
Logical Agents

Chapter 7

(Please turn your mobile devices
to silent. Thanks!)

CS 3243 - Logical Agents 1

Last Time

  Constraint Satisfaction Problems (CSPs)
  Can be viewed as DFS = backtracking search

  Assign 1 value to 1 variable at every search tree level

  Specific heuristics to help
  MRV / Degree / LCV
  Forward Checking
  Arc & Path & K Consistency

CS 3243 - Logical Agents 2

CS 3243 - Logical Agents 3

Outline

Knowledge-based agents

  Logic: models and entailment
  A simple logic: propositional (Boolean) logic
  Inference rules and theorem proving

  forward chaining
  backward chaining
  resolution

CS 3243 - Logical Agents 4

Knowledge based agents

  Knowledge base (KB) = set of sentences in a formal language

  Declarative (as opposed to procedural) approach to build an agent:
  Tell it what it needs to know

  Then it can Ask itself what to do - answers should follow from the KB

  Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

  Or at the implementation level
  i.e., data structures in KB and algorithms that manipulate them

CS 3243 - Logical Agents 5

A simple knowledge-based agent

  The agent must be able to:
  Represent states, actions, etc.
  Incorporate new percepts
  Update internal representations of the world
  Deduce hidden properties of the world
  Deduce appropriate actions

CS 3243 - Logical Agents 6

Wumpus World PEAS description

  Performance measure
  gold +1000, death -1000
  -1 per step, -10 for using the arrow

  Environment
  Squares adjacent to wumpus are smelly
  Squares adjacent to pit are breezy
  Glitter iff gold is in the same square
  Shooting kills wumpus if you are facing it
  Shooting uses up the only arrow
  Grabbing picks up gold if in same square
  Releasing drops the gold in same square

  Sensors: Stench, Breeze, Glitter, Bump, Scream
  Actuators: Turn Left, Turn Right, Forward, Grab, Release, Shoot

CS 3243 - Logical Agents 7

Exploring a wumpus world

CS 3243 - Logical Agents 8

Exploring a wumpus world

CS 3243 - Logical Agents 9

Exploring a wumpus world

CS 3243 - Logical Agents 10

Exploring a wumpus world

CS 3243 - Logical Agents 11

Exploring a wumpus world

CS 3243 - Logical Agents 12

Logics

  Logics are formal languages for representing information
such that conclusions can be drawn

  Syntax defines the sentences in the language
  Semantics define the "meaning" of sentences;

  i.e., define truth of a sentence in a world

  E.g., the language of arithmetic
  x+2 ≥ y is a sentence; x2+y > {} is not a sentence
  x+2 ≥ y is true iff the number x+2 is no less than the number y
  x+2 ≥ y is true in a world where x = 7, y = 1
  x+2 ≥ y is false in a world where x = 0, y = 6

CS 3243 - Logical Agents 13

Entailment

  Entailment means that one thing follows from
another:

KB ╞ α

  Knowledge base KB entails sentence α if and only
if α is true in all worlds where KB is true

  E.g., a KB containing “Today is sunny” and “Yesterday
was rainy” entails “Either today is sunny or yesterday
was rainy”

  E.g., x+y = 4 entails 4 = x+y
  Entailment is a relationship between sentences (i.e.,

syntax) that is based on semantics

CS 3243 - Logical Agents 14

Models

  Logicians often think in terms of models (“possible worlds”), which are
formally structured worlds with respect to which truth can be evaluated

  We say m is a model of a sentence α if α is true in m

  M(α) is the set of all models of α

  Then KB ╞ α iff M(KB) ⊆ M(α)

  E.g. KB = Today is sunny and yesterday
was rainy

α = Today is sunny

CS 3243 - Logical Agents 15

Entailment in the wumpus world

Situation after detecting
nothing in [1,1], moving
right, breeze in [2,1]

Consider possible models for
KB assuming only pits

3 Boolean choices ⇒ 8 possible
models

CS 3243 - Logical Agents 16

Wumpus world models

CS 3243 - Logical Agents 17

Wumpus models

  KB = wumpus-world rules + observations

CS 3243 - Logical Agents 18

Wumpus models

  KB = wumpus-world rules + observations
  α1 = "[1,2] is safe", KB ╞ α1, proved by

model checking

CS 3243 - Logical Agents 19

Wumpus models

  KB = wumpus-world rules + observations
  α2 = "[2,2] is safe", KB ╞ α2

CS 3243 - Logical Agents 20

Inference

  Define: KB ├i α = sentence α can be derived from KB by
procedure i
  Soundness: i is sound if whenever KB ├i α, it is also true that KB╞
α

  Completeness: i is complete if whenever KB╞ α, it is also true
that KB ├i α

  An inference procedure will answer any question whose
answer follows from what is known by the KB.

“Entailment is like the needle (α) being in the haystack (KB) and
inference is like finding it”

We want to know: Is a set of inference operators
complete and sound?

Do the operators make
conclusions that aren’t
always true?

CS 3243 - Logical Agents (part 2) 21

Completeness

Completeness: i is
complete if whenever
KB╞α, it is also true
that KB ├i α

  An incomplete
inference algorithm
cannot reach all
possible conclusions
  Equivalent to

completeness in search
(chapter 3)

All possible clauses entailed by
the KB

Clauses inferable
from KB using IF

Original
KB

CS 3243 - Logical Agents 22

Propositional logic: Syntax

  Propositional logic is the simplest logic – illustrates basic
ideas

  The proposition symbols P1, P2 etc are sentences
  If S is a sentence, ¬S is a sentence (negation)
  If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
  If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)
  If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication)
  If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)

CS 3243 - Logical Agents 23

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. P1,2 P2,2 P3,1
 false true false

With these symbols, 8 possible models can be enumerated automatically.
Rules for evaluating truth with respect to a model m:

 ¬S is true iff S is false
 S1 ∧ S2 is true iff S1 is true and S2 is true
 S1 ∨ S2 is true iff S1is true or S2 is true
 S1 ⇒ S2 is true iff S1 is false or S2 is true
 i.e., is false iff S1 is true and S2 is false
 S1 ⇔ S2 is true iff S1⇒S2 is true and S2⇒S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) = true ∧ true = true

CS 3243 - Logical Agents 24

Truth tables for connectives
Blank spaces to fill in on this slide

CS 3243 - Logical Agents 25

Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j].
Let Bi,j be true if there is a breeze in [i, j].

¬P1,1

¬B1,1

B2,1

  How do we translate "Pits cause breezes in
adjacent squares”?
B1,1 ⇔ (P1,2 ∨ P2,1)
B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

Blank spaces to fill in on this slide

CS 3243 - Logical Agents 26

Truth tables for inference

R1 = ¬P1,1
R4 =¬B1,1
R5 = B2,1

α1 = ¬P1,2? (Is 1,2 safe from pits)?

CS 3243 - Logical Agents 27

Inference by enumeration

  Depth-first enumeration of all models is sound and complete

  For n symbols, time complexity is O(2n), space complexity is O(n)

CS 3243 - Logical Agents 28

Logical equivalence

  Two sentences are logically equivalent iff true in same
models: α ≡ ß iff α╞ β and β╞ α

CS 3243 - Logical Agents 29

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB ∧¬α) is unsatisfiable

CS 3243 - Logical Agents 30

Proof methods

  Proof methods divide into (roughly) two kinds:

  Application of inference rules
  Legitimate (sound) generation of new sentences from old
  Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm
  Typically require transformation of sentences into a normal form

  Model checking
  truth table enumeration (always exponential in n)
  improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL)
  heuristic search in model space (sound but incomplete)

 e.g., min-conflicts like hill-climbing algorithms

CS 3243 - Logical Agents (part 2) 31

Applying inference rules

Equivalent to a search
problem

  KB state = node
  Inference rule

application = edge

KB:
B, A ∧ D ∧ C,

B ⇒ F

KB:
B, A ∧ D ∧ C,

B ⇒ F, A

KB:
B, A ∧ D ∧ C,

B ⇒ F, F

CS 3243 - Logical Agents 32

Resolution

Conjunctive Normal Form (CNF)
 conjunction of “disjunctions of literals” (clauses)

 E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

  Resolution inference rule (for CNF):
li ∨… ∨ lk , m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

 where li and mj are complementary literals.
 E.g., P1,3 ∨ P2,2 , ¬P2,2

 P1,3

  Resolution is sound and complete
for propositional logic

CS 3243 - Logical Agents 33

Soundness of Resolution

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ li
 ¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

¬(li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

where li and mj are complementary literals.

If li true, then mj is false, hence (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)
must be true.

If mj true, then li is false, hence (li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk)

Same truth value

CS 3243 - Logical Agents 34

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∧ over ∨) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

CS 3243 - Logical Agents 35

Resolution algorithm

  Proof by contradiction, i.e., show KB∧¬α unsatisfiable

CS 3243 - Logical Agents 36

Resolution example

  KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1

  α = ¬P1,2 (negate the premise for proof by refutation)

¬B1,1 ∨ P1,2 ∨ P2,1 ¬P1,2 ∨ B1,1 ¬P2,1 ∨ B1,1 ¬ B1,1 P1,2 .

P1,2 ∨ P2,1 ∨ ¬P1,2

¬B1,1 ∨ B1,1 ∨ P2,1

¬B1,1 ∨ P1,2 ∨ B1,1

¬P2,1 ∨ P1,2 ∨ P2,1

¬P2,1 ¬P1,2

To think about: what does an empty proposition mean?

CS 3243 - Logical Agents (part 2) 37

The power of false

  Given: (P) ∧ (¬P)
  Prove: Z

  Can we prove ¬Z, using the givens above?

¬ P Given
P Given
¬  Z Given
 Unsatisfiable

CS 3243 - Logical Agents 38

Forward and backward chaining

  Horn Form (restricted)
 KB = conjunction of Horn clauses

  Horn clause =
  proposition symbol; or
  (conjunction of symbols) ⇒ symbol

  E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)
  Modus Ponens (for Horn Form): complete for Horn KBs

α1, … ,αn, α1 ∧ … ∧ αn ⇒ β

β

  Can be used with forward chaining or backward chaining.
  These algorithms are very natural and run in linear time

CS 3243 - Logical Agents 39

Forward chaining

  Idea: fire any rule whose premises are satisfied in the KB,
  add its conclusion to the KB, until query is found

CS 3243 - Logical Agents 40

Forward chaining algorithm

  Forward chaining is sound and complete for Horn
KB

CS 3243 - Logical Agents 41

Forward chaining example

CS 3243 - Logical Agents 42

Forward chaining example

CS 3243 - Logical Agents 43

Forward chaining example

CS 3243 - Logical Agents 44

Forward chaining example

CS 3243 - Logical Agents 45

Forward chaining example

CS 3243 - Logical Agents 46

Forward chaining example

CS 3243 - Logical Agents 47

Forward chaining example

CS 3243 - Logical Agents 48

Forward chaining example

CS 3243 - Logical Agents 49

Proof of completeness

  FC derives every atomic sentence that is entailed
by KB

1.  FC reaches a fixed point where no new atomic
sentences are derived

2.  Consider the final state as a model m, assigning
true/false to symbols

3.  Every clause in the original KB is true in m
 a1 ∧ … ∧ ak ⇒ b

4.  Hence m is a model of KB
5.  If KB╞ q, q is true in every model of KB, including m

CS 3243 - Logical Agents 50

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1.  has already been proved true, or
2.  has already failed

CS 3243 - Logical Agents 51

Backward chaining example

CS 3243 - Logical Agents 52

Backward chaining example

CS 3243 - Logical Agents 53

Backward chaining example

CS 3243 - Logical Agents 54

Backward chaining example

CS 3243 - Logical Agents 55

Backward chaining example

CS 3243 - Logical Agents 56

Backward chaining example

CS 3243 - Logical Agents 57

Backward chaining example

CS 3243 - Logical Agents 58

Backward chaining example

CS 3243 - Logical Agents 59

Backward chaining example

CS 3243 - Logical Agents 60

Backward chaining example

CS 3243 - Logical Agents 61

Forward vs. backward chaining

  FC is data-driven, automatic, unconscious processing,
  e.g., object recognition, routine decisions

  May do lots of work that is irrelevant to the goal

  BC is goal-driven, appropriate for problem-solving,
  e.g., Where are my keys? How do I get into a PhD program?

  Complexity of BC can be much less than linear in size of KB

CS 3243 - Logical Agents 62

Efficient propositional inference

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms
  DPLL algorithm (Davis, Putnam, Logemann, Loveland)

  Incomplete local search algorithms
  WalkSAT algorithm

CS 3243 - Logical Agents 63

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:
1.  Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.

2.  Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure, C is

impure.
Make a pure symbol literal true.

3.  Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

What are correspondences between
DPLL and in general CSPs?

Least constraining value

Most constrained value

Blank spaces to fill in on this slide

CS 3243 - Logical Agents 64

The DPLL algorithm

CS 3243 - Logical Agents 65

The WalkSAT algorithm

  Incomplete, local search algorithm
  Evaluation function: The min-conflict heuristic of minimizing

the number of unsatisfied clauses
  Balance between greediness and randomness

CS 3243 - Logical Agents 66

The WalkSAT algorithm

Let’s ask ourselves: Why is it incomplete?

CS 3243 - Logical Agents 67

Hard satisfiability problems

  Consider random 3-CNF sentences. e.g.,
 (¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B
∨ E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses
n = number of symbols

  Hard problems seem to cluster near m/n = 4.3
(critical point)

CS 3243 - Logical Agents 68

Hard satisfiability problems

CS 3243 - Logical Agents 69

Hard satisfiability problems

  Median runtime for 100 satisfiable random 3-CNF
sentences, n = 50

CS 3243 - Logical Agents 70

Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

¬P1,1
¬W1,1
Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)
W1,1 ∨ W1,2 ∨ … ∨ W4,4
¬W1,1 ∨ ¬W1,2
¬W1,1 ∨ ¬W1,3
…

⇒ 64 distinct proposition symbols, 155 sentences

Expressing that there is
exactly one wumpus

Have to propositionalize
each of these x,y rules

CS 3243 - Logical Agents 71

  KB contains "physics" sentences for every single square

  For every time t and every location [x,y],
Lx,y ∧ FacingRightt ∧ Forwardt ⇒ Lx+1,y

  Rapid proliferation of clauses

Expressiveness limitation of propositional logic

t t

CS 3243 - Logical Agents 72

Summary

  Logical agents apply inference to a knowledge base to derive new
information and make decisions

  Basic concepts of logic:
  syntax: formal structure of sentences
  semantics: truth of sentences w.r.t. models
  entailment: necessary truth of one sentence given another
  inference: deriving sentences from other sentences
  soundness: derivations produce only entailed sentences
  completeness: derivations can produce all entailed sentences

  The wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

  Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

  Propositional logic lacks expressive power

