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ABSTRACT 
Scholarly digital libraries increasingly provide analytics to information within documents 
themselves.  This includes information about the logical document structure of use to 
downstream components, such as search, navigation and summarization. We describe SectLabel, 
a module that further develops existing software to detect the logical structure of a document 
from existing PDF files, using the formalism of conditional random fields.  While previous work 
has assumed access only to the raw text representation of the document, a key aspect of our work 
is to integrate the use of a richer representation of the document that includes features from 
optical character recognition (OCR), such as font size and text position.  Our experiments reveal 
that using such rich features improves logical structure detection by a significant 9 F1 points, 
over a suitable baseline, motivating the use of richer document representations in other digital 
library applications. 
 
Keywords: ParsCit, Metadata Extraction, Logical Structure Discovery, Conditional Random 
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INTRODUCTION  
The pace of scholarly exploration, publication and dissemination grows faster every year, 
reaching unprecedented levels. To support this level of innovation, scholars increasingly rely on 
open-access mechanisms and digital libraries, portals and aggregators to disseminate their 
findings (Brown, 2009).  While there is controversy over which of the trends of search engines, 
open access, preprint and self-archiving have most influenced the growth of scientific discovery, 
the consensus is that these batteries of methods have bettered the dissemination of scholarly 
materials.  Now, an arguable bottleneck in the scientific process is in the processing, 
sensemaking and utilization of scholarly discoveries for the next iteration.  Scholars are still 
largely confined to printing, reading and annotating the papers of their interest offline, without 
the help or guidance of a digital library to organize and collect their thoughts. 
 
 We believe a key component of a strategy to address this gap is in building applications that 
take advantage of the logical structure and semantic information within the documents 
themselves. Even within the limited domain of computer science, searching for competing 
methodologies to solve a problem, analyzing empirical results in tables, finding example figures 
to use in a presentation, or determining which datasets have been used to evaluate an approach, 
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are all comparative tasks that researchers do on a regular basis. Unfortunately, currently these 
can only be done manually, without aid from any computing infrastructure. 
 
 To support such analytics is not trivial and requires groundwork.  One important subtask that 
is common to all of the above problems is to obtain the logical structure of the scholarly 
document.  We paraphrase Mao, Rosenfeld, & Kanungo’s (2003) earlier definition and define a 
document's logical structure as “a hierarchy of logical components, such as (for example) titles, 
authors, affiliations, abstracts, sections, etc.”  Note that the logical structure we seek is more 
comprehensive than what most other published systems identify.  Namely, we identify not only 
metadata such as title, authors, abstract and parsing references, but also the logical structure of 
the internals of the document – sections, subsections, figures, tables, equations, footnotes and 
captions. 
 
 In this paper, we present SectLabel, an open source system to solve two related subtasks in 
logical structure discovery: 1) logical structure classification, and 2) generic section 
classification.  In the first task, we consider a scholarly document as an ordered collection of text 
lines, and need to label each text line in a document with a semantic category, representing its 
logical role. In the second task, we take the headers of each section of text in a paper as evidence 
to deduce a generic logical purpose of the section. 
 
 We accomplish our implementation by extending an existing, freely available platform for 
reference string parsing, ParsCiti.  ParsCit uses the machine learning methodology of conditional 
random fields (CRF), a model that blends sequential labeling techniques with pointwise entropy-
based classification.  We extend the use of CRFs in ParsCit to also provide logical structure 
discovery through the addition of the SectLabel module. 
 
 A further reality of document processing is that inputs come in many forms of markup: from 
richly annotated XML representations of OCR output to noisy, raw text dumps provided by copy 
and paste operations. Robustness is thus highly desirable, where the tool does not fail but where 
output quality may gracefully degrade as the input quality becomes poorer. 
 
 We summarize our contributions as follows: 
 

1. We present the first logical structure discovery tool that expressly caters for scientific 
documents.  Unlike previous scholarly document processing systems, it attempts logical 
structure discovery over the span of the entire paper at a fine-grained (per line) level. 

2. We infer the generic logical purpose of each major section of text, mapping specific 
sections names to generic ones (i.e. “5. Text Features” → Methodology).  This promotes   
comparative viewing of sections with identical purpose across articles. 

3. Our implemented system handles both rich formatted input from an optical character 
recognition system, as well as from plain text dumps of scholarly articles.  We evaluate 
both modes of input and conclusively show that rich input enhances classification 
performance, especially for certain logical structure classes. 

4. We have created gold-standard training data for these tasks and made this dataset public 
at the original ParsCit site to encourage others to perform comparative evaluation. 

 



 
 We first discuss related work with an emphasis on work originating in the document analysis 
and digital library communities.  Then, we formalize the two tasks and discuss the learning 
methodology of conditional random fields in more details.  The section on System Architecture 
gives an overview of our system architecture; the subsequent discussion on Classification 
Categories explains different classification categories used. We discuss plain text features first, 
followed by a discussion of the rich input features that we distill in the case of OCR input.  We 
quantify our system's performance in experiments, discuss our system's relative merit and discuss 
current and future work in final portions of the paper. 

RELATED WORK 
Logical structure analysis has a long research history that has been surveyed in multiple prior 
works (see Mao et al., (2003) as an example).  To keep the discussion relevant to our work, we 
limit our discussion briefly to two specific aspects: 1) the use of the conditional random field 
(CRF) specifically in digital library area, and 2) logical structure analysis where the main focus 
has been the use of OCR information. 
 

The Use of Conditional Random Fields in Digital Libraries 
We draw attention to a class of problems, called the sequence labeling task, which attempts to 
assign labels to a sequence of observations. Our tasks of logical structure analysis and generic 
section labeling can be viewed as instances of such problems.  Such labeling problems are 
common and arise in many fields, including bio-informatics, computational linguistics, and 
speech recognition (Durbin et al., 1998;  Manning & Schütze, 1999; Rabiner & Juang, 1993).  
There have been many learning models designed to tackle the sequence labeling task, of which 
the Conditional Random Field (Lafferty, McCallum, & Pereira, 2001) is a recent and effective 
formalism. 
 

In the context of digital libraries, CRFs have already been widely used in numerous 
applications, most notably metadata extraction tasks, being described as “the most difficult task 
performed by an automated digital library system for research papers” (Councill et al., 2006).  
The choice of such a learning framework is justified in Peng and McCallum’s (2004) work, 
which demonstrated the performance gains when substituting CRF for Hidden Markov Models  
(Seymore, McCallum and Rosenfeld, 1999; Takasu, 2003), or Support Vector Machines (Han et 
al., 2003). Examples of systems using CRFs include CiteSeerX (Councill et al., 2006) – a search 
engine for scientific literature, ArnetMiner (Tang et al., 2008) – an academic social network 
search system, and ParsCit (Councill, Giles and Kan, 2008) – a reference string parsing software 
package, which is also incorporated in CiteSeerX. 
 

Logical Structure Analysis 
Of all the surveyed works on logical structural analysis, Kim, Le and Thomas’ (2001) work is 
most related to ours in utilizing OCR information for analysis. They first categorize a paper into 
a layout template, and then apply OCR features such as the bounding box, font size/attributes 
together with word list tables to perform classification on biomedical journals. Similarly, Klink, 



Dengel and Kieninger (2000) use geometric information, text patterns and font information given 
by OCR output to classify business letters and journal papers. These works, however, rely on 
hand-crafted rules and heuristic matching. 
 
 At a more fined-grained level, works on mathematical expression recognition have been a 
research focus of the document processing community for many years (Suzuki et al., 2003; 
Fujiyoshi, Suzuki and Uchida, 2009) using OCR primitive features.  These works also utilize 
heuristically tuned systems whose rulesets need to be reconstructed for its application to a new 
problem area. 
 
 Statistical approaches for inferring logical document structure address the shortcomings of 
rule based approaches and have been a more recent focus of research. Belaïd and Rangoni (2008) 
have used neural networks to classify a similar set of categories.  The LATISI projectii has made 
inroads towards building per journal / venue classifiers for logical blocks of text using a memory 
based classifier.   
 
 These works come the closest to our goal of a system for segmenting a document, but stop 
short of completing the classification into a set of fine-grained categories that cater for  
document metadata, logical structure and construct (i.e., definitions, formulas and theorems) 
categories.  Furthermore, many works up to now have focused on using only textual features or 
spatial and font (i.e., OCR-based) based evidence, but have not adequately demonstrated systems 
that use both in a synergistic way.  A necessary development is a robust logical document 
structure inference system that can handle both rich input (page image information), but still be 
able to perform inference on impoverished input (plain text) with degraded performance.  In the 
remainder of this paper, we detail the construction and evaluation of our SectLabel system, 
which aims to fill this important gap. 

METHODOLOGY 

Problem Formulation and Learning Model 
 
Scholarly articles can be viewed as consisting of multiple lines, generally organized in several 
logical flow patterns such as a header with title, author and affiliation lines; followed by abstract, 
introduction lines; then body text; ending with a conclusion and lines making up its references. 
As such, our problem is naturally modeled as a formal sequence labeling task with the input text 
as a sequence of multiple lines L = {l1, l2, … ln}. Each element li needs to be assigned a correct 
label from a set of classes C = {c1, c2, … cm}. Evidence used to classify a line li not only comes 
from the features of that line itself, but also from the previous classifications of l1 … li-1. We 
make an assumption that each document line contains homogenous text belonging to only one 
category, i.e. a unique class, hence, making our problem an instance of the hard categorization 
task. 
  
 We employ the CRF learning model which is often expressed using the following simplified 
form: 
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 Equation 1 represents the probability of a particular sequence y given an observation 
sequence x. In this simplified form, fj(y, x) is used to represent either a state function s(yi, x, i) or 
a transition function t(yi-1, yi, x, i). λj are the feature weights to be set by training and Z(x) is the 
partition function, used to guarantee that the resulting p(y|x,λ)s are proper probabilities.  State 
and transition functions are defined in terms of binary features as illustrated below using our 
problem context: 
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 Given b(x, i), the state and transition functions will then be of the form: 
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 In our implementation, we use the open-source CRF++ packageiii to handle CRF specifics of 
inducing and applying the learned models.  With this formalism, the focus of our problem 
becomes in feature engineering; that is, the design and selection of binary features b(x, i). Our 
input into CRF++ will be of the form “value1 … valuem categoryi” for each line li (i = 1,n ), 

where categoryi is the true class at training time and which is to be inferred at test time. value1 … 
valuem are feature values corresponding to a fixed set of m feature types. CRF++ automatically 
converts feature values into binary features b(x, i) by means of a feature template file, providing 
a clean and neat way to later incorporate our text and OCR features (see later section on “Raw 
Text Features and Rich Document Representation”). 

System Architecture 
Our system consists of two parts: a primary component, Logical Structure (LS), and a 
subordinating part, namely Generic Section (GS). The LS component takes in full-text papers as 
input, while the GS component only deals with header lines. We detail the system pipeline 
through two stages – training and testing – and illustrate these processes in Figure 1. 
 

At training time, we run our OCR software (discussed later) through all input papers to obtain 
raw text data as well as XML layout information. If only a stream of plain text is provided, only 
the raw text is used as input.  The LS feature extractor utilizes both raw text and layout 
information, when available, while the GS feature extractor takes in only text headers from the 
raw text. Both the LS and GS extracted features, together with the manually labeled data, go 
through the CRF trainer to produce the corresponding learned models. 
 



Unseen data during testing is represented as set of lines {l1, l2, … ln} with additional XML 
layout information. The LS feature extraction processes these data, and then passes them to the 
LS classifier to label each line li with one of 23  structure categories ci such as title, author, or 
header. Most labels {c1, c2, … cn} at this step are final; only ones classified as headers need 
further processing. The counterpart GS modules further consider lines li where ci=header to 
perform additional classification, relabeling li into one of 13 generic section headers c'i such as 
introduction, abstract, or methodology. Those newly-labeled logical headers are then 
incorporated into the original output to form the final output. 
 

 

Figure 1: System architecture, showing training and testing phases. For clarity, LS classifier represents 
both the LS feature extractor and classifier; similarly for the GS classifier. 

Classification Categories 
In the logical structure LS subtask, we propose to assign each line of text to one of a set of 23 
categories: address, affiliation, author, bodyText, categories, construct, copyright, email, 
equation, figure, figureCaption, footnote, keywords, listItem, note, page, reference, 
sectionHeader, subsectionHeader, subsubsectionHeader, table, tableCaption, and title. The 
names of most categories are largely self-descriptive, so we only discuss the exceptions. Note 
refers to additional text at the top or bottom of a page that is not a footnote or endnote.  In the 
corpora that we have used to create SectLabel, such notes generally capture conference details. 
Categories and keywords denote paper metadata that describe the content. In the case of 
scholarly documents that follow the Association for Computing Machinery (ACM) style, we 
consider “general terms” as keywords. Lastly, we use construct broadly to define a block of texts 
that are separated from the main text visually. These include mathematical expressions such as 
definitions, lemmas, proofs, propositions, or corollaries; or as illustrated by our example in 
Figure 2, a quotation or saying which is distinct from the main text. 

 



In the generic section subtask, we use a set of 13 categories to characterize a scholarly 
document’s sections: abstract, categories, general terms, keywords, introduction, background, 
related  work, methodology, evaluation, discussion, conclusions, acknowledgments, and 
references. These categories are frequently used in many papers, and should be self-explanatory.  

 
note ||| CHI 2008 Proceedings ∙ Shared Authoring April 5‐10, 2008 ∙ 

title ||| Don’t Look Now, But We’™ve Created a Bureaucracy: 
title ||| The Nature and Roles of Policies and Rules 
title ||| in Wikipedia 
author ||| Brian Butler 
affiliation ||| Katz Graduate School of 
… 
author ||| Jacqueline Pike 
affiliation ||| Katz Graduate School of 
affiliation ||| Business, University of 
affiliation ||| Pittsburgh 
email ||| jpike@katz.pitt.edu 

sectionHeader ||| ABSTRACT 
bodyText ||| Wikis are sites that support the development of emergent, … 
sectionHeader ||| Author Keywords 

keyword ||| Wikis, Wikipedia, community, collaboration, policy, 
keyword ||| policies, rules, dynamics. 

sectionHeader ||| ACM Classification Keywords 

category ||| K.4.3. [Computers and Society]: Organizational Impact â “ 
… 
category ||| Storage and Retrieval]: Online Information Systems.  

sectionHeader ||| INTRODUCTION 

construct ||| “The Wikipedia online encyclopedia â ” written by 
construct ||| thousands of individuals working without a boss ‐ shows 
construct ||| the way... “ [28] 

copyright ||| Permission to make digital or hard copies of all or part of this work for 
… 
copyright ||| specific permission and/or a fee.  

note ||| CHI 2008, April 5â “10, 2008, Florence, Italy. 
copyright ||| Copyright 2008 ACM 978‐1‐60558‐011‐1/08/04...$5.00 
bodyText ||| messy, informal, popularly uncontrolled, non‐ 

footnote ||| 1 All references to Wikipedia content are based on data 
… 
footnote ||| data presented here represents a snap‐shot.  

page ||| 1101 

 

Figure 2: Examples of different LS categories. Each labeled line is in the format "label ||| line content". 

RAW TEXT FEATURES 
We now detail the features used in our model that are based solely on the raw text.  These 
features form the minimal set of features used to classify lines of a document when no rich OCR 
features are provided, as in the case where the input is limited to plain text.  Note that we use a 
different set of features for the logical structure and generic section classifiers. 

Logical Structure Classifier 
The text features of our LS classifier are best described by two distinct categories: token-level 
features that pertain to a single token, and line-level features that capture some aspect of a text 
line as a whole. For token-level features, we only extract features for the first n tokens in each 
line (set experimentally to n=4 in internal tests). As the original ParsCit uses a subset of the 
features used in our SectLabel module, we use the original ParsCit feature set as a baseline 
feature set for comparison. 
 



A key difference that distinguishes the two tasks is that SectLabel classifies entire lines rather 
than individual tokens, as ParsCit does. As such, we add per-line features to capture information 
related to the text line as a wholeiv. We describe the feature groups that we used in this 
component. 

 
1. Location – Encodes the relative position of each line within a document (discretized into 

n=8 bins experimentally). This feature helps to separate different groups of labels: 
headers (e.g., title, author, affiliation), body (e.g., bodyText, figure, table, equation), and 
ending parts such as references. 

2. Number – Detects the occurrence of patterns specific to hierarchies. These include 
subsectionHeaders (“1.1”), subsubSectionHeaders (“1.1.1”), ontologies (such as ACM 
categories, e.g., “H.1.1”), footnotes (for both ordinary notes (1This work …” as well as 
URLs “1http…”). 

3. Punctuation – Checks if the line consists of email addresses or web links (potentially 
corresponding to references, footnotes or notes). This class of features includes values 
that classify lines that end with some type of bracket numbering, such as “(1)”. Such 
values are good indicators of equations and other constructs. 

4. Length – Measures the length of each text line in terms of tokens. Values for this feature 
are limited to 1token, 2token, 3token, 4token, 5+token. This feature is helpful to identify 
the majority of lines that should be considered as bodyText. 

Generic Section Classifier 
Academic publications tend to follow a consistent structure, i.e., the majority in this group of 
publications contains the following generic sections: abstract,  introduction,  related  work, 
methodology, evaluation, conclusions, acknowledgments and references. However, their actual 
section headers may not be the same; methodology is rarely labeled as such and may span 
multiple sections of a document. Hence, the section header classifier is built to automatically 
associate each section header with its corresponding generic header. We can thus deduce the 
logical purpose of each section in a scholarly document. 
 

In implementing the section header classifier, we derive a small set of features from the 
header itself, such as its position as well as its content.  Note that our implementation eschews 
features that could be derived outside of the headers themselves, such as the content of the 
corresponding sections – such a model would have larger memory requirements and is more 
computationally expensive to train and may not lead to increased accuracy. Thus, we have stuck 
to a simple model. 
 

1. Position – Encodes the absolute and relative positions of headers within documents. 
Absolute position uses ordinal position of the header in a document, where as relative 
position normalizes ordinal position by the total number of sections in the whole 
document (discretized into n=10 bins, experimentally). Since scholarly documents share a 
consistent structure, abstracts or introductions usually come as the first two sections of 
the document, while methodology sections tend to appear in the middle, we believe both 
types of positions boost performance. 



2. First and Second Words – Models the individual tokens of the header. We use the first 
and second words of each header as explicit features for our classifier, to better 
differentiate those that usually are expressed in a standard form. For example, abstract 
sections most likely have the header “Abstract”, while related work usually manifests as 
“Related Work”, “Previous Work” or “Literature Review”. 

3. Whole Header – Models the header as a whole, using concatenated header as a single 
feature. This acts as a memoization of all headers in the training data. As many headers 
are formulaic, this can be helpful. 

RICH DOCUMENT REPRESENTATION 
Raw text features alone produce acceptable performance for many of the document structure 
categories. But for others, it fails dramatically. For example, when section headers are not 
marked by initial numbering, such as in ACM Conference on Human Factors in Computing 
Systems (CHI) conference proceedings, there is little evidence in the raw text that indicates that a 
header is present.  This is also true of other header-like categories – including title, author, and 
affiliation – which are often confused by the CRF models utilizing only raw text features. This is 
probably because they often occur at the beginning of a document with similar capitalization 
patterns and lengths.  
 
 However, to the human reader, these semantic categories are visually different, due to their 
positioning, font and size. We hypothesize that if we can provide the learner with such 
information, performance for these critical semantic categories would improve.  In fact with PDF 
and other richly formatted text documents, we do have a much richer form of representation to 
text. Spatial layout, page breaks, and text font variations provide an orthogonal channel of 
information that can be used to derive logical structure. 

 
While digital formats such as Microsoft Word, HTML and PDF all convey this information, 

inferring structure directly on such document formats is difficult. If one takes this route, there are 
a multitude of different formats to interpret and separate modules must be created for each. 
Instead, we choose to go to the lowest common denominator and deal with documents as 
consecutive page images. This alternative route allows us to handle any document type that can 
be scanned or printed. We then run an optical character recognition (OCR) engine on the results 
to obtain rich format information. 

 
In this section, we justify our choice of OCR software together with the extraction process of 

rich document features from the OCR output. We then categorize such rich information into 
stationary features (conditioned on a single label) and differential ones (conditioned on a pair of 
consecutive labels) with respect to the CRF framework. 

OCR Processing 
Today's OCR engines retrieve the raw text of documents quite reliably, if restricted to well-

known languages and font families. OCR engines can also provide rich representations that 
recover the font, spacing and spatial layout of elements on the page and reconstruct the natural 
reading order of the elements. Nuance OmniPage (version 16) outputs such information in an 
accessible XML format, as seen in Figure 3. The information includes the coordinates of 



paragraphs (para), lines (ln) and words (wd) within a page (l=left, t=top, r=right, b=bottom), 
alignment, font size, font face, or format (bold, italic, underlined).  While several commercial 
OCR packages are able to produce similar output, we chose OmniPage based on previous 
positive experience reported by other research groups. 

 
The XML representation, while rich, needs to be linearized to become features for the CRF 

framework.  We first extract the individual text lines from the XML output, and augment the line 
with its pertinent rich spatial and font features. During the feature extraction process, we note 
that text lines do not necessarily follow homogeneous formatting, e.g. when there are 
occurrences of special words highlighted. In such case, OmniPage often subdivides words in the 
same line (ln) into chunks (run). As in Figure 3b, the first run contains italic information for the 
phrase “Chi 2008,” whereas the second run does not. When only a single word is different, per-
word formatting attributes are directly embedded within the word (wd) tag. We handle these 
different levels of representations in OmniPage output to correctly identify dominant formatting 
features of each text line, e.g. whether the whole line is considered italic. 

 

   
         (a)                       (b) 

Figure 3: Example of the OCR XML output from OmniPage which forms the input to SectLabel. This 
XML excerpt encodes the OCR information for: (a) the first title line of the example paper’s title page 
shown in Figure 2, and (b) the conference detail line within the copyright block of that same paper. 

 
As a result of the linearization process, sample training vectors to the CRF model look like the 

following: (Figure 3a) “Don't-Look-Now,-But-We've-Created-a-Bureaucracy. Loc_0 Align_left 
FontSize_largest Bold_yes Italic_no Picture_no Table_no Bullet_no”, and (Figure 3b) “CHI-
2008,-April-5–10,-2008,-Florence,-Italy. Loc_7 Align_left FontSize_small Bold_no Italic_no 
Picture_no Table_no Bullet_no”. The two feature vectors reflect the key differences between the 
title and the conference detail lines: the former is at the top of the page (Loc_0), employing the 
largest font size, and is bolded; whereas the latter is at the bottom of the page (Loc_7) in small 
font. These differences will assist the machine learner in inferring the correct labels, and such 
linear representation of rich document features provides a flexible way to either concatenate 
them to the raw text feature vector, or use them alone. 



Stationary Features 
We describe a set of rich OCR-derived features extracted directly from the OmniPage output. 
We term these features “stationary” as they are meant to reflect the state of the current line of 
interest, e.g. whether it is bolded or italicized, as opposed to differential features that capture 
state changes between two consecutive lines, discussed in the next section.  These features are 
conditioned on a single output label, and realized under the CRF++ package by means of 
“unigram” features. We group these features as follows: 
 

1. Location – Reflects the position of a text line within a page. We discretize the vertical 
coordinates reported by OmniPage into n bins (n=8 experimentally). We stress that this 
feature is the relative location within each page, and is distinct from the raw-text 
Location feature, which measures position with respect to the entire document. We 
expect to further differentiate labels such as note and footnote, which occur at the top 
and bottom of a page. 
 

2. Format – Encodes salient font information, in the form of FontSize, Bold, and Italic. 
Knowing whether a text line is bolded and italicized distinguishes them from ordinary 
bodyText. Furthermore, they help identifying different levels of headers, especially for 
those paper styles using formatting instead of numerical hierarchies to denote headers. 
 
We pay special attention in transforming the literal FontSize information output in the 
XML. The actual font sizes are not as important compared with how frequent they occur, 
since font sizes vary among papers. It is the relative font size that we wish to model, thus 
requiring us to normalize font sizes. We achieve this first by finding the most frequent 
size in the document, and tagging this as the base. Larger font sizes than normal often 
imply certain categories such as title or header. We assign values starting from the 
largest as 0, then decreasing by 1 for each smaller size (e.g., -1), until the base size is 
reached. Since smaller font sizes than the base are not indicative enough, and often due to 
OCR mistakes, we label them all as “smaller”.  This also helps avoid the problem of data 
sparseness. An example of our font labels are smaller, smaller, base, -2, -1, 0, which 
might be generated in the case the font sizes 6, 8, 10 (base font size), 12, 20 and 32 points 
all occur in a document. We later demonstrate and validate the effectiveness of our 
relative model. 
 

3. Object – Captures special line attributes.  We extract Bullet, Picture and Table attributes 
directly from the XML output. These features help to indicate if a text line is part of a 
paragraph or text block that has been specially identified in the XML output with one of 
these formatting attributes. While it may seem easy to categorize lines with the presence 
of these attributes, it is not always the case.  Authors may employ such attributes for both 
logical and stylistic reasons.  Tabular text can mix with figure or bullet points, or a figure 
(such as a flowchart) can contain bullet points that are recognized.  Our experimental 
results demonstrate that using these features alone does not yield much improvement, but 
that they work better in conjunction with other features. 



Differential Features 
Though useful in contrasting lines of different labels, stationary features are not explicitly 
designed to capture text blocks that span multiple lines that use the same format. It is, however, 
crucial that these lines under the same text block, such as figure or captions, are labeled 
consistently. With current stationary features, there is no direct information for the machine 
learner to infer if two consecutive lines are of the same format.  To explicitly model this, we also 
encode differential features that capture state changes between consecutive lines. These features 
are not extracted directly from OmniPage output, but rather synthesized from the values of 
stationary features in consecutive lines. In the CRF formalism, our differential features are 
conditioned on a pair of consecutive output labels and described in CRF++ as “bigram” features.  
 

1. Format – We base formatting features on five distinct sources of information – FontSize, 
Bold, Italic, FontFace and Alignment – to explicitly mark if the current line has the same 
format as the previous. The feature will take the value “format_same” if all the five 
properties match and “format_new” for all other cases. 
 
Font face and alignment properties are extracted from OmniPage output similar to font 
size, bold, and italic ones discussed before. Font face values vary across documents, 
while alignment values take on one of five different values – none, left, center, right and 
justified. We experimented font face (normalized) and alignment as stationary features, 
but did not obtain any performance gains. However, as differential features, they yield a 
positive improvement, as detailed later in our experiments.  
 

2. Paragraph – We process OmniPage output to identify blocks of text lines spanned under 
its XML output paragraph tag para (See Figure 3). The first line in each text block is 
assigned the feature value “para_new”, whereas the remainder take the value 
“para_same”. OmniPage sometimes groups multiple lines in the header section into a 
single paragraph, such as author, affiliation, and email. This is undesirable as we want to 
label the same for text lines within a paragraph, or a text block. Thus, we heuristically 
detect abstract or introduction header lines, and consider each line before this threshold 
of the document as a single paragraph receiving a value of “para_header”. 

EVALUATION 
The purpose of our evaluation is to answer the following questions: 
 

1. How well does the logical structure classifier perform when using the baseline features 
from ParsCit? 

2. How does performance change when adding the new raw text and rich document 
features? 

3. How do the categories compare in classification difficulty and how does their 
classification accuracy vary with different feature sets? 

4. With respect to the generic section classifier, does a shift from using a maximum entropy 
model as used in the previous work (Nguyen and Kan, 2007; discussed below) to a CRF 
model improve performance? 

5. How do the individual features contribute to the overall performance of its feature group? 



Let us first describe the datasets used to evaluate both the logical structure and generic section 
modules. We then detail on our evaluation metrics, and report overall performance for the LS 
and GS classifiers. 
 

Logical structure

(40 documents) 

Generic section 

(211 documents) 

Category  #  Category  # Category  # 

address  64  note  148 abstract  210 

affiliation  108  page  347 categories  165 

author  66  reference  3,970 general terms  142 

bodyText  25,062  sHeader  463 keywords  209 

category  73  ssHeader  323 introduction  210 

construct  234  sssHeader 78 background  28 

copyright  186  table  1,098 related work  105 

email  64  tableCap  228 methodology  608 

equation  835  title  68 evaluation  151 

figure  2,175    discussions  36 

figureCap  472    conclusions  189 

footnote  364    acknowledgements  102 

keyword  68    references  211 

listItem  1,308  Total  37,802 Total  2,366 

Table 1: Logical structure and Generic section category instance counts. Note that sectionHeader, 
subsectionHeader and subsubsectionHeader are abbreviated. 
 
Our logical structure dataset comprises of 40 scientific papers in the field of computer science.  
We try to cover a diverse collection of layouts and formats by including papers that originate 
from conferences that use different style guidelines for both the document body and references. 
The corpus includes 20 ACM papers spanning various years and venues, 10 papers from the 
2009 Proceedings of the Association for Computational Linguistics Annual Meeting, and 10 
papers from the 2008 proceedings of the ACM Conference on Human Factors in Computing 
Systems. The first author of this paper manually assigned categories to each line of these papers 
using the 23 logical section categories. 
 

For the generic section dataset, we reuse the dataset of 211 ACM papers used in Nguyen and 
Kan (2007), which also worked on the same task of generic section detection.  They used a 
different feature set and experimented with a maximum entropy learning framework, which is a 
pointwise learning model, different from the sequence labeling model embodied by CRF.  We 
used this set so that we can compare results directly with this previous work.  We have manually 
extracted headers of these papers, and assigned the same 13 generic section categories. 

 



Both datasets have been made available on the original ParsCit website to spur future research 
on automatic logical structure analysis. Demographics on the corpus and counts of different 
categories are presented in Table 1. 

Evaluation Metrics 
Let TP denote the number of correctly classified text lines (true positive); similarly, FN for false 
negatives, FP for false positives, and TN for true negatives.  We report both overall and 
category-specific results. 
 

For category-specific performance, we use F1 measure as our metric of interest, defined as 
2xPxR

P R
 where P is Precision = 

TP

TP FP
, and R is Recall = 

TP

TP FN
.  Due to the skewness of 

the dataset (as bodyText lines are the majority of lines), we do not report line accuracyv, as it 
would misleadingly imply very good performance; a simple baseline that does no work and 
reports all lines as bodyText would trivially get 66% accuracy. 

 
For assessing overall performance, we measure both macro and micro F1 to provide a 

comprehensive evaluation. Macro F1 weighs each category equally, computed as an average of 
all category-specific F1. Micro F1 weighs each instance (line) equallyvi. 

Results 
We perform 10-fold stratified cross validations for both the logical structure (LS) and generic 
section (GS) classifiers.  We first report the final performance of different systems using full set 
of features, and leave the analysis as well as evaluation of different feature types to the next 
section. 

LS Evaluation  
To answer the first two questions, we trained and tested a CRF for logical structure classification 
using different feature sets.  Let us define three feature combinations: LSPC – the baseline using 
only features found in the original ParsCit distribution, LSPC+RT – which adds the raw text 
features, and LSPC+RT+RD – that further adds rich document features derived from the OCR 
output. Table 2 compares performance among these three systems for each category, and also 
reports overall micro- and macro-averaged performance. 

 
Table 2 shows that the baseline LSPC reproducing the original ParsCit (PC) feature set 

performs fairly well, garnering 68 F1. However, it is clear that by considering additional raw text 
(RT) features tailored for logical structure classification and further incorporating rich document 
(RD) features has a significant impact: LSPC+RT and LSPC+RT+RD monotonically increase macro F1 
to 76 and 85 points, respectively. Micro averaged results show smaller improvements, indicating 
that improvements were largely to minority classes. 

 
This is confirmed when reviewing the category-specific performance to answer our third 

question. LSPC+RT+RD and LSPC+RT demonstrate improvement over LSPC with differences of 
greater than 10 F1 points for many categories.  With minor performance degradation in copyright 
category, LSPC+RT+RD greatly improves the majority of categories, out of which 13 categories 
have improvements greater than 5 F1 points. Furthermore, LSPC+RT+RD shows especially 



improved performance with rich document features for the categories footnote and 
subsubsectionHeader, yielding a substantial improvement of 28.09 and 40.37 F1 points, 
respectively, over the LSPC+RT model. 
 

  LSPC  LSPC+RT LSPC+RT+RD
Macro F1  68.37  75.64  84.72 

Micro F1  90.01  91.03  93.38 

address  66.67  80.00  85.48+5.48

affiliation  76.76  90.57  92.82 

author  71.93  90.91  97.74+6.83

bodyText  95.37  95.82  96.97 

category  66.67  82.96  85.71 

construct  7.86  13.82  33.11+19.29

copyright  94.79  95.37  95.11 

email  80.34  96.12  97.64 

equation  56.76  58.76  72.0113.25

figure  72.71  76.87  79.93 

figureCaption  63.05  62.21  76.91+14.7

footnote  31.58  41.49  69.58+28.09

keyword  58.82  62.61  74.02+11.41

listItem  57.47  62.33  71.21+8.88

note  95.10  95.53  96.22 

page  91.41  95.39  97.84 

reference  99.26  99.50  99.50 

sectionHeader  88.27  90.22  93.51 

subsectionHeader  70.31  75.97  91.39+15.42

subsubsectionHeader 19.64  41.32  81.69+40.37

table  73.21  72.26  79.59+7,33

tableCaption  63.89  65.56  80.6915.13

title  70.69  94.03  100+5.97

Table 2: Comparative performances among LSPC, LSPC+RT and LSPC+RT+RD CRF models for logical 
structure classification. Category-specific performance given in F1. Results in bold mark the best system 
for each category. Superscripts indicate large improvements in F1 (> 5 points) between first and second 
ranked systems. 
 

GS Evaluation  
For the generic section classifier, Table 3 compares the performance between GSmaxent, a 
maximum entropy based system reported in (Nguyen and Kan, 2007), and our CRF-based 
system, GScrf. 
 

These results answer Question 4. Overall, our generic section classifier using CRF model 
achieves macro F1 of 90.87 and micro F1 of 95.82. This outperforms those of the maximum 
entropy classifier from previous work with scores of 87.71 and 93.28, respectively. At the per-
category level, with the exception of background, GScrf betters GSmaxent in all categories, some of 



which contain large improvements such as introduction, methodology, evaluation, discussions, 
conclusions, and acknowledgements. 

 
  GSmaxent  GScrf 

Macro F1  87.71  90.87 

Micro F1  93.28  95.82 

Abstract  99.53  100 

categories  100  100 

general terms  99.65  100 

Keywords  99.52  99.76 

introduction  97.87  99.29+1.42 

background  60.00+3.59 56.41 

methodology  90.74  93.76+3.02 

evaluation  78.00  83.21+5.21 

relate work  93.33  93.40 

discussions  38.46  59.65+21.19 

conclusions  87.96  96.34+8.38 

acknowledgements  96.23  99.51+3.28 

references  99.53  100 

Table 3: Comparative performance between a maximum entropy based system (figures reproduced from 
(Nguyen and Kan, 2007)) and our CRF-based system for the task of generic section classification. Results 
in bold mark the better system for each category; superscripts indicate large improvement in F1 (> 1 
point). 

FURTHER ANALYSIS 
To answer our final question, we return to logical structure classification.  We provide further 
detailed assessment of LSPC+RT+RD by evaluating the effectiveness of individual raw text and rich 
document features.  We then we categorize several types of errors made by LSPC+RT+RD in our 
discussion and error analysis before concluding with a brief discussion of GScrf. 

Impact of Raw Text Features 
We carried out an ablation test to understand the contribution of each of the 4 line-level text 
features used in LSPC+RT. Results in Table 4 indicate that removing any of the features degrades 
performance, implying that all of the individual features contribute to the final composite 
performance. The most influential text feature is position; without it, overall performance 
drastically worsens. 
 

Feature Macro F1 Micro F1
Full  75.64  91.03 

‐ length  74.73  90.57 

‐ punct  75.85  90.72 

‐ num  75.53  90.97 

‐ pos  71.28  90.64 

Table 4: Ablation test results for LSPC+RT. 



Impact of Rich Document Features 
We are interested in finding out how each of the rich document feature groups influences 
performance. We add each of the stationary feature groups – position, format and object – into 
LSPC+RT separately to assess their performance impact. We then incrementally add format, 
object, and lastly, the differential feature groups to obtain the final LSPC+RT+RD model. 
 

System  Macro F1  Micro F1 

LStext  75.64  91.03 

+ position  77.80  91.48 

+ format  78.20  90.73 

+ object  77.02  91.88 

+ position, format  78.59  91.19 

+ position, format, object  81.71  92.44 

+ position, format, object, differential (RD)  84.72  93.38 

Table 5: Performance with rich document (RD) features. The bottom model corresponds to LSPC+RT+RD. 
 
Individually, all stationary feature groups contribute positively to performance. Specifically, 

format (font) features contribute the most to macro average, while object features influence 
micro average most. Closer inspection of category-specific performance reveals that format 
features contribute to performance gains for a wider spectrum of categories, many of which are 
related to paper metadata and section headers; whereas object features contribute to just a few. 
However, those categories improved by object features already contain a large number of 
training data, which explains why format yields a larger macro F1 improvement compared to 
micro F1. Combining position and format features show consistent improvements in both 
metrics. Using all the three group of stationary features yields an absolute performance of 81.71 
macro F1 and 92.44 micro F1.   

 
Further adding differential features achieves a significant improvement of 3.01 macro F1 and 

0.94 micro F1. Detailed inspection shows that 21 out of 23 are enhanced, 7 of which have 
performance gains greater than 3 F1 points. As expected, major improvements are accounted by 
categories which often occur in text blocks: construct (+13.52 F1), figureCaption (+13.49 F1), 
and tableCaption (+12.64 F1).  

Stationary feature analysis 
We also performed a subtractive analysis by dropping one feature at a time from the full 
stationary feature set, in order to evaluate their roles individually. Table 6 indicates that all 
stationary features, except Picture, contribute towards the final performance in both macro and 
micro averages. Removing picture feature degrades macro F1, but slightly increases micro 
accuracy. Our close inspection reveals that while discarding picture feature affects many 
categories; it does, in contrast with other features, enhance the bodyText classification by 0.02 F1 
point. Since bodyText possesses a large number of samples, such a small increase in bodyText 
macro F1 accounts primarily for the slight increase in the overall micro F1 accuracy. 
 

According to the ablation results, location, bold and table are the most effective features in 
each feature group. In particular, the location feature demonstrates their special usefulness for 



footnote as removing it severely degrades classification performance of footnote by 22.01 F1. 
The bold feature, when being left out, affects mainly tableCaption (-3.16 F1), subsectionHeader 
(-6.28 F1), and  subsubsectionHeader  (-6.5 F1). Lastly, discarding table feature reduces 
performance of table category by 6.01 F1, while removing bullet feature mostly influences 
listItem (-9.74 F1). 
 

Feature  Macro F1 Micro F1 

LStext + location, format, object 81.71  92.44 

‐ Location  79.52  91.63 

‐ Bold  80.04  91.70 

‐ Italic  81.08  92.12 

‐ Font  80.65  92.13 

‐ Bullet  80.77  91.91 

‐ Picture  81.28  92.51 
‐Table  80.73  91.81 

Table 6: Ablation test for stationary features. 
 

Differential feature analysis 
We evaluate the effectiveness of differential features, format and paragraph, by means of the 
same incremental method. From the model that includes text and OmniPage stationary features 
(LStext + location, format, object), we add differential features, format and paragraph, separately. 
This setting allows us to experiment with different subsets of information sources used to 
construct the format differential features. These sources include: font size (S), font face (F), bold 
(B), italic (I), and alignment (A). Once the best setting for format differential feature is known, 
we test the final model consisting of both format and paragraph differential features. 
 

Feature  Macro F1 Micro F1  

LStext + location, format, object  81.71  92.44 

+ format_S  82.30  92.30 

+ format_SF  82.89  92.80 

+ format_SFBI  82.56  92.80 

+ format_SFBIA  83.29  92.95 

+ paragraph  83.87  93.06 

+ format_SFBIA, paragraph (RD) 84.72  93.38 

Table 7: Performance with differential features. The bottom model corresponds to LSPC+RT+RD. 
 
Results in Table 7 suggest that the format differential feature performs best when utilizing all 

information sources. Incrementally, adding sources S, F, and A enhances the performance; 
whereas adding B and I over S and F does not demonstrate any gain. However, our experiment 
with SFA alone results in inferior performance as compared to the full composite SFBIA, 
suggesting that B, and I are essential sources to obtain the best combination with performance of 
83.29 macro F1 and 92.95 micro F1. 

 



The paragraph differential feature alone demonstrates even better performance at 83.87 macro 
F1, and 93.06 micro F1. When considering both types of differential features, we consistently 
improve performance in both macro and micro averages, obtaining our best system at 84.72 F1 
and 93.38 micro F1.  

Rich Document Feature Distribution 
We have utilized so far a large pool of rich document features to greatly improve the 
performance. While differential features are from our own synthesis, stationary features are 
extracted directly from the OCR output. A natural set of questions to ask is: To what extent are 
we taking advantage of the OCR results? How noisy are the OCR results? Does the use of bullet, 
picture and table features make it trivial to recognize categories like listItem, figure, and table? 
We answer these by providing the statistics in Table 8, which compares OmniPage output with 
the manual annotations to tally the number of lines having a particular feature value and being 
annotated with a specific category. 
 
  Alignment  Bold  Italic  Bullet  Picture  Table 
  none  justified  left  right  center 

address  18  0  1 0 45 0 0 0  0 0

affiliation  18  0  7 0 83 0 0 0  0 0

author  11  0  11 0 44 18 0 0  0 0

bodyText  18853  5464  575 83 96 30 78 227  99 4

category  34  11  28 0 0 1 2 0  0 0

construct  116  62  42 1 6 11 59 0  0 0

copyright  40  125  22 0 1 0 1 0  0 0

email  8  0  10 0 46 1 1 0  0 0

equation  45  81  485 113 111 1 53 4  349 34

figure  557  361  1095 57 105 2 41 16  1588 177

figureCap  132  133  94 4 109 118 0 0  31 0

footnote  190  47  112 13 2 0 0 3  2 0

keyword  38  0  30 0 0 0 0 0  0 0

listItem  455  522  321 2 8 11 17 929  11 0

note  10  4  116 0 18 0 10 0  93 0

page  5  0  332 0 10 0 0 0  336 0

reference  2978  481  474 5 28 0 368 2354  5 0

sHeader  65  214  170 1 13 347 1 21  3 1

ssHeader  86  178  56 0 3 255 3 0  1 0

sssHeader  20  47  9 0 2 7 59 0  0 0

table  62  9  1015 2 10 15 5 0  96 912

tableCap  105  44  44 8 27 72 0 0  0 1

title  2  0  18 3 45 62 0 0  0 0

Total  23848  7783  5067 292 812 951   698 3554  2614 1129

Table 8: Distribution of rich document features over LS classes. Column headers list the rich document 
feature values extracted from OmniPage: alignment has five feature values; whereas bold, italic, bullet, 
picture, table columns represent for “yes” feature values as these are binary features. Each count in the 



table is the number of lines in the LS training data having a particular feature value.  Highlights in the 
last five columns show non-trivial values (as there are many cells having 0 counts). 

 
Statistics in Table 8 show that the performance of OmniPage is reasonable. It detects, for 
example, that address, affiliation, author, email, and title have the tendency to take on a “center” 
alignment; similarly, figureCaption,  sectionHeader,  subsectionHeader,  tableCaption and title 
are the major categories that are bolded. However, there is still confusion in these features as 
evidenced by the distribution of the same feature value in multiple categories. This, we believe, 
is where there is a need for a machine learner to come, to select good representative values for 
each subset of categories.  
 
We note that the performance of OmniPage for object features is satisfactory as labels for 
listItem, figure, and table with respective accuracies 39.46, 60.75, and 80.78vii. These accuracies 
reflect baseline accuracy if one was to just use OmniPage output to label these classes. 
According to the confusion matrix in Table 9, SectLabel’s corresponding accuracies are 77.98, 
81.11 and 77.99viii. While comparable for the table category, the performance of listItem and 
figure are improved significantly. 

Error Analysis  
We feel the performance of the full composite LSPC+RT+RD and the GScrf models are substantial, 
and significantly better than the state-of-the-art for both tasks in logical structure discovery.  
However, there is still room for improvement, and a careful review of the models' errors allows 
us to characterize problematic areas for improvement. 

Logical structure classification 
From the confusion matrix in Table 9, we have aggregated the number of false-positive (FP) 
labels for each category. These figures indicate that the groups of labels accounting for most 
errors include bodyText, equation, figure, listItem and table.  We analyze the causes as: 

1. A skew towards the majority class of bodyText, which influences learning. This is a 
common problem in text classification, and future models may want to specifically 
account for skewed categories. The 1098 misclassified bodyText lines are nearly half of 
all errors. The confusion matrix shows that a large amount construct, equation,  figure, 
figureCaption,  footnote, listItem,  table and  tableCaption are incorrectly categorized as 
bodyText. 

2. The conflict between textual and spatial features. Tables, in several cases, are considered 
figures and vice versa. These mixtures challenge the classifier, as evident by the fact that 
213/2175 = 9.79% figures are misclassified as tables, and 126/1098 = 11.48% vice versa. 
Figures and tables often contain equations and list  items, making an independent, per-
line judgment different than what we might suspect in the context of a page. We observe 
a case in which a table compared different formulas and was labeled as a figure. 

3. Errors contributed by OCR recognition and our category annotation standard. In several 
cases, OCR recognizes texts within figures, many instances of which contain numbers 
and notations that resemble equations. Such figures include charts with numbers in axes 
or titles, or equations embedded as figures. Due to our convention of labeling these lines 
as figure, there is a significant confusion between figure and equation, evidenced by the 



fact that 123/835 = 14.73% equations are mislabeled as figures, and 146/2175 = 6.71% 
vice versa. Finally, the construct category still poses a great challenge when our current 
best performance only achieves a poor F1 of 33.11%. The confusion matrix reveals that a 
large portion of these lines were labeled as bodyText. This is partly due to the difficulty 
in labeling whole block of lines as construct. Definitions, for example, are hard to 
distinguish, with the exception of the initial line which may contain lexical cues such as 
"Definition 1”. 

 
  ad  af  body  cat  con  cop  eqn fig fCap fn kw list ref sH  ssH  sssH tab tCap

address  53  4  0  0  0  0  0  3  0  0  0  0  0  1  0  0  2  0 

affiliation  7  97  0  0  0  0  0  1  0  0  0  0  0  3  0  0  0  0 

bodyText  0  0  24636  0  13  1  52  84  50  12  0  197  11  2  5  0  3  5 

category  0  0  0  60  0  0  0  0  7  0  4  0  0  2  0  0  0  0 

construct  0  0  143  0  50  0  11  17  0  0  0  3  0  0  0  1  0  2 

copyright  0  0  3  3  0  175  0  0  0  4  0  0  0  0  0  0  0  0 

equation  0  0  53  0  3  0  611  123  0  0  0  13  0  0  1  1  30  0 

figure  0  0  57  0  3  0  146  1718  8  3  0  21  0  0  1  0  213  0 

figureCap  0  0  126  0  0  0  0  8  338  0  0  0  0  0  0  0  0  0 

footnote  0  0  145  0  0  0  0  3  0  207  0  6  3  0  0  0  0  0 

keyword  0  0  15  4  0  0  0  0  0  0  47  0  0  2  0  0  0  0 

listItem  0  0  409  0  0  0  11  29  1  0  0  857  0  0  0  0  0  0 

ref.  0  0  12  0  0  0  0  3  0  4  0  0  3945  0  0  0  0  0 

sH  0  0  17  0  1  0  0  1  0  0  8  0  1  425  9  1  0  0 

ssH  0  0  17  0  0  0  0  0  0  0  0  2  0  9  292  3  0  0 

sssH  0  0  9  0  2  0  0  1  0  1  0  0  0  0  7  58  0  0 

table  0  0  32  0  3  0  30  126  3  0  0  0  4  0  1  0  893  6 

tableCap  0  0  60  0  0  0  0  1  0  0  0  0  0  0  0  0  4  163 

FP  7  4  1098  7  25  1  250  400  69  24  12  242  19  19  24  6  252  13 

Table 9: Full composite logical structure classifier LSPC+RT+RD model's confusion matrix. Bold figures 
discussed in the text. For compactness and as there is little confusion among author, email, note, page, 
and title, these classes are omitted from the table. FP is the per-category false-positive, computed by 
summing up all values in a column minus the diagonal cell in that column. 

Generic section classification 
Table 3 indicates that most errors fall into background and discussions categories. Instances of 
these categories were often mislabeled as methodology or conclusions. 61% of background 
instances were mistaken as methodology, 25% of discussions headers were labeled as 
methodology and 20% of them were labeled as conclusions. 
 
 The feature set for GScrf is currently based only on location and content of the headers, and 
underperforms at differentiating consecutive headers with different labels.  As such, the errors 
are likely caused by three factors: First, the actual headers in these categories may not have any 
tokens in common with the memoized training data instances; second, the relative positions of 
consecutive headers (background vs. methodology, methodology vs. discussions, and 
discussions vs. conclusions) are quite similar to each other; we believe dataset skew also 



contributes to the difficulty here.  There are a prominent number of methodology instances in 
our dataset, especially when we compare with the background and discussions categories. This 
also explains why many headers are mislabeled as methodology.  We believe changing the CRF 
to encode constraints beyond the simple linear chain dependency may be helpful. 

DEPLOYING SECTLABEL 
Even though SectLabel is intended as groundwork for downstream applications, we believe that 
logical structure is useful to a reader in its own right.  Logical structure, when exposed to the 
reader, can help a reader better understand the structure and argumentation of the document, and 
serves as a navigation aid.  To demonstrate these capabilities, we have integrated our work in 
SectLabel with a document reading environment, ForeCiteReader.  
 

Our integration offers the reader two methods of interacting with the automatically-recovered 
logical structure, corresponding to our two tasks.  We note that these interfaces are preliminary 
and need to undergo more extensive design trials before we believe they will be effective for 
readers.  
 

1. Section Navigation (from generic section detection): Figure 4 shows a list of document's 
headers, together with their corresponding generic headers.  Through this list, users can 
navigate to different sections in a document. The generic headers allow readers to jump 
to certain key sections of a paper such as methodologies or empirical results. This 
interface works like a table of contents sidebar present in other digital reading 
environments, such as Adobe Acrobat. 
 

 

 
Figure 4: Section navigation in the ForeCiteReader reading environment. 

 
2. Object Navigation (from logical structure detection):  Figure 5 shows a screenshot of the 

reading interface in production.  The right panel presents a collapsible interface with all 
objects in the document listed and grouped by types. Readers can thus jump to view 
specific objects such as tables, figures or equations. 



 

Figure 5: Logical structure annotation in ForeCiteReader. The view shows object navigation interface, 
currently focusing on the list of figure captions. 

CONCLUSION  
We have described and evaluated SectLabel, an open-source freely available module for logical 
document structure classification. Logical structure, consisting of 23 categories, is determined on 
a per-line basis and section headers are further classified into one of 13 generic section types.  
SectLabel uses the conditional random field (CRF) framework to view both tasks as sequence 
labeling problems using binary feature functions. 
 
We have explored and comprehensively evaluated the utility of different classes of features. We 
found that acceptable performance (~76 macro F1) results from careful feature engineering on 
raw text.  A key finding is that modeling additional per-page spatial information, yields a 
significant improvement of over 9 macro F1 points, and significantly boosts detection of 
important categories such as paper metadata, captions, and hierarchical headers. 
 
Our error analysis suggests areas for future work.  For logical structure classification, further 
modeling text blocks will allow us to improve detection on construct and explicitly handling 

skewed categories like bodyText reduces confusion in the learning model.  For generic section 



classification, selective analysis of the content of the sections may lead to further classification 
performance. 
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