose for programmers not used to Oz’s syntax. Learning
Oz takes a steeper learning curve compared to OPL. This is, in general, always the
case when comparing the learning curves between a full programming language with a
domain specific modelling language.

An Oz programmer programs using a simple abstract view of how constraint prob-
lems are modeled. In this section, we introduce a programmer’s view of contraint pro-
gramming in Oz. For a rigorous treatment from the programming language point of
view, please refer to the Oz Programming Model[2]

Constraints are solved withincomputation spaces[5]. A computation space consists
of a number of propagators connected to a single constraint store. Basic constraints
are stored in the constraint store while each non-basic constraint is imposed by one
propagator. Each propagator is a concurrent agent that narrows the domains of variables
in the constraint store.

Constraint problems are written as Oz procedures. The problems are specified as
constraint relations within the procedures. The following shows the format of such an
Oz procedure.

proc {〈Name of Procedure〉 〈Root〉}
〈Procedure Body〉

end

At runtime, these procedures becomes computation spaces and are solved using search
engines.

7

Figure 6 shows an Oz solution to following constraint problem.

n ∈ [1..10000000] ∧ x ∈ [0..20000] ∧ y ∈ [0..20000] ∧ n = x2
∧ 10000000 + n = y2

The whole problem is specified within the procedureSpec . The formalsVar is a
record of FD variables.

Var = var(n:N x:X y:Y)

Record is a fundalmental data type in Oz. We can access the content of a record by
using thedot delimiter. For instance, to accessN, we writeVar.n. Likewise forX, Y .
Line 7 to 9 of figure 6 encodes the basic constraints from the constraint store. Line 11,12
encodes the non-basic constraints. In line 17, we ask Oz to search for all the solutions in
the computation space we constructed. TheBrowse command shows us the solutions
in a text widget3. Line 14 completes the script by supplying adistribution strategy. This

1 declare
2 proc {Spec Var}
3 N X Y % the FD variables
4 in
5 Var = var(n:N x:X y:Y)
6 %% declare domains of the FD variables
7 N :: 10000000#99999999
8 X :: 0#20000
9 Y :: 0#20000

10 %% The constraint statements
11 N =: X * X
12 100000000 + N =: Y*Y
13 %% Specify distribution strategy
14 {OPL.distribute naive Var}
15 end
16

17 {Browse {SearchAll Spec}}

Fig. 6.Solving the Simple program in Oz

brings us to the important topic ofsearch control in Oz.

Control Over Search

In most cases, the propagators cannot completely solve the full constraint problem de-
picted by their computation space. A distribution strategy is required to help guide the
search for possible solutions.

3 The viewing functionBrowse fires up a Tcl/Tk text widget, if the browser widget is not
already up and running, and displays the solutions. The browser widget is implemented nicely
on top of Tcl/Tk. Oz programmers do not need any knowledge of Tcl/Tk to use the browser.

8

Oz controls the search for solution using two orthogonal mechanism: distribution
strategy and exploration strategy. The distribution strategy defines an entire search tree.
The Oz library supplies a variety of distribution strategies. For instance, the naive and
first-fail distribution strategy. The exploration strategy determines how the search tree
is explored. The Oz library supplies well known exploration strategies such as depth-
first-search and best-first-search.

6 GNOPL System Overview

The OPL compiler,oplc , compiles OPL into executable Oz application. The compil-
ing process is designed to be light on translation and heavy on the runtime support.
Say we are compiling a OPL program,simple.mod . The compilation process in-
volves translatingsimple.mod into an Oz program,simple.oz , with close to 1-1
mapping. The generated Oz program,simple.oz , is then compiled(usingozc) into
an executable Oz application,simple (in Windows platform, the executable will be
namedsimple.exe). We call toz the ’compiled OPL program’. The compiled OPL
program,simple , runs on top of GNOPL runtime support, which exists in the form of
Oz modules4, provided by GNOPL.

We term the period of the translation process and compilation process collective as
the compile-time. The period of invocation of the compiled OPL program to the time
the application exits, is calledrun-time.

We spent most of our efforts on the runtime support. The runtime support supply
most of the language features of OPL which Oz lacks. We call this ’bridging the syn-
tactic gap’. This gap is made as narrow as possible. The narrower it gets, the easier the
translation is. Figure 7 illustrates the compilation process. The GNOPL runtime support
consists of the two modules/functors,OPL.ozf andExcursion.ozf . The module
OPL.ozf provides the language features of OPL. For instance, theforall state-
ment of OPL. It also provides facilities for displaying solutions in the same why as the
OPL book [1].Excursion.ozf provides OPL search control. It contains specialized
search engine than executes excursion plans(refer to section 7.2).

7 Translating OPL Programs into Oz

An OPL program consists of a solve block and an optional search block. The translation
process has two aims in mind. Firstly, we want to craft the correct Oz computation space
in accords to the OPL solve block. Secondly, we want to specify the correct iterative
search engine according to the search block. At runtime, the search engine is applied to
the computation space to look search solutions.

During compile-time, the computation space exists in the form of an Oz procedure
with single argument. By GNOPL’s convention, this procedure is namedSpec and the

4 Oz modules are normally calledfunctors [14] by the Oz community. Functors are anno-
tated function specified by a module definition. The annotations specify the external inter-
faces(names and types) of entities in these modules. Functors are dynamically linked and are
loaded only when needed.

9

src-to-src
translation

compile
with ozc

OPL
Program

Oz
Program

Excutable
Oz
Application

Oz program
is in the memory
and never saved as
as a physical file

GNOPL
Runtime
support

OPL.ozfExcursion.ozf

Fig. 7.Two step compilation of OPL Program

single argument,E. During run-time,Spec becomes an Oz computation space. The
root variables of this space isE. During compile-time, the search engine exists in the
form of a declarative search engine specification, callexcursion plan(as in to ’plan’ our
’excursion’ in the search space). This specification is used to create a specialized iter-
active search engine during run-time. The various side products of compiling an OPL
program and subsequently executing the compiled OPL program is shown in figure 8.

solve{
 ...
}

search{
 ...
}

proc{Spec E}
 ...
end

Plan = ...

Computation
Space

Search
Engine

Apply Search
Engine on Space

Compile-Time Run-TimeOPL Program

Fig. 8.Various side products of compiling an OPL program and subsequently executing
the compiled OPL program.

7.1 Crafting the Correct Problem Space

The OPL solve block is translated into an Oz procedure that represents our problem
space. Each OPL constraint statement within the solve block is translated into an equiv-
alent Oz constraint statement in the Oz procedure.

10

Oz and OPL are very different programming language. Oz is a dynamically typed,
multi-paradigm language while OPL is a strongly typed, domain specific language. We
need to preserve all OPL type information in the Oz problem space. This is achieved by
simple book-keeping. The type information of each OPL variable and constant is stored
with the problem space, as an Oz record that we call theenvironment record. This type
information is used for two purposes: 1) Translate OPL data structures to compatible Oz
data structures, such as records, arrays and simple FD variables. 2) Displaying the solu-
tion found. GNOPL display solutions using similar formats as the output of OPLStudio
and the OPL language manual.

In the environment record,E, all variables and constants are accessible viafea-
tures5. The features are named according to the names of variables and constants in
the input OPL programs. There are two special features in the environment record,
’ varinfo ’ and ’ typeinfo ’ . The ’ varinfo ’ features stores information
pertaining to all OPL FD variables. The’ typeinfo ’ feature stores all definitions
of user-defined OPL types.

env(
〈FD var〉: 〈Domain of FD var〉
...
〈Constant Reference〉: 〈Value of Constant〉
...
’_varinfo_’: 〈Domain and type info of all OPL variables〉
’_typeinfo_’: 〈Record of all user defined types〉
)

For instance, the OPL model of the N-queens problem(figure 5) is translated to an
Oz procedure,Spec , as shown in figure 10. The variableVar contains the declaration
of FD variables based on the information given inVarInfo . This translation fills up
the environment record,E, as shown in figure 9.

E = env(
n: 8
queen: queen(_{1#8} ... _{1#8})
’_varinfo_’: varinfo(

queen: range(1#8 1#8)
)

’_typeinfo_’: typeinfo(
’Domain’: 1#8
))

Fig. 9.Environment Definition of N-queens OPL Model

5 Oz records are structured compound entities. A record has a label and a number of components.
Each component consists of a pairFeature:Field. Records can be viewed as dictionaries
where the features correspond to keys and fields correspond to values.

11

local
ConstInfo VarInfo TypeInfo Spec

in
ConstInfo = 〈Typing info of all OPL Constants〉
VarInfo = 〈Typing info of all OPL Variables〉
TypeType = 〈User Defined Types〉

proc {Spec E}
Var = {OPL.var VarInfo }

in
E = {Adjoin {Adjoin {Adjoin ConstInfo Var } TypeInfo }

env(’_varinfo_’: VarInfo
’_typeinfo_’: TypeInfo)

...
((E.’queens’.(E.’i’) + E.’i’) \=:
(E.’queens’.(E.’j’) + E.’j’))

...
end

end

Fig. 10.Translation of the solve block of the 8queens problem in figure 5

7.2 Specifying the Correct Iterative Search Engine

The OPL search block provides a finer grain of search control than what the search
facilities in Oz currently offers. We could not translate the search block directly into
some equivalent Oz chunks of code. Instead, we implemented an iterative search engine.
Given a PLAN, the search engine search a problem space according to the search tree
and exploration defined in the PLAN.

A PLAN is purely declarative. It prescribes how the search engine builds a search
tree as well as how it should explores the search tree. It is equally descriptive compared
to the OPL search procedures. A PLAN is written in the form of an Oz record and con-
sists of two main components: exploration strategy type and search tree specification.
The exploration strategy can be depth first search, breadth first search or limited dis-
crepancy search[15], denoted bydfs , breadthfs andlds respectively. The format
of a PLAN is as follows.

〈PLAN〉 −→
plan(〈Exploration Strategy〉
〈Search Tree Specification〉)

〈Exploration Strategy〉 −→ dfs | breadthfs | lds

Table 11 shows the correspondence between search procedures in OPL and PLAN
in GNOPL. An OPL search procedure,S, translates into a PLAN,P . The search com-
ponent ofS translates into a STree defined insideP . The strategy component ofS
translates into an exploration strategy declaration insideP .

The search tree specification(STree) describes a search tree in terms of branches.
For instance, the STree of figure 12 describes the search tree of figure 13. Adjacent

12

OPL GNOPL
search procedure PLAN
search componentSTree
strategy componentexploration strategy

Fig. 11.Correspondence between OPL search procedures and PLAN specifications.

nodes in a seach tree is related by the labels of the branches connecting them. Each
branch label denotes a constraint. For instance, suppose nodeB is the successor of
nodeA and the branchA −→ B, is labeled asx < y (or, lt(x y) , in the language of
STree). This means that in the computation space of nodeB equals to the computation
space nodeA injected with the additional constraint ofx < y.

stree([
branch([eq(x 1) eq(x 2)])
branch([eq(y 1) eq(y 2)])

])

Fig. 12.A Simple Search Tree Specification

@GAFBECD

@GAFBECD
x=1

ooooooooooooo

@GAFBECD
x=2

OOOOOOOOOOOOO

@GAFBECD
y=1

��
��

��
�

@GAFBECD
y=2

??
??

??
?

@GAFBECD
y=1

��
��

��
�

@GAFBECD
y=2

??
??

??
?

Fig. 13.A Simple Search Tree

Suppose we are given the following problem space.

x, y ∈ [1..2] ∧ x < y (1)

Our simple STree(figure 12) is a suitable, albeit inefficient, search space for this prob-
lem. Notice that the STree says nothing about the underlying problem space. The search
tree is only concerned with what constraint to inject into a space. It is possible to write
a STree that is inappropriate for the problem space at hand. If an OPL modeller writes
the wrong search block for a problem, an equally inappropriate STree will be generated
by GNOPL. The consequence could either be that no solutions can be found or that the
search is very ineffective.

13

x<y

A : space

B : space
B = A injected with
 constraint 'x<y'

Fig. 14.Meaning of Branch Label in Search Tree Specification

A STree only describes a search tree. By itself, it cannot solves any constraint prob-
lem. To make it useful, we must apply it to real problems and explore it using explo-
ration strategies such as depth-first-search, LDS, etc. Applying the simple STree(figure 12)
to problem (1) and exploring it using depth-first-search, we get the search results as
shown in figure 15.

x ∈ [1..2]
y ∈ [1..2]

�� ��
�� ��

x = 1
y ∈ [1..2]

�� ��
�� ��

x=1

ooooooo

x = 2
y ∈ [1..2]

�� ��
�� ��

x=2

OOOOOOO

x = 1
y = 1

�� ��
�� ��

y=1

��
��
��
��
��
��

x = 1
y = 2

�� ��
�� ��

y=2

//
//

//
//

//
//

x = 2
y = 1

y=1

��
��
��
��
��
��

x = 2
y = 2

�� ��
�� ��

y=2

//
//

//
//

//
//

Fig. 15.Search Result of Applying Search Tree. The node with double lined box bound-
ary does not contain a valid solution since it violates the constraintx < y

In practice, the STree can become quite verbose. For instance, the search block
in the N-queens example(figure 5) is translated into the following PLAN, using DFS
exploration strategy. The STree in this PLAN is pretty verbose.

plan(dfs
stree([

branch([eq(ref(queens 1) 1) ... eq(ref(queens 1) 8)])
branch([eq(ref(queens 2) 1) ... eq(ref(queens 2) 8)])
...
branch([eq(ref(queens 8) 1) ... eq(ref(queens 8) 8)])
]))

14

To prevent the search tree specification from getting too verbose, we defined some
higher order syntax that simplifies the coding of search tree specification. For instance,
the above PLAN can be simplified to the following. Each individual branches are com-
pacted into a simpler branch specification using a ’set-comprehension-like’ construct,
branch(...where:...) . All these compacted branches can be further shrinked
into a single definition with the help of thelayers construct.

plan(dfs
stree([

layers(
branch(eq(ref(queens j) i)

where:range(i 1 8))
where:range(j 1 8))

]))

8 Current Status and Future Work

Currently, GNOPL only implements the simplest few of OPL data structures. Only three
exploration strategies have been implemented. Furthermore, the scheduling facilities of
the OPL language have not been implemented at this time of writing. However, all
the background work has been completed; all the basic language features of the OPL
language have been implemented. All these missing features may be added to GNOPL
by extending appropriate classes in the GNOPL source. The focus of this phase of the
work is to create an architecture upon which GNOPL can be grown to support most of
the useful features specified in the OPL language. We are continuing our development
of GNOPL. We hope that GNOPL can grow to become more useful in the future.

GNOPL introduces PLAN and STree. Both were created out of simple necessity. We
need a declarative search specification that defines the operational behaviour of a search
engine. Both PLAN and STree does not have a formal semantics yet. It is important that
they are given a concise meaning, whether formal or slightly informal. Otherwise, it is
very difficult to investigate the correctness of our translation scheme.

15

References

[1] Pascal Van Hentenryck.The OPL Optimization Programming Language. Cambridge Mass:
MIT Press, 1999.

[2] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,Computer Science
Today, Lecture Notes in Computer Science 1000, pages 324–343. Springer-Verlag, Berlin,
1995.

[3] ILOG Inc., Mountain View, CA 94043, USA,http://www.ilog.com . OPL Studio
User Manual, 1999.

[4] Pascal Van Hentenryck and Laurent Michel. OPL script: Composing and controlling mod-
els. InNew Trends in Constraints, pages 75–90, 1999.

[5] Christian Schulte.Programming Constraint Services, volume 2302 ofLectures Notes in
Artificial Intelligence. Springer Verlag, Berlin, 2002.

[6] Marco Kuhlmann. Tiny constraint modelling language. Programming Systems Lab,
Saarland University, Saarbrücken. Email: kuhlmann@ps.uni-sb.de ,http://www.ps.
uni-sb.de/˜kuhlmann/projects/tcml/index.html .

[7] Jean-François Puget and Michel Leconte. Beyond the glass box: Constraints as objects.
In Proceedings of the International Symposium on Logic Programming, pages 513–527,
1995.

[8] Jean-François Puget. A C++ implementation of CLP. InProceedings of the Second Singa-
pore International Conference on Intelligent Systems (SPICIS), pages B256–B261, Singa-
pore, November 1994.

[9] ILOG Inc., Mountain View, CA 94043, USA,http://www.ilog.com . ILOG Solver
5.0, Reference Manual, 2000.

[10] Laurent Perron. Search procedures and paralleism in constraint programming. In Joxan
Jaffar, editor,Principles and Practice of Constraint Programming, Alexandria, VA, USA,
1999. Springer-Verlag, Berlin.

[11] Zeynep Kiziltan Pierre Flener, Brahim Hnich. Compiling high-level type constructors
in constraint programming. In I. V. Ramakrishnan, editor,Proceedings of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01), vol-
ume 1990 ofLecture Notes in Computer Science, pages 229–244, Las Vegas, Nevada (
http://seclab.cs.sunysb.edu/padl/), March 11-12 2001. Springer 2001.

[12] Pierre Flener and Brahim Hnich. The syntax and semantics of esra. Evolving internal
report. Available athttp://www.dis.uu.se/˜pierref/astra/pub/synsem.
ps.gz .

[13] Pascal Van Hentenryck, Laurent Perron, and Jean-François Puget. Search and strategies in
OPL. ACM Transactions on Computational Logic, 1(2):285–320, October 2000.

[14] Denys Duchier, Leif Kornstaedt, Christian Schulte, and Gert Smolka. A higher-order mod-
ule discipline with separate compilation, dynamic linking, and pickling. Technical report,
Programming Systems Lab, DFKI and Universität des Saarlandes, 1998.

[15] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Chris S.
Mellish, editor, Proceedings of the International Joint Conference on Artificial Intelli-
gence, pages 607–615, Montréal, Qúebec, Canada, August 1995. Morgan Kaufmann Pub-
lishers, San Mateo, CA.

