
Chapter 8

(Please turn your mobile
devices to silent. Thanks!)

CS 3243 - FOL and Prolog 1

First-Order Logic

Last Time
  Logical agents apply inference to a knowledge base to derive

new information and make decisions
  Entailment vs. Inference

  Two ways to prove a query
1.  Application of inference rules

2.  Model checking

  Soundness and Completeness as conditions for inference

  Resolution is complete for propositional logic in CNF
  Forward, backward chaining are linear-time,

complete for Horn clauses

CS 3243 - FOL and Prolog 2

Outline
  Why FOL?
  Syntax and semantics of FOL
  Using FOL
  Wumpus world in FOL
  Knowledge engineering in FOL

CS 3243 - FOL and Prolog 3

Pros and cons of propositional logic
 Propositional logic is declarative
 Propositional logic allows partial/disjunctive/negated information

  (unlike most data structures and databases)
 Propositional logic is compositional:

  meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2
 Meaning in propositional logic is context-independent

  (unlike natural language, where meaning depends on context)

 Propositional logic has very limited expressive power
  (unlike natural language)
  E.g., cannot say "pits cause breezes in adjacent squares“

  except by writing one sentence for each square

CS 3243 - FOL and Prolog 4

First-order logic
  Whereas propositional logic assumes the

world contains facts,
  first-order logic (like natural language)

assumes the world contains
  Objects: people, houses, numbers, colors,

baseball games, wars, …
  Relations: red, round, prime, brother of, bigger

than, part of, comes between, …
  Functions: father of, best friend, one more than,

plus, …

CS 3243 - FOL and Prolog 5

One to
one

mapping

Syntax of FOL: Basic elements
  Constants KingJohn, 2, NUS,...
  Predicates Brother, >,...
  Functions Sqrt, LeftLegOf,...
  Variables x, y, a, b,...
  Connectives ¬, ⇒, ∧, ∨, ⇔
  Equality =
  Quantifiers ∀, ∃

CS 3243 - FOL and Prolog 6

Atomic sentences
Atomic sentence = predicate (term1,...,termn)

or term1 = term2

Term = function (term1,...,termn)
or constant or variable

  E.g., Brother(KingJohn,RichardTheLionheart) >
(Length(LeftLegOf(Richard)),
Length(LeftLegOf(KingJohn)))

CS 3243 - FOL and Prolog 7

Functions
can be

viewed as
complex

names for
constants

Complex sentences
  Made from atomic sentences using

connectives
¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2,

e.g.,
 Sibling(KingJohn,Richard) ⇒ Sibling
(Richard,KingJohn)

 >(1,2) ∨ ≤ (1,2)
 >(1,2) ∧ ¬ >(1,2)

CS 3243 - FOL and Prolog 8

Truth in first-order logic
  Sentences are true with respect to a model and an

interpretation

  Model contains objects (domain elements) and relations
among them

  Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

  An atomic sentence predicate(term1,...,termn) is true
 iff the objects referred to by term1,...,termn
 are in the relation referred to by predicate

CS 3243 - FOL and Prolog 9

Model Example

CS 3243 - FOL and Prolog 10

Universal quantification
  ∀<variables> <sentence>

Everyone at NUS is smart:
∀x At(x,NUS) ⇒ Smart(x)

  ∀x P is true in a model m iff P is true with x being
each possible object in the model

  Roughly speaking, equivalent to the conjunction of
instantiations of P

 At(KingJohn,NUS) ⇒ Smart(KingJohn)
 ∧ At(Richard,NUS) ⇒ Smart(Richard)
 ∧ At(NUS,NUS) ⇒ Smart(NUS)
 ∧ ...

CS 3243 - FOL and Prolog 11

A common mistake to avoid
  Typically, ⇒ is the main connective with ∀

  Common mistake: using ∧ as the main
connective with ∀:
∀x At(x,NUS) ∧ Smart(x)
means “Everyone is at NUS and everyone is smart”

CS 3243 - FOL and Prolog 12

Blank spaces to fill in on this slide

Existential quantification
  ∃<variables> <sentence>

Someone at NUS is smart:
∃x At(x,NUS) ∧ Smart(x)

  ∃x P is true in a model m iff P is true with x being
some possible object in the model

  Roughly speaking, equivalent to the disjunction of
instantiations of P

 At(KingJohn,NUS) ∧ Smart(KingJohn)
∨ At(Richard,NUS) ∧ Smart(Richard)
∨ At(NUS,NUS) ∧ Smart(NUS)
∨ ...

CS 3243 - FOL and Prolog 13

Another common mistake
  Typically, ∧ is the main connective with ∃

  Common mistake: using ⇒ as the main
connective with ∃:

∃x At(x,NUS) ⇒ Smart(x)
 is true if there is anyone who is not at NUS!

CS 3243 - FOL and Prolog 14

Blank spaces to fill in on this slide

Properties of quantifiers
  ∀x ∀y is the same as ∀y ∀x
  ∃x ∃y is the same as ∃y ∃x

  ∃x ∀y is not the same as ∀y ∃x

 ∃x ∀y Loves(x,y)
  “There is a person who loves everyone in the world”
 ∀y ∃x Loves(x,y)
  “Everyone in the world is loved by at least one person”

  Quantifier duality: each can be expressed using the other
  ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
  ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

CS 3243 - FOL and Prolog 15

Equality
  term1 = term2 is true under a given

interpretation if and only if term1 and term2
refer to the same object

  E.g., definition of Sibling in terms of Parent:

∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧
Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧
Parent(f,y)]

CS 3243 - FOL and Prolog 16

Using FOL
In the kinship domain:

  Brothers are siblings
∀x,y Brother(x,y) ⇒ Sibling(x,y)

  One's mother is one's female parent
∀m,c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))

  “Sibling” is symmetric
∀x,y Sibling(x,y) ⇔ Sibling(y,x)

CS 3243 - FOL and Prolog 17

Using FOL
The set domain:

  ∀s Set(s) ⇔ (s = {}) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2})
  ¬∃x,s {x|s} = {}
  ∀x,s x ∈ s ⇔ s = {x|s}
  ∀x,s x ∈ s ⇔ [∃y,s2} (s = {y|s2} ∧ (x = y ∨ x ∈ s2))]
  ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)
  ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1)
  ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2)
  ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2)

CS 3243 - FOL and Prolog 18

Interacting with FOL KBs
  Suppose a wumpus-world agent is using an FOL KB and perceives a

smell and a breeze (but no glitter) at t=5:

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB,∃a BestAction(a,5))

 i.e., does the KB entail some best action at t=5?

  Answer: Yes, {a/Shoot} ← substitution (binding list)

  Given a sentence S and a substitution σ,
  Sσ denotes the result of plugging σ into S; e.g.,

S = Smarter(x,y)
σ = {x/Hillary,y/Bill}
Sσ = Smarter(Hillary,Bill)

  Ask(KB,S) returns some/all σ such that KB╞ σ

CS 3243 - FOL and Prolog 19

KB for the wumpus world
  Perception

  ∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)

  Reflex
  ∀t Glitter(t) ⇒ BestAction(Grab,t)

CS 3243 - FOL and Prolog 20

Deducing hidden properties
  ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔

 [a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}

Properties of squares:
  ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s)

Squares are breezy near a pit:
  Diagnostic rule - infer cause from effect

∀s Breezy(s) ⇒ ∃r Adjacent(r,s) ∧ Pit(r)
  Causal rule - infer effect from cause

∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)]

CS 3243 - FOL and Prolog 21

Knowledge engineering in FOL
1.  Identify the task
2.  Assemble the relevant knowledge
3.  Decide on a vocabulary of predicates, functions,

and constants
4.  Encode general knowledge about the domain
5.  Encode a description of the specific problem

instance
6.  Pose queries to the inference procedure and get

answers
7.  Debug the knowledge base

CS 3243 - FOL and Prolog 22

The electronic circuits domain
One-bit full adder

CS 3243 - FOL and Prolog 23

The electronic circuits domain
1.  Identify the task

  Does the circuit actually add properly? (circuit verification)

2.  Assemble the relevant knowledge
  Composed of wires and gates; Types of gates (AND, OR,

XOR, NOT)
  Irrelevant: size, shape, color, cost of gates

3.  Decide on a vocabulary
  Alternatives:

Type(X1) = XOR
Type(X1, XOR)
XOR(X1)

CS 3243 - FOL and Prolog 24

The electronic circuits domain
4.  Encode general knowledge of the domain

  ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)
  ∀t Signal(t) = 1 ∨ Signal(t) = 0
  1 ≠ 0
  ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)
  ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In

(n,g)) = 1
  ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In

(n,g)) = 0
  ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In

(1,g)) ≠ Signal(In(2,g))
  ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

CS 3243 - FOL and Prolog 25

The electronic circuits domain
5.  Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

CS 3243 - FOL and Prolog 26

The electronic circuits domain
6.  Pose queries to the inference procedure

What are the possible sets of values of all the
terminals for the adder circuit?

 ∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧
Signal(In(3,C1)) = i3 ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out
(2,C1)) = o2

7.  Debug the knowledge base
May have omitted assertions like 1 ≠ 0

CS 3243 - FOL and Prolog 27

Summary
  First-order logic:

  objects and relations are semantic
primitives

  syntax: constants, functions, predicates,
equality, quantifiers

  Increased expressive power: sufficient
to define wumpus world

CS 3243 - FOL and Prolog 28

A crash course in Prolog

Slides edited from William Clocksin’s
versions at Cambridge Univ.

CS 3243 - FOL and Prolog 29

PROgramming in LOGic

What is Logic Programming?

  A type of programming consisting of facts and relationships
from which the programming language can draw a conclusion.

–  In imperative programming languages, we tell the computer what
to do by programming the procedure by which program states and
variables are modified.

–  In contrast, in logical programming, we don’t tell the computer
exactly what it should do (i.e., how to derive a conclusion). User-
provided facts and relationships allow it to derive answers via
logical inference.

  Prolog is the most widely used logic programming
language.

CS 3243 - FOL and Prolog 30

Prolog Features

  Prolog uses logical variables. These are not the
same as variables in other languages. Programmers
can use them as ‘holes’ in data structures that are
gradually filled in as computation proceeds.

  Unification is a built-in term-manipulation method
that passes parameters, returns results, selects and
constructs data structures.

  Basic control flow model is backtracking.
  Program clauses and data have the same form.

–  A Prolog program can also be seen as a relational database
containing rules as well as facts.

CS 3243 - FOL and Prolog 31

Example: Concatenate lists a and b

CS 3243 - FOL and Prolog 32

list procedure cat(list a, list b)
{
 list t = list u = copylist(a);
 while (t.tail != nil) t = t.tail;
 t.tail = b;
 return u;
}

In an imperative language

In a declarative language

In a functional language cat(a,b) ≡
 if b = nil then a
else cons(head(a), cat(tail(a),b))

cat([], Z, Z).
cat([H|T], L, [H|Z]) :- cat(T, L, Z).

Outline

  General Syntax
  Terms
  Operators
  Rules
  Queries

CS 3243 - FOL and Prolog 33

Syntax

  .pl files contain lists of clauses
  Clauses can be either facts or rules

male(bob).
male(harry).
child(bob,harry).
son(X,Y):-
 male(X),child(X,Y).

CS 3243 - FOL and Prolog 34

Predicate, arity 1 (male/1)
Terminates a clause

Indicates a rule

“and”

Argument to predicate

No space between functor and argument list

Complete Syntax of Terms

CS 3243 - FOL and Prolog 35

Term

Constant Variable Compound Term

Atom Number
alpha17
gross_pay
john_smith
dyspepsia
+
=/=
’12Q&A’

0
1
57
1.618
2.04e-27
-13.6

likes(john, mary)
book(dickens, Z, cricket)
f(x)
[1, 3, g(a), 7, 9]
-(+(15, 17), t)
15 + 17 - t

X
Gross_pay
Diagnosis
_257
_

Names an individual Stands for an individual
unable to be named when
 program is written

Names an individual
that has parts

N.B. : case of Variables and
terms and constants
switched from FOL

A list is made of a terms,
separated by commas and

enclosed by brackets.

Compound Terms

CS 3243 - FOL and Prolog 36

parents(spot, fido, rover)
The parents of Spot are Fido and Rover.

Functor (an atom) of arity 3. components (any terms)

It is possible to depict the term as a tree:
parents

rover fido spot

Examples of operator properties
Prolog has shortcuts in notation for certain operators
(especially arithmetic ones)

Position Operator Syntax Normal Syntax
Prefix: -2 -(2)
Infix: 5+17 +(17,5)

Associativity: left, right, none.
 X+Y+Z is parsed as (X+Y)+Z
because addition is left-associative.

Precedence: an integer.
X+Y*Z is parsed as X+(Y*Z)
because multiplication has higher precedence.

CS 3243 - FOL and Prolog 37

These are all the
same as the
normal rules of
arithmetic.

Rules

  Rules combine facts to increase knowledge
of the system

son(X,Y):-
 male(X),child(X,Y).

  X is a son of Y if X is male and
X is a child of Y

CS 3243 - FOL and Prolog 38

Interpretation of Rules

Rules can be given a declarative reading or a
procedural reading.

CS 3243 - FOL and Prolog 39

H :- G1, G2, …, Gn.
“That H is provable follows
from goals G1, G2, …, Gn being
provable.”
“To execute procedure H, the
procedures called by goals G1,
G2, …, Gn are executed first.”

Declarative reading:

Procedural reading:

Form of rule:

Queries

  Prolog is interactive; you load a KB and then ask
queries

  Composed at the ?- prompt
  Returns values of bound variables and yes or no

?- son(bob, harry).
yes
?- king(bob, france).
no

CS 3243 - FOL and Prolog 40

Another example

CS 3243 - FOL and Prolog 41

likes(george,kate).
likes(george,susie).
likes(george,wine).

?- likes(george,X)
X = kate
;
X = susie
;
X = wine
;
no

Answer: kate or susie or wine or false

Quantifiers

CS 3243 - FOL and Prolog 42

When a variable appears in the specification of a
database,

the variable is . Example:

likes(susie,Y)

For the quantifier one may do two things:

a.  Enter the value directly into the database
 likes(george,Z) becomes likes(george,wine)
b. Query the interpreter
 ?- likes(george,Z) returns a value for Z if one exists

existential

One interpretation:
‘Susie likes everyone’

universally quantified

Points to consider
  Variables are bound by Prolog, not by the programmer

–  You can’t assign a value to a variable.

  Successive user prompts ; cause the interpreter to return all
terms that can be substituted for X.

–  They are returned in the order found.
–  Order is important

  PROLOG adopts the closed-world assumption:
–  All knowledge of the world is present in the database.
–  If a term is not in the database assume is false.
–  Prolog’s ‘yes’ = I can prove it, ‘no’ = I can’t prove it.

CS 3243 - FOL and Prolog 43

‘;’ means Or
‘,’ means And

Two things to think about:
When would the closed-world assumption lead to false inferences?
When would the different ordering of solutions cause problems?

Queries

  Can bind answers to questions to variables
  Who is bob the son of? (X=harry)
?- son(bob, X).

  Who is male? (X=bob, harry)
?- male(X).

  Is bob the son of someone? (yes)
?- son(bob, _).

–  No variables bound in this case!

CS 3243 - FOL and Prolog 44

_ = Anonymous
variable, don’t care
what it’s bound to.

Blank spaces to fill in on this slide

Lists
  The first element of a list can be separated from the tail
using operator |

Example:

Match the list [tom,dick,harry,fred] to

[X|Y] then X = tom and Y = [dick,harry,fred]
[X,Y|Z] then X = tom, Y = dick, and Z = [harry,fred]
[V,W,X,Y,Z|U] will not match
[tom,X|[harry,fred]] gives X = dick

CS 3243 - FOL and Prolog 45

Example: List Membership
  We want to write a function member that works as follows:

?- member(a,[a,b,c,d,e])
yes
?- member(a,[1,2,3,4])
no
?- member(X,[a,b,c])
X = a
;
X = b
;
X = c
;
no

CS 3243 - FOL and Prolog 46

Can you do it?

Function Membership Solution

Define two predicates:

  member(X,[X|T]).
  member(X,[Y|T]) :- member(X,T).

A more elegant definition uses anonymous variables:

  member(X,[X,_]).
  member(X,[_|T]) :- member(X,T).

Again, the symbol _ indicates that the contents of that
variable is unimportant.

CS 3243 - FOL and Prolog 47

Notes on running Prolog

You will often want to load a KB on invocation of Prolog
  Use “consult(‘mykb.pl’).” at the “?-” prompt.
  Or add it on the command line as a standard input

“pl < mykb.pl”

If you want to modify facts once Prolog is invoked:
  Use “assert(p).”
  Or “retract(p).” to remove a fact

CS 3243 - FOL and Prolog 48

Prolog Summary

  A Prolog program is a set of specifications in FOL.
The specification is known as the database of the
system.

  Prolog is an interactive language (the user enters
queries in response to a prompt).

  PROLOG adopts the closed-world assumption

  How does Prolog find the answer(s)? We return to
this next week in Inference in FOL

CS 3243 - FOL and Prolog 49

