
CS 3243 – Recap from lecture 1CS 3243 Recap from lecture 1

 Introduction Introduction
Agents
PEASPEAS
Environment

Rational Agents – F: mapping P* to A
Agent architectures: reflex, model,

learning

CS 3243 - Uninformed Search 1

Solving problems by searching

Chapter 3

CS 3243 - Uninformed Search 2

Outline

 Problem-solving agentsProblem solving agents
 Problem types

Problem formulation Problem formulation
 Example problems
 Basic search algorithms

CS 3243 - Uninformed Search 3

Problem-solving agentsg g

CS 3243 - Uninformed Search 4

Example: Romaniap

 On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest
 Formulate goal:

 be in Bucharest
 Formulate problem:

t t i iti states: various cities
 actions: drive between cities

 Find solution: Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

CS 3243 - Uninformed Search 5

Example: Romaniap

CS 3243 - Uninformed Search 6

Problem typesyp

 Deterministic, fully observable  single-state problem
 Agent knows exactly which state it will be in; solution is a sequence

 Non-observable  sensorless problem (conformant p (
problem)
 Agent may have no idea where it is; solution is a sequence

 Nondeterministic and/or partially observable  contingency
problem
 percepts provide new information about current state percepts provide new information about current state
 often interleave search, execution

Unkno n state space  e plo ation p oblem

CS 3243 - Uninformed Search 7

 Unknown state space  exploration problem

Example: vacuum worldp

 Single-state, start in #5.
Solution?

CS 3243 - Uninformed Search 8

Example: vacuum worldp

 Single-state, start in #5.
Solution? [Right, Suck]

 Sensorless, start in Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?Solution?

CS 3243 - Uninformed Search 9

Example: vacuum worldp

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?Solution?
[Right,Suck,Left,Suck]

C Contingency
 Nondeterministic: Suck may

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution?

CS 3243 - Uninformed Search 10

Solution?

Example: vacuum worldp

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?Solution?
[Right,Suck,Left,Suck]

C Contingency
 Nondeterministic: Suck may

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

CS 3243 - Uninformed Search 11

Solution? [Right, if dirt then Suck]

Single-state problem formulationg p

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action–state pairs

 e.g., S(Arad) = {<Arad  Zerind, Zerind>, … } e.g., S(Arad) {<Arad  Zerind, Zerind>, … }
3. goal test, can be

 explicit, e.g., x = "at Bucharest"
 implicit, e.g., Checkmate(x)

h (dd)4. path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(x,a,y) is the step cost, assumed to be ≥ 0

 A solution is a sequence of actions leading from the initial state to a
goal state

CS 3243 - Uninformed Search 12

Selecting a state spaceg p

 Real world is absurdly complex
 state space must be abstracted for problem solving

 (Abstract) state = set of real states()
 (Abstract) action = complex combination of real actions

 e.g., "Arad  Zerind" represents a complex set of possible routes,
detours, rest stops, etc.detours, rest stops, etc.

 For guaranteed realizability, any real state "in Arad“ must
get to some real state "in Zerind"
(Abstract) solution (Abstract) solution =
 set of real paths that are solutions in the real world

 Each abstract action should be "easier" than the original

CS 3243 - Uninformed Search 13

problem

Vacuum world state space graphp g p

 states?
 actions?
 goal test?
 path cost?

CS 3243 - Uninformed Search 14

Vacuum world state space graphp g p

 states? integer dirt and robot location
actions? Left Right Suck actions? Left, Right, Suck

 goal test? no dirt at all locations
 path cost? 1 per action

CS 3243 - Uninformed Search 15

p p

Example: The 8-puzzlep p

 states?
 actions?
 goal test?
 path cost?

CS 3243 - Uninformed Search 16

pat cost

Example: The 8-puzzlep p

 states? locations of tiles
 actions? move blank left, right, up, down
 goal test? = goal state (given)

th t? 1 path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

CS 3243 - Uninformed Search 17

[Note: optimal solution of n Puzzle family is NP hard]

Example: robotic assemblyp y

 states?: real-valued coordinates of robot joint states?: real valued coordinates of robot joint
angles parts of the object to be
assembled

actions?: continuous motions of robot joints actions?: continuous motions of robot joints
 goal test?: complete assembly
 path cost?: time to execute

CS 3243 - Uninformed Search 18

 path cost?: time to execute

Tree search algorithmsg

 Basic idea:Basic idea:
 offline, simulated exploration of state space by

generating successors of already-explored states
(k d)(a.k.a.~expanding states)



CS 3243 - Uninformed Search 19

Tree search examplep

CS 3243 - Uninformed Search 20

Tree search examplep

CS 3243 - Uninformed Search 21

Tree search examplep

CS 3243 - Uninformed Search 22

Implementation: general tree searchp g

CS 3243 - Uninformed Search 23

Implementation: states vs. nodesImplementation: states vs. nodes

 A state is a (representation of) a physical configuration
A d i d t t t tit ti t f h t A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

 The Expand function creates new nodes filling in the The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the problem
to create the corresponding states.

CS 3243 - Uninformed Search 24

Search strategiesg

 A search strategy is defined by picking the order of node
iexpansion

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?p y
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?optimality: does it always find a least cost solution?

 Time and space complexity are measured in terms of
b: maximum branching factor of the search tree b: maximum branching factor of the search tree

 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)

CS 3243 - Uninformed Search 25

Uninformed search strategiesg

 Uninformed search strategies use only theUninformed search strategies use only the
information available in the problem
definitiondefinition

 Breadth-first search
Uniform cost search Uniform-cost search

 Depth-first search
 Depth-limited search
 Iterative deepening search

CS 3243 - Uninformed Search 26

Iterative deepening search

Breadth-first search

 Expand shallowest unexpanded nodeExpand shallowest unexpanded node
 Implementation:

fringe is a FIFO queue i e new successors go fringe is a FIFO queue, i.e., new successors go
at end

CS 3243 - Uninformed Search 27

Breadth-first search

 Expand shallowest unexpanded nodeExpand shallowest unexpanded node
 Implementation:

fringe is a FIFO queue i e new successors go fringe is a FIFO queue, i.e., new successors go
at end

CS 3243 - Uninformed Search 28

Breadth-first search

 Expand shallowest unexpanded nodeExpand shallowest unexpanded node
 Implementation:

fringe is a FIFO queue i e new successors go fringe is a FIFO queue, i.e., new successors go
at end

Animation time!

CS 3243 - Uninformed Search 29

Breadth-first search

 Expand shallowest unexpanded nodeExpand shallowest unexpanded node
 Implementation:

fringe is a FIFO queue i e new successors go fringe is a FIFO queue, i.e., new successors go
at end

CS 3243 - Uninformed Search 30

Properties of breadth-first searchp

 Complete? Yes (if b is finite)
 Time? 1+b+b2+b3+… +bd + b(bd-1) =

O(bd+1)
(bd 1) (k d) Space? O(bd+1) (keeps every node in memory)

 Optimal? Yes (if cost = 1 per step)

 Space is the bigger problem (more than time)

CS 3243 - Uninformed Search 31

Uniform-cost search

 Expand least-cost unexpanded node Animation time!
 Implementation:

 fringe = queue ordered by path cost
 Equivalent to breadth-first if step costs all equal Equivalent to breadth first if step costs all equal
 Complete? Yes, if step cost ≥ ε
 Time? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε)) h C* i th t f thO(bceiling(C*/ ε)) where C* is the cost of the
optimal solution

 Space? # of nodes with g ≤ cost of optimal solution,p g p ,
O(bceiling(C*/ ε))

 Optimal? Yes – nodes expanded in increasing order
of g(n)

CS 3243 - Uninformed Search 32

of g(n)

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 33

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 34

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 35

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 36

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 37

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 38

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 39

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 40

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 41

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 42

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at frontg q , , p

CS 3243 - Uninformed Search 43

Depth-first searchp

 Expand deepest unexpanded nodep p p
 Implementation:

 fringe = LIFO queue, i.e., put successors at front

Animation time!

g q , , p

CS 3243 - Uninformed Search 44

Properties of depth-first searchp p

 Complete? No: fails in infinite-depth spaces, spaces p p p , p
with loops
 Modify to avoid repeated states along path

 complete in finite spaces

 Time? O(bm): terrible if m is much larger than d Time? O(bm): terrible if m is much larger than d
 but if solutions are dense, may be much faster than

breadth-first

 Space? O(bm), i.e., linear space!
 Optimal? No

CS 3243 - Uninformed Search 45

p

Depth-limited searchp

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

 Recursive implementation:

CS 3243 - Uninformed Search 46

Iterative deepening searchp g

CS 3243 - Uninformed Search 47

Iterative deepening search l =0p g

CS 3243 - Uninformed Search 48

Iterative deepening search l =1p g

CS 3243 - Uninformed Search 49

Iterative deepening search l =2p g

CS 3243 - Uninformed Search 50

Iterative deepening search l =3p g

CS 3243 - Uninformed Search 51

Iterative deepening searchp g

 Number of nodes generated in a depth-limited search to
depth d with branching factor b:depth d with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

 Number of nodes generated in an iterative deepening
search to depth d with branching factor b:
NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

IDS

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111DLS 0 00 ,000 0,000 00,000 ,
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123 456 - 111 111)/111 111 = 11%

CS 3243 - Uninformed Search 52

 Overhead (123,456 111,111)/111,111 11%

Properties of iterative deepening
searchsearch

 Complete? YesComplete? Yes
 Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd

= O(bd)= O(b)
 Space? O(bd)

O l? f Optimal? Yes, if step cost = 1

CS 3243 - Uninformed Search 53

Summary of algorithmsy g

CS 3243 - Uninformed Search 54

Repeated statesp

 Failure to detect repeated states can turn aFailure to detect repeated states can turn a
linear problem into an exponential one!



CS 3243 - Uninformed Search 55

Graph searchp

CS 3243 - Uninformed Search 56

Bidirectional Search

 Simultaneously search both forward (from the y (
initial state) and backward (from the goal state)

 Stop when the two searches meet.
 Intuition = 2 * O(bd/2) is smaller than O(bd)

Start Goal

CS 3243 - Uninformed Search 57

Bidirectional Search Discussion

 Numerical Example (b=10, l = 5)p (,)
 Bi-directional search finds solution at d=3 for both

forward and backward search. Assuming BFS in each
half 2222 nodes a e e pandedhalf 2222 nodes are expanded.

 Implementation issues:
 Operators are reversible e g Pred(Succ(n)) = Pred(Succ(n)) Operators are reversible, e.g., Pred(Succ(n)) = Pred(Succ(n))
 There may be many possible goal states.

 Construct a goal state containing the superset of all goal states.

Ch k if d i th “ th ” h t Check if a node appears in the “other” search tree.
 Using different search strategies for each half.

CS 3243 - Uninformed Search 58

Summaryy

 Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

 Variety of uninformed search strategies

Iterative deepening search uses only linear space and not Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

CS 3243 - Uninformed Search 59

