CS 3243 — Recap from lecture 1

Introduction
Agents

PEAS
Environment

Rational Agents — F: mapping P*to A

Agent architectures: reflex, model,
learning

CS 3243 - Uninformed Search

| Solving problems by searching

Chapter 3

CS 3243 - Uninformed Search

q Outline

|
Problem-solving agents

Problem types

Problem formulation
Example problems
Basic search algorithms

CS 3243 - Uninformed Search

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, percept)

if seq is empty then do
goal < FORMULATE-GOAL(state)
problem < FORMULATE- PROBLEM(state, goal)
seq < SEARCH(problem)

action <+ FIRST(seq)

seq+ REST(seq)

return action

CS 3243 - Uninformed Search

q Example: Romania

I
On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest
Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities
Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

CS 3243 - Uninformed Search

q Example: Romania

=] Cradea
MNeamt
- a7
T4
=] lasi
Arad]
- g
Sibiu gg Fagams
1 1% u Vaslui
a0 M Vaslui
. Rimnicu YVilcea
T|m|5u:-ara -
142
: . 211
111 - Lug-:-j Pitesti
70 = 93 |
as] Hirsava
(M ehadia 101 . Urziceni
L) 25
. & 130 138 Huchamest
Cobreta -
o - L | a0
Craiova Eforie
-] Giurgiu

CS 3243 - Uninformed Search

1 Problem types

Deterministic, fully observable - single-state problem
Agent knows exactly which state it will be in; solution is a sequence

= Non-observable = sensorless problem (conformant
problem)
Agent may have no idea where it is; solution is a sequence

= Nondeterministic and/or partially observable - contingency
problem
percepts provide new information about current state
often interleave search, execution

= Unknown state space - exploration problem

CS 3243 - Uninformed Search 7

q Example: vacuum world

I
Single-state, start in #5.

Solution? 1 ‘gﬂ o8
3 | A
R
5 | =A)
o
7 | =]

CS 3243 - Uninformed Search

A (3R] | A [#h

q Example: vacuum world

I
Single-state, start in #5.

Solution? /Right, Suck] 1 gﬂ o 2
Sensorless, start in 3 | =) 4
{1,2,3456,7,8 eq., =
Right goes to {2,4,6,8} 5 [5
Solution? R

=]

CS 3243 - Uninformed Search

SR LY

q Example: vacuum world

I
Sensorless, start in

{1,234567,8 eaq, i
Right goes to {2,4,6,85}
Solution? 3 | =)
[Right Suck, Left Suck] -
5 | =A)

Contingency

Nondeterministic: Suck may

dirty a clean carpet 7 | =

Partially observable: location, dir. acTurrent iocauorn.

Percept: /L, Clean], i.e., start in #5 or #7
Solution?

CS 3243 - Uninformed Search

SR LY

q Example: vacuum world

I
Sensorless, start in

{1,234567,8 eaq, i
Right goes to {2,4,6,85}
Solution? 3 | =)
[Right Suck, Left Suck] -
5 | =A)

Contingency

Nondeterministic: Suck may

dirty a clean carpet 7 | =

Partially observable: location, dir. acTurrent iocauorn.

Percept: /L, Clean], i.e., start in #5 or #7
Solution? /Right, if dirt then Suck]

CS 3243 - Uninformed Search

SR LY

q Single-state problem formulation
|

A problem is defined by four items:

initial state e.qg., "at Arad"

actions or successor function S(x) = set of action—state pairs
e.qg., S(Arad) ={ <Arad > Zerind, Zerind>, ... }

goal test, can be
explicit, e.g., x = "at Bucharest"
implicit, e.g., Checkmate(x)

path cost (additive)
e.g., sum of distances, humber of actions executed, etc.
c(x,a,y)is the step cost, assumed to be > 0

A solution is a sequence of actions leading from the initial state to a
goal state

CS 3243 - Uninformed Search 12

q Selecting a state space

Real world is absurdly complex
state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

e.g., "Arad - Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad™ must
get to some real state "in Zerind"

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original
problem

CS 3243 - Uninformed Search

13

1 Vacuum world state space graph

(a0e [e 220
el 1T D (& I Tl
- : : -
LC;@ ~LF AQDH
= States? ~ =
= actions?
= goal test?
= path cost?

CS 3243 - Uninformed Search

14

q Vacuum world state space graph

(o [e [
Fle LT BD U&7 [Te 2D
- : : -
e : N\«
L AL 9
states? integer dirt and robot location

actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action

CS 3243 - Uninformed Search 15

1 Example: The 8-puzzle

7 2 4
5 6
8 3 1

1 2
4 5
7 8

= states?

= actions?

= goal test?
= path cost?

Goal State

CS 3243 - Uninformed Search

16

q Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of 7-Puzzle family is NP-hard]

CS 3243 - Uninformed Search

17

Example: robotic assembly

—=)

= states?:

= actions?:
= goal test?:
= path cost?:

CS 3243 - Uninformed Search

q Tree search algorithms

Basic idea:

offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

CS 3243 - Uninformed Search

19

q Tree search example
I

CS 3243 - Uninformed Search

20

q Tree search example
I

CS 3243 - Uninformed Search

21

q Tree search example

CS 3243 - Uninformed Search

22

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe + INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GoAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe +— INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors<— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
s <—a new NODE
PARENT-NODE[s] < node; ACTION[s| «— action; STATE[s| + result
PATH-COST[s] = PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «— DEPTH[n0de] + 1
add s to successors

return successors

CS 3243 - Uninformed Search

23

q Implementation: states vs. nodes

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

State || 5

4

6

1

8

7

3

2

h ctale

parent, action
A

Node depth = 6

g==6

The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the problem
to create the corresponding states.

CS 3243 - Uninformed Search 24

q Search strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
b.: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be o)

CS 3243 - Uninformed Search

25

M Uninformed search strategies

Jninformed search strategies use only the
information available in the problem
definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

[terative deepening search

CS 3243 - Uninformed Search

26

q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
>@

CS 3243 - Uninformed Search

27

q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4
> (& G

CS 3243 - Uninformed Search

28

q Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(A,

Animation time!

(&, > (S
L &

LS 3243 - uninformed Searcn

q Breadth-first search

|
Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go
at end

CS 3243 - Uninformed Search

30

1 Properties of breadth-first search

= Complete?
= [ime?

= Space?

CS 3243 - Uninformed Search

31

q Uniform-cost search

I
Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal
Complete?
Time?

Space?

Optimal?

CS 3243 - Uninformed Search 32

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2©.

CS 3243 - Uninformed Search

33

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A,
40 (5

CS 3243 - Uninformed Search

34

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

35

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

36

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

37

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

38

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

39

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

40

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

41

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

G
() G

CS 3243 - Uninformed Search

42

q Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

43

q Depth-first search

I
Expand deepest unexpanded node

Implementation:

Animation time!

fringe = LIFO queue, i.e., put successors at front

CS 3243 - Uninformed Search

1 Properties of depth-first search

= Complete?

= [ime?

= Space?

CS 3243 - Uninformed Search

45

Depth-limited search

I
= depth-first search with depth limit /

i.e., nodes at depth /have no successors

R| function DEpPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result + failure then return result
if cutoff-occurred? then return cutoff else return failure

CS 3243 - Uninformed Search

46

[terative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do

result«— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

CS 3243 - Uninformed Search

47

q Iterative deepening search /=0

Limit =0 N0 ®

CS 3243 - Uninformed Search

48

q Iterative deepening search /=1

Limit=1 20 (@)

CS 3243 - Uninformed Search

49

q Iterative deepening search /=2

S S T e

CS 3243 - Uninformed Search

50

q Iterative deepening search /=3

Limit=3 P
»(E) ©
(£) (4]
(5] (<) (E) (<)
) () 06
10
(4)
G
26
CS 3243 - Uninformed Search 51

ReFay
R S
Lo R

q Iterative deepening search

Number of nodes generated in a depth-limited search to
depth ¢ with branching factor b:

Nojs=0 +b0 + 2 +... + b2 + 1 +

Number of nodes generated in an iterative deepening
search to depth dwith branching factor &

Nips = (d+1)b% + d b! + (d-1)b? + ... + 3b92 +2bd1 + 1bd

For b = 10, d = 5,
Np =1+ 10+ 100 + 1,000 + 10,000 + 100,000 = 111,111
Nips = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

CS 3243 - Uninformed Search

52

Properties of iterative deepening

1 search

= Complete?
= [iIme?

= Space?

CS 3243 - Uninformed Search

53

q Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY OBy O™ o(b") O(b%)
Space oMYy oIy O®bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

CS 3243 - Uninformed Search

54

q Repeated states

Failure to detect repeated states can turn a
linear problem into an exponential one!

CS 3243 - Uninformed Search

55

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE- FRONT(fringe)
if GoAL-TEsT[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node| is not in closed then
add STATE[node| to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

CS 3243 - Uninformed Search 56

q Bidirectional Search

I
Simultaneously search both forward (from the
initial state) and backward (from the goal state)

Stop when the two searches meet.
Intuition = 2 * O(b%2) is smaller than O(b?)

CS 3243 - Uninformed Search

57

q Bidirectional Search Discussion

I
Numerical Example (b=10, | = 5)
Bi-directional search finds solution at d=3 for both

forward and backward search. Assuming BFS in each
half 2222 nodes are expanded.

Implementation issues:

Operators are reversible, e.g., Pred(Succ(n)) = Pred(Succ(n))

There may be many possible goal states.
Construct a goal state containing the superset of all goal states.

Check if a node appears in the “other” search tree.
Using different search strategies for each half.

CS 3243 - Uninformed Search 58

q Summary

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

CS 3243 - Uninformed Search 59

