
Fast webpage classification using URL features
Min-Yen Kan Hoang Oanh Nguyen Thi

Department of Computer Science, School of Computing

3 Science Drive 2, Singapore 117543

{kanmy,nguyent6}@comp.nus.edu.sg

ABSTRACT
We demonstrate the usefulness of the uniform resource locator
(URL) alone in performing web page classification. This
approach is magnitudes faster than typical web page
classification, as the pages themselves do not have to be fetched
and analyzed. Our approach segments the URL into meaningful
chunks and adds component, sequential and orthographic
features to model salient patterns. The resulting binary features
are used in supervised maximum entropy modeling. We analyze
our approach's effectiveness in binary, multi-class and
hierarchical classification. Our results show that, in certain
scenarios, URL-based methods approach and sometime exceeds
the performance of full-text and link-based methods. We also
use these features to predict the prestige of a webpage (as
modeled by Pagerank), and show that it can be predicted with an
average error of less than one point (on a ten-point scale) in a
topical set of web pages.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – linguistic processing

General Terms
Algorithms, Experimentation.

Keywords
Uniform resource locator, word segmentation, maximum entropy,
text categorization, webpage classification.

1. INTRODUCTION
Current webpage classification techniques use a variety of
information to classify a target page: the text of the page itself,
its hyperlink structure, the link structure and anchor text from
pages pointing to the target page and its location (given by its
URL). Of this information, a web page's uniform resource
locator (URL) is the least expensive to obtain and one of the
more informative sources with respect to classification.

Past systems have incorporated URL features into machine
learning frameworks before, but to our knowledge, only two
approaches have attempted to utilize this source of information
beyond simple heuristics [9][15]. Surveys on web classification
techniques, such as [18], have largely ignored this information.

URLs are often meant to be easily recalled by humans, and
websites that follow good design techniques will encode useful
words that describe their resource in the website's domain name
as advocated by best practice guidelines ([11], pg. 26). Websites

that present a large amount of expository information often break
their contents into a hierarchy of pages on subtopics. This
information structuring for the web often is mirrored in their
URLs as well. As the URL is short, ubiquitous (all web pages,
whether or not they are accessible or even exist, have URLs) and
is largely content-bearing, it seems logical to expend more effort
in making full use of this resource.

We approach this problem by considering a classifier that is
restricted to using the URL as the sole source of input. Such a
classifier is of interest as it would be magnitudes faster than
traditional approaches as it does not require pages to be fetched
or the full text or links to be analyzed. We have implemented
such a classifier which uses a two-step machine learning
approach. A URL is first segmented into meaningful tokens
using information-theoretic measures. This is necessary as some
components of a URL are not delimited by spaces (especially
domain names). These tokens are then fed into an analysis
module that derives useful composite features for classification.
These features model sequential dependencies between tokens,
their orthographic patterns, length, and originating URI
component.

In the second step, machine learning is used to induce a multi-
class or regression model from labeled training URLs that have
been processed by the above pipeline. New, unseen test URLs
can then be classified by processing them first to extract features,
and then applying the derived model to obtain a final
classification. A key result is that the combination of quality
URL segmentation and feature extraction results in a significant
improvement in classification accuracy over baseline approaches.

To assess the system’s performance we have conducted a range
of experiments that demonstrate its applicability in multi-class
and hierarchical classification as well as relevance feedback,
using standard datasets. In Sections 2 and 3, we discuss the two-
stage approach to feature extraction. Following a short
description of maximum entropy modeling, we describe the
experiments and analyze the performance in Section 5.

2. RECURSIVE SEGMENTATION USING
ENTROPY REDUCTION
Supervised machine learning requires examples of the form
f1,f2,...fn: C in which n features are distilled from a problem
instance, and provided to the learner along with the class label C.
In our system, tokens derived from the URL serve as binary
features: for each token ti present in a training URL, fi(u) = 1 if ti
is present in the URL u and 0 otherwise, where i ranges from 1
to |T|, the number of unique tokens seen during training.

Thus, it is critical to select meaningful tokens to represent the
URL. A simple and effective approach is to segment a given
URL into its components as given by the URI protocol (e.g.,
scheme :// host / path / document . extension ? query #
fragment). We can further break these components at non-

alphanumeric characters and at URI-escaped entities (e.g., '%20')
to create smaller tokens. Such a baseline segmentation is
straightforward to implement and typically results in 4-7 tokens
for subsequent classifier induction.

Table 1: URL feature classes and examples. Other tables reference these classes by their single letter key (e.g., Length → ‘L’).

Sample URL http://audience.cnn.com/services/activatealert.jsp?source=cnn&id=203&value=hurricane+isabel

Feature Class (class tag) Example

0. Baseline (B) http audience cnn com services activatealert jsp source cnn id 203 value hurricane Isabel

1. Segments by Entropy
Reduction (S)

 http audience cnn com services activate alert jsp source cnn id 203 value hurricane isabel

2. URI Components (C) scheme:http extHost:audience dn:cnn tld:com ABSENT:port path:services … ABSENT:fragment

3. Length (L) chars:total:42 segs:total:8 chars:scheme:4 segs:scheme:1 chars:extHost:8 segs:extHost:1... segs:extn:1

4. Orthographic (O) Numeric:3 Numeric:queryVal:3

5. Sequential Bi-, Tri,
4-grams (N)

com|cnn cnn|audience audience|services services|activate activate|alert alert|jsp com|cnn|audience
cnn|audience|services ... services|activate|alert|jsp

6. Precedence Bigram (P) com>services com>activate com>alert com>jsp cnn>services cnn>activate cnn>alert cnn>jsp ... activate>jsp

The first 2 rows of Table 1 show a sample URL and its baseline
segmentation.

Notice that some portions of the URL contain concatenated
words (e.g., activatealert). This is especially prevalent in
website domain names. Segmenting these tokens into its
component words is likely to increase performance as these
sparsely occurring tokens can be traded for more frequent and
informative ones. Word segmentation techniques -- for
segmenting languages without delimiters (e.g., Chinese) – are
applicable to this task. [4] categorizes word segmentation
approaches into four categories: 1) statistical methods, 2)
dictionary based methods, 3) syntax-based methods and 4)
conceptual methods.

Previously, Kan studied different methods for URL token
segmentation [9]. One approach was segmentation by
information content (entropy) reduction, in which a token T can
be split into n partitions if the partitioning’s entropy is lower
than the token's:

H(t1,t2,...tn) < H(Tletters)

where ti denotes the ith partition of T, and Tletters denotes the
partitioning in which each letter of the token is a separate
segment. Intuitively, a partitioning that has lower entropy than
others would be a more probable parse of the token. Such
entropies can be estimated by collecting the frequencies of
tokens in a large corpus. Fortunately, token statistics on the
large 49M WebBase corpus are publicly available1, from which
we can calculate entropy estimates.

Finding the partitioning that results in minimal entropy requires
exponential time, as all 2|T-1| possible partitions are searched.
The brute force algorithm used previously is inefficient for long
strings. We propose a recursive solution that searches the space
of possible partitions. A token is searched for a single partition

1 http://elib.cs.berkeley.edu/docfreq

point that lowers its entropy. The resulting tokens are then
recursively searched using the same method. While this
approach does not guarantee that the global minimum entropy is
found, the algorithm has a much lower time complexity, O(n log
n), and matches the local minima in most cases. The resulting
token segmentation example is given in row 1 in Table 1.

3. URL FEATURE CLASSES
In this stage, we want to further enrich these segment features
with other useful ones. In [9] ambiguous tokens are expanded
using correspondences found in the {<title>} HTML tag. For
example, md could be expanded as md, medical or moldova
(among others). According to the study, this technique did not
affect classification much, as i) few (~6%) URLs have tokens
that are ambiguous and ii) many ambiguous tokens' expansion act
as evidence for the same class (e.g., md as medical or meds
would both favor a Health subject classification).

In contrast, we explore classes of features that we feel are
applicable to a broad range URLs and that are likely to have a
positive impact on classification. We first discuss feature
extraction for URI components, length and orthographic patterns,
followed by sequential patterns.

3.1 URI Components and Length Features
A token that occurs in different parts of URLs may contribute
differently to classification. Consider the token ibm, appearing
in the domain name in one URL, and in the document name in
another. In the first case, we know that the web page is located
on IBM's web server, but could relate to any technical topic. In
the second, the document is named “IBM” and is likely to
discuss the company itself. Distinguishing where these tokens
occur may improve classification accuracy.

This is easily modeled by creating features that indicate which
URI component a token comes from. We augment the feature set
by copying of all of the tokens from segmentation but qualifying
them with their component origin (as shown in Row 2 of Table 1.

We add these features rather than replace the original ones, as
the original features are more general and have higher frequency
counts which combat sparse data problems.

The absence of certain components can influence classification as
well. Advertisement URLs that underlie an advertising image
banner often have a second URL embedded in the query
arguments (e.g., doubleclick URLs). Thus the absence of a query
argument is partial evidence that a URL is not an advertisement
link. We add a feature to the feature vector when a URI
component is absent (also seen in the example in Row 2).

The length of the URL or its components may also influence
classification. For example, departmental staff listings are
usually not too deeply nested within an academic website. On
the other hand, white papers or software drivers for products are
usually very deeply nested. We thus add lengths of the URL and
its components as features to the classifier, as shown in Row 3.

3.2 Orthographic Features
Using the surface form of a token also presents challenges for
generalization. For example, tokens 2002 and 2003 are distinct
tokens and have no correlation with each other in the framework
proposed thus far. We borrow the notion of creating word
features from related work in named entity recognition [2] and
add a few orthographic features to our feature set, as shown in
Row 4. We add features for tokens with capitalized letters
and/or numbers that differentiate these tokens by their length.
These features are added both in a general, URL-wide feature as
well as ones that are URI component-specific.

3.3 Sequential Features
Shih and Karger's work on URL trees [15] demonstrated that
URL token sequences can be effective for classification. In their
work, a tree rooted at the leftmost token (usually http) is created,
in which successive tokens (read left to right) are inserted as
children. Each URL constitutes a path from the root to a leaf,
and a tree structure emerges after a number of URLs are
inserted. The intuition is that subtrees within the URL tree are
presumed to have a similar classification.

 While they need to classify URLs within a single website, our
scenario involves many websites. As such, we cannot directly
apply their approach to general URL classification, in which
URLs from different websites need to be classified, as different
websites appear as different “subtrees” in the URL tree. This is
a difficulty as common subsequences of nodes cannot be
generalized (such as recurring patterns in different websites).

We address this problem in our work by noting it is the
sequential order of nodes in the URL tree that is of import, and
not the rooted path. For example, seeing the token sequence
hurricane isabel anywhere in the URL should lend evidence to
certain categories. Sequential order among tokens also matters,
as the token sequences web spider and spider web are likely to
appear in URLs belonging to different classes.

Furthermore, consider the case of the token sequences states
georgia cities atlanta and georgia altanta. Modeling sequences
of tokens as features fails to capture the similarity between these
sequences, as the intervening token cities forces the crucial
precedence relationship to be missed. We can capture this by

introducing features that model left-to-right precedence between
tokens: georgia>atlanta.

An important note is that we also reverse the order the
components within the server hostname. Hostnames are written
specific to general (e.g., “ server . domainname . tld . country ”)
whereas paths to files are written general to specific. This
operation helps to preserve the precedence as general to specific
throughout the URL.

Rows 5 and 6 in Table 1 show the features that are added by
these two operations. Sequential dependencies are modeled by
bigram, trigram, and 4-gram features, similar to context features
used in [13] used in maximum entropy part-of-speech tagging.

4. CATEGORIAL CLASSIFICATION
USING MAXIMUM ENTROPY
Maximum entropy (hereafter, ME) modeling has been
successfully applied to text classification problems [12]. From a
practitioner's point of view, its advantage is that it can handle a
large set of features that are interdependent. Features (defined as
“contexts” in the ME literature) are automatically weighted by an
optimization process, resulting in a model that maximizes the
conditional likelihood of the class labels c, given the training
data d, or P(c|d). The result is an exponential model of the form:

∑=
i

ii cdf
dZ

dcP)),(exp(
)(

1
)|(α

where each fi(d,c) is a feature and αi is the weight to be
determined through optimization. Z(d) is a normalization factor
used to force the conditional probabilities to sum to 1.

Maximum entropy is so named as it generates a unique
probability model with the maximum degree of uncertainly that
fits the constraints given by the data. The resulting distribution
does not assume facts beyond the observed data. To do otherwise
would be to assume information the learner does not possess. A
detailed explanation of ME is beyond the scope of this paper; the
interested reader is referred to [1].

Two methods have been proposed to optimize α weights:
iterative scaling and, more recently, gradient ascent. Generalized
Iterative Scaling (GIS) updates weights by scaling the existing
parameters to increase the likelihood of observed features.
Iterative scaling needs to calculate only the expected values Efi,
instead of calculating the gradient of the log-likelihood function.
We can substitute gradient ascent for this task, using limited
memory variable metrics as advocated by Malouf [10]. We
experiment with both GIS and gradient ascent methods, the latter
using Limited-memory Broyden Fletcher Goldfarb Shannon (L-
BFGS) minimization. Both have been implemented in a publicly-
available ME distribution2. We carry out 30 iterations in our
experiments, unless noted otherwise.

ME modeling can also suffer from overfitting. This problem is
most noticeable when the features in the training data occur
infrequently, resulting in sparse data. In these cases, weights

2 Zhang Le,

http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html

derived by the ME model for these sparse features may not
accurately reflect test data. To address this weakness, smoothing
has been advocated using a Gaussian prior. We use a Gaussian
prior (with σ = 1) to smooth our models in all of our
experiments, unless noted otherwise.

5. EVALUATION
We hypothesize that the different classes of URL features have
different levels of effectiveness, depending on the classification
task at hand. To test this, we apply ME based classification of
URLs to several different scenarios:

1. Binary Classification – In this case, we wish to separate two
classes from each other. This problem recurs in web
applications as relevance: is a web page is relevant or not?
We assess URL classification in two scenarios: as a pseudo
relevance feedback mechanism in TREC Web queries, and
user-specific link recommendation in news web pages.

2. Multi-class Classification – We can easily construct a multi-
class classifier by building n binary classifiers that
discriminate each class separately. An advantage of using
ME is that multi-class classification is handled directly. We
report on the performance of URL classification on the
standard WebKB corpus and in a related task of
classification for focused crawling of scholarly publications.

3. Hierarchical Classification – Subject hierarchies allow
internet users to quickly browse a list of topically-relevant
web pages. Pages are nested in increasingly fine-grained
categories. We experiment with hierarchical classification
with a large subset of the Open Directory Project to gauge
the effectiveness of URL features on this task.

4. Regression – Regression is needed when predicting a
continuous quantity from input features. In web
applications, the importance (or prestige) of a webpage may
be modeled by a numeric attribute. One such attribute is
Pagerank [3], which is usually given as a logarithmic
quantity. We assess whether URL features can be used to
predict a page’s Pagerank. In addition to ME, we use linear
regression as another form of learning to take advantage of
the ordered structure of the classes.

We report the effectiveness of our full battery of URL features on
the above tasks (all feature classes, as reported in rows 1-6 in
Table 1, reported as ‘All’ in our experiments). Additionally, we
performed component evaluations to find the efficacy of
individual feature classes. We use the single letter tags in Table
1 to denote the feature classes throughout the remainder of the
paper. When applicable, we report results from previous work
and compare with equivalent feature sets from our work.

5.1 Relevance Feedback: TREC Web
The most ubiquitous problem in web page classification might be
defined as relevance: is a given page relevant to a particular
search query? Current search engines employ textual, link,
anchor text, URL, and spatial features to rank web pages for user
queries. Would the addition of our comprehensive URL features
improve ranking algorithms?

An ideal experiment would be to perform IR experiments on a
large, standard collection both using and omitting URL features.
Due to \resource limitations, we were unable to conduct such an
experiment. Instead, we assess the performance of URL-based
classification in relevance feedback (RF). In classical relevance
feedback, a user who executes a search for relevant documents on
a query first marks relevant documents retrieved by the system.
These marked documents are used to find other (hopefully
relevant) documents, based on their similarity to the marked
documents. While classic RF calculates similarity based on the
textual features in the full text of a document, we can substitute
the textual features for URL-based ones. The idea is that other
relevant web pages possess similar tokens and token patterns in
their URLs.

We use the standard dataset and queries used in the Text
REtrieval Conference's main web task (TREC 9 and 10, [8]) to
perform experiments. The relevance judgments for all 100
queries from both years' data were used. This dataset also
provides a list of web pages (on average, about 1,400 pages)
previously judged as relevant/non-relevant by human assessors
for each query. Note that the documents on these lists are the
only documents within the 1.6 M page dataset that were assessed
by humans. This means we cannot properly assess an RF
algorithm if it proposes a web page was not previously judged.

In light of this limitation, we modify the task to simulated
relevance feedback. In this modified task, we ask if a system can
distinguish relevant documents on a target input set of
documents, given another set of labeled relevant and labeled
irrelevant documents. This classification task is not equivalent to
the original task, as it ignores the performance of the classifier on
documents not on the target list, but may yield indicative results.
We executed simulated RF using five-fold cross validation,
maintaining an equal ratio of relevant and irrelevant documents
in each set. Table 2 summarizes performance using GIS
parameter estimation over all 100 queries in the dataset.

Table 2: Mean precision, recall and F1 for simulated
relevance feedback task. Results averaged over all 100

queries.

ME configuration Avg. Precision Avg. Recall Avg. F1

GIS, no smoothing .646 .303 .413

GIS, smoothing .784 .049 .095

5.1.1 Analysis
The results show that using URLs for simulated relevance
feedback is promising. Both ME schemes emphasize precision at
the cost of recall, which is more favorable in actual RF. We
believe this may be due to the overwhelming skew of the
assessed document list. While variance was high, an average
query had about 60 positive examples but over 1,300 negative
ones.

Performance varied greatly from query to query. With smoothing,
ME suggests URLs only on a small percentage of the queries (as
evident by the low recall (.049). We conjecture that smoothing
may help to improve precision in queries where many documents
are relevant, but is not effective in queries with few relevant

documents. As smoothing helps to accurately weight low
frequency features, we hypothesize that it creates a classification
bias towards the majority class.

Can we compare these results against actual IR systems in the
TREC Web Task? Unfortunately, the answer is no. Our
simulated RF task is considerably easier than the TREC main
web task, as we have access to a partial list of relevant
documents. In addition, in the simulated RF task, we only judge
documents in a limited target list and not on the whole
collection. A fairer comparison would be to compare the use of
such URL features in the interactive task, where relevance
feedback is normally assessed. Unfortunately, this comparison is
not possible, as the TREC task does not currently use web
documents.

In [8], we see that the best performing systems report a fairly low
average precision of .20 and .22 (JustSystem, TREC 9 and FUB,
TREC 10, respectively). Although further testing is needed to
validate this hypothesis, we believe that the addition of
comprehensive URL features can boost IR performance as our
simulated RF task shows high precision in comparison to other
state of the art systems.

5.2 News Web Page Link Recommendation
In link recommendation, the goal is to build a classifier to
recommend useful links given a current webpage in a browser.
Such links can be highlighted or placed in a “recommended
pages” menu. In [15], such a recommendation dataset was
created by asking 176 users to examine five news web pages and
click on any hyperlinks to stories that they found interesting.

Using their dataset, we follow their experimental procedure
where they perform five fold cross validation, using a leave-one-
page-out policy (e.g., train on the judgments for the first four
pages, and test to see whether recommendations match for the
fifth page). A separate classifier was made for each of the 176
users and tested, totaling 182,325 data points. Shih and Karger
tested URL tree based features, sharing some characteristics with
our n-gram features in Section 3.3. While they use a tree-based
model of learning, we use standard ME, not optimized for tree
features. In addition to their tree-based learner, Shih and Karger
report results for using similar features in a standard SVM
framework.

To extend their experiments, we employ our features in both our
ME framework as well as in an SVM framework. For ME
classification, we present only the best results using L-BFGS.
Table 3 shows the results of the experiment, in which the
classifier recommends the top 1, 3, 5, or 10 links on a page with
the highest probability of similarity to user clicks on the training
pages. The first four rows are reprinted from [15] for
comparison.

Table 3: Number of correct recommendations across all 176
users across 5 pages in the recommendation dataset (2

classes, 182K data points). Bolded numbers indicate top
performers.

Learner Configuration Top 1 Top 3 Top 5 Top 10

Random (Lower Bound) 29 104 162 330

Perfect (Upper Bound) 857 2488 3899 6093

TL-URL 385 979 1388 2149

SVM-URL 308 839 1268 1953

SVM (S) 355 969 1482 2473

SVM (N+P) 350 956 1421 2365

SVM (All) 363 996 1456 2412

ME (S) 379 1063 1657 2767

ME (N+P) 360 1028 1573 2577

ME (All) 365 1100 1682 2775

5.2.1 Analysis
Shih and Karger’s tree learning algorithm (row TL-URL) using
their URL features performs best at recommending the single
most probable link, but is outperformed on the top 3, 5 and 10
metrics. SVM-URL denotes Shih and Karger’s results using
SVM features, which performs most poorly among the classifiers
shown here. Our contribution here is to show that better
classification is possible by extracting more meaningful features
from the URL data, and that these features outweigh the gains
made by using a specialized learner. This is exemplified in all
three rows of SVM results from our configurations, in which we
use the same machine learner as past results but use our URL
features. Gains of over 20% are achieved by using all URL
features discussed.

In this configuration, ME also outperforms SVM classification on
this dataset for the top 3, 5 and 10 recommendations. Note that
the performance of feature set (N+P), which is our best
approximation of Shih and Karger’s URL tree features, does
poorly compared to the basic URL segmentation (S) under both
SVM and ME models. We take this as a sign that our features
can improve classification performance, as our composite feature
set improves over our implementation of previous work by up to
29% in the best case of top 10 recommendation task.

5.3 Multi-class Categorization: WebKB
We now turn our attention to multi-class scenario. The WebKB
corpus is a standard dataset for such benchmarking. It consists of
web pages collected from four universities, classified into seven
categories. We employ a subset of the WebKB, containing 4,167
pages (the ILP 98 dataset [16]), in which each page is associated
with its anchor words (text from the hyperlinks that point to the
page). The task is identical to earlier published experiments:
only the student, faculty, course and project categories pages
were used, and cross-validation using leave-one-university-out
was performed for evaluation. Previous work using the full text
have employed support vector machines (SVM) [17], maximum
entropy [12], and inductive logic programming [16].

Table 4: WebKB performance (4 classes, 4.1K data points).
Past results re-printed on top half. ‘NR’ = not reported.

Past Learner Configurations [Cite] Accuracy Macro F1

SVM w URL (Kan, [9]) NR .338

SVM w Full Text (Sun et al. [17]) NR .492

SVM w Anchor Text (also [17]) NR .582

ME w Full Text (Nigam et al. [12]) 92.08% NR

URL configuration (ME using GIS) Accuracy Macro F1

S 57.16% .273

C 23.34% .094

L 53.60% .174

O 54.18% .190

N 32.08% .341

P 41.50% .350

All 76.18% .525

Full Text 78.39% .603

Full Text + All 80.98% .627

5.3.1 Analysis
Results using URL features are shown alongside past published
results in Table 4. We give performance values for both instance
accuracy as well as macro F1, as both metrics have been used as
performance measures in past work. The new URL features
perform very well, boosting performance over URL previous
work (configuration ‘S’) by over 30% in the best case, resulting
in 76% accuracy. This is impressive as the full text of the words
of the page achieve about 95% of the performance of full text
methods. A small gain in classification performance results
when our URL features are combined with full text, showing that
URL features can help to improve even full-text approaches.
These results are similar to results shown for anchor text [17].

From the results, the n-gram and precedence features seems to be
the most helpful, this is likely due to the fact that many URLs in
the WebKB share many tokens in their paths. Segmentation of
tokens is not very effective here, likely because the corpus does
not have many compound tokens (again, featured most
prominently in long domain names).

Three caveats need to be explained. First, note that our
experiment show a best performance of ~78% accuracy using full
text in contrast with [12] which shows 92% accuracy. The
difference is that we perform leave-one-university-out cross
validation, which we feel reflects real-world situations better.
Also, Kan and Sun et al. used a set of binary classifiers rather
than a true multi-class classifier. This can skew F1 results as the
four classifiers can be separately optimized, leaving some
instances unclassified (which can improve F1). Finally, Sun et
al. perform stemming and stop word removal for SVMs, which
we omit; we simply employ each word as a separate feature as
input for ME classification.

5.4 Focused Crawling: Scholarly Publications
One potential application of URL classification is in focused
crawling. In focused crawling, a web crawler targets a specific
type or genre of document. In the context graph model [5],
context language models are built to model the content of pages
within 1, 2 or more links away from the desired page type.
During the crawl, all downloaded pages are classified by the
context model. Pages classified to be within 1 link of the desired

page type are thus processed before ones on pages classified to be
within 2 links, and so on.

With URL classification, we can move classification earlier in
the pipeline: from modeling the destination page to modeling the
linking URL. Similar to the recommendation scenario earlier,
we assess whether a URL on a page will lead us to a target page
or a page within 1, 2, or more links of a target page.

In a scholarly publication crawler, we may want the crawler to
follow a desired path: department ⇒ staff listing ⇒ homepage
⇒ publications. In crawling, the model is used to direct the
crawler from the starting class to the eventual target. We can
then treat these as a standard multi-class classification problem.

We collected a four-university dataset in December 2004
consisting of 2,577 web pages in five categories: the four above
plus a other category. Note that since there are many faculty
members in each university, that the class distribution in the
dataset is heavily skewed towards the target class and the other
category. Also note the multi-label property of the target class
publication with homepage; many researchers list their
publications as part of their homepage.

We conducted tests using the URL features as well as ones using
the full text. Here we try full text as well, following [17]’s
recommendation to stem the text. Results are shown in Table 5,
using leave-one-university-out cross validation.

5.4.1 Analysis
As in the WebKB corpus, URL features are competitive with full
text approaches. In this corpus however, the features do not
interact well to produce optimal results when using all feature
classes: component and orthographic features do better on their
own. URL features are likely dependent on the dataset and task.
Still, given the evidence, we recommend the topic-sensitive
crawlers should incorporate a URL classification module. Such a
module performs as well as full-text approaches, while
decreasing bandwidth usage.

Table 5: Crawling dataset classification performance
(5 classes, 2.5K data points, ME using GIS with 300

iterations)

Config. Acc. Mac.
F1

Config. Acc. Mac
. F1

S 51.43% .489

P 59.25% .457

C 64.14% .542

All 52.98% .351

L 49.20% .266

Full Text 64.73% .490

O 61.54% .375

N 62.59% .433

Stemme
d Text

62.62% .461

5.5 Hierarchical Categorization: The Open
Directory Project
The Open Directory Project (ODP) is a large, publicly available
collection of web pages, similar to the Yahoo! and LookSmart
directories, both of which have been previously studied [7][6]. It
differs from other web directories in that it is entire maintained
by volunteers and that the data is freely available for use.
Although the ODP is constantly evolving, snapshots of the entire
directory structure at specific points in time have been made

available. These publicly available snapshots are thus good
datasets for testing hierarchical webpage classification. We use
the snapshot dated 3 August 2004, which encompasses over 4.4
M URLs categorized into 17 first-level and 508 second-level
categories. Similar to other classification schemes, it also
exhibits a skewed category distribution: 1.1 M (25%) of the
pages belong to the two most frequent second-level classes,
Regional/North_America and World/Deutsch.

We use 100,000 randomly chosen ODP URLs to assemble a test
corpus for our two-level, hierarchical experiments. In this set
360 of the 508 second-level categories were present. We
benchmarked the ME classifier using the two-level labels as 360
distinct classes, trained on another set of 100,000 URLs. We
then assessed the ME classifier using a sequential hierarchical
approach. Using the training set, we trained a classifier for the
top-level and 17 other classifiers (one for each top-level class).
In testing, the top-level classifier is run first to determine which
second-level classifier is run to produce the final class results.
Table 6 shows the results, showing both accuracy and macro
averaged F1 for both the flat and sequential hierarchical
approach. Statistics for the top-level classifier alone are also
shown.

5.5.1 Analysis
Our results validate earlier findings [6] which show that
leveraging the hierarchical structure of the classes improves
performance: in our case, ~10% gain in test instance accuracy
and 50% in macro average F1. How do URL features compare
with earlier studies using text features? Dumais and Chen report
a micro average F1 over the 150 second-level categories in their
LookSmart dataset of 0.476. The ODP task has over twice as
many classes (360), and macro F1 is a more difficult metric to
score well on for biased datasets(as ME trains to increase
instance not per-class accuracy). Yet, URL features do
remarkably well: for the sequential ME (All) setup, we
calculated micro averaged F1 and found it to be 0.551.
Unfortunately, the categories and their cardinalities differ across
hierarchical classification reports, thus the results are not directly
comparable.

Table 6: ODP classification performance (training and
testing, each ≤100K data points). Best results bolded.

Two level (360 classes)

Flat Sequential

Top-level only
(17 classes)

Learner
Config.

Acc. Mac F1 Acc. Mac F1 Acc. Mac F1

Majority
Baseline

0.165 0.001 0.165 0.001 0.295 0.026

S 0.458 0.055 0.503 0.122 0.577 0.334

C 0.419 0.043 0.480 0.080 0.550 0.245

L 0.332 0.020 0.314 0.016 0.492 0.148

O Many URLs without features, no results

N 0.396 0.101 0.404 0.151 0.471 0.368

P 0.443 0.089 0.411 0.136 0.487 0.360

All 0.157 0.002 0.504 0.110 0.574 0.324

A second observation is that the URL features introduced in this
paper seem to have little positive effect. Indeed, using the basic
URL segmentation outperforms the full set in macro-averaged F1
and is comparable in accuracy. An inspection reveals that ODP
URLs tend to be domain names, often without path or document
information (63% or 71%, of the test URLs respectively), and
would not benefit from many of the newly introduced features.
URL segmentation is most helpful to classify these URLs.

5.6 Predicting Pagerank
Our final experiments examine the prediction of Pagerank given
our URL features. Pagerank models the prestige of a node in a
directed graph by iterative refinement [3]. Instead of calculating
Pageranks directly from a web graph, we use the scores returned
by Google’s Internet Explorer toolbar; for the experiments
reported here, the Pageranks scores were captured during the
period of December 2004 to January 2005. The exact method to
compute Pagerank as reported by Google is perhaps not known,
but it is likely a normalized, logarithmically-scaled version of
raw Pagerank scores. The returned scores then consist of twelve
nominal categories: integer scores 0 through 10, and an
undefined class which is returned by Google if the Pagerank
score has not been calculated. We dispense with URLs with
undefined Pagerank in our experiments.

We can treat the Pagerank prediction problem as a simple multi-
class problem when using ME. By doing so, we lose the
continuous structure of categories: ranking a page as class 0 or
class 10 is “equally” incorrect when it belongs to class 1. We
can leverage this structure by using regression to predict a
continuous value rather than a categorical one. We carried out an
experiment on the focused crawling dataset used in Section 5.4.
We perform experiments over the 2,043 URLs that had a defined
Pagerank value, again using ten-fold cross validation.

To take advantage of the ordered structure of the classes, we use
linear regression. Linear regression (LR) fits a linear, weighted
combination of features to the training data so as to minimize the
square of the error. However, regression grows linearly in
complexity in proportion to the number of features used. This
means we could not use all of the features that ME uses (over
34,000 in the ‘All’ feature class). We perform simple feature
selection to rank the features by their frequency and power to
affect the score. Formally, a feature is scored by:

))(log(* ffreqprprf −

where pr denotes the mean Pagerank in the dataset, prf the mean
Pagerank for pages containing feature f, and freq(f), the
frequency of f in the dataset. We used 100 features selected by
the process above. Table 7 shows the error for the resulting
learners.

Table 7: Pagerank prediction on crawling dataset (10
classes, 2.0K datapoints). Best performer in bold.

Learner
Configuration

Mean Absolute
Error

Root Mean
Squared Error

Majority Baseline 1.107 1.535

ME (S) 0.768 1.426

ME (C) 0.720 1.348

ME (L) 0.849 1.467

ME (O) Many URLs without features, no results

ME (N) 0.775 1.441

ME (P) 0.930 1.661

ME (All) 0.670 1.277

LR (L, |f|=100) 0.892 1.303

LR (C, |f|=100) 0.842 1.245

LR (All, |f|=100) 0.905 1.332

5.6.1 Analysis
The result show that the ME configurations do quite well; the
‘All’ configuration drops absolute and RMS error by 39% and
16%, respectively, against the baseline. Length and component
feature classes also do well, as both features seem to generalize
across sites well. We used this as evidence to conduct linear
regression on the same classes to retrieve features from the
length, component and ‘All’ feature classes. However, ME is
still competitive with regression. Interestingly, regression with
more feature classes (‘All’) proved worse than with less features
(e.g., URL component features alone ‘C’). We believe this is
caused by the proportion of features used. In the length dataset,
100 features represents over 55% of all possible features, in the
‘All’ set it is less than 1%. This means more advanced feature
selection (perhaps by using singular value decomposition) may
be able to take advantage of the larger feature classes, and allow
regression to surpass the performance of the unstructured ME
model.

We also performed the same experiment on a random sample of
27,252 URLs from the ODP corpus. Here, results were much
less encouraging as ME and linear regression models were
ineffective at beating the majority baseline performance of 31%
accuracy. The linear regression models in the crawling dataset
showed that highly weighted features included institution names
(e.g., wcornell = +.69). Domain names that only appear once in the
dataset make such features unobtainable, despite URL
segmentation. Here, unlike in the ODP hierarchical evaluation,
basic URL features did not work well. We believe this is
because URL segments may often correlate with subject (e.g.,
“frisbee” → sport), but not with prestige (“frisbee” → ?
Pagerank).

6. EFFICIENCY
URL based categorization is extremely efficient both in time and
space, as the data examined is small in comparison to other
approaches. The URL is also often semantically correlated with
important classification problems, which we have empirically
assessed through ME classification in the previous evaluations.

As there is no network transaction incurred, classification speed
is limited solely by the processing power and memory of
computer and the ME model. On an Intel P4 2.8 GHz with 1 GB
of main memory, the ME training for a single model based on
100,000 instance URLs with all features takes about 20 minutes
to train. Prediction is considerably faster, although a large part of
the time cost is loading the model into memory. In a production

system, the classification module would be run as a server to
enhance performance. For our desktop machine, we estimate a
throughput of about 1,000 URLs per second, making real-time
web page classification possible.

7. CONCLUSIONS AND FUTURE WORK
Given that the URL is a ubiquitous feature of web pages, we
study how they can be maximally leveraged for classification
tasks. We have extended previous work and added features to
model URL component length, content, orthography, token
sequence and precedence. We evaluate the use of these features
over a large set of tasks including relevance, categorization and
Pagerank prediction. Results indicate URL features perform well
on classification tasks, on par with or exceeding full-text and
anchor text approaches in certain cases. Our method also
outperforms earlier results using URL features that employed
specialized learning algorithms; in contrast, we employ generic
maximum entropy modeling as the supervised machine learning
framework. We show that URL features also correlate with
Pagerank in our topical collection, allowing prediction of
Pagerank within 1 point on average on Google’s 10-point scale.

Although using all feature classes introduced in this paper does
well in most cases, our analysis indicates certain feature classes
correlate better to some tasks than others. Many of our newly
introduced features perform well on long URLs, typically found
in an intranet setting. These features do not perform as well
with typical web site entry points (i.e., just the domain name), as
they attempt to leverage the internal path structure of the URL.
Future work needs to be done to further improve these features
and to explore their correlations to find optimal sets for specific
tasks.

Classification by URL features has other advantages aside from
real-time efficiency: all web pages have URLs, regardless of
whether they exist, are accessible, have incoming links or have
any text (some web pages are comprised solely of image maps).
On the other extreme, many pages have too many words that
contribute noise. Employing text summarization to web pages
has already shown to help in this process [14], and is a promising
avenue for future work. Aside from its intrinsic performance,
URL based classification can additionally be used to overcome
the shortcomings of other methods that rely on these data.

8. REFERENCES
[1] A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A maximum

entropy approach to natural language processing.
Computational Linguistics, 22(1):39-71, 1996.

[2] D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel.
Nymble: A high-performance learning name-finder. In Proc.
of ANLP ’97, pages 195-201, 1997.

[3] S. Brin and L. Page The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 1998.

[4] Y. Dai, C. S. G. Khoo, and T. E. Loh.A new statistical
formula for Chinese text segmentation incorporating
contextual information. In Proc. of SIGIR ’99, 1999.

[5] M. Diligenti, F. M. Coetzee, S. Lawrence, C. L. Giles and
M. Gori Focused Crawling Using Context Graphs, In Proc.
of VLDB ’00, 2000.

[6] S. Dumais and H. Chen. Hierarchical classification of web
content. In Proc. of SIGIR ’00, 2000.

[7] E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M.
Pennock and G. W. Flake. Using web structure for
classifying and describing web pages. In Proc. of WWW ’02,
2002.

[8] D. Hawking and N. Craswell. Overview of the TREC-2001
web track. In The Tenth Text REtrieval Conference (TREC
2001). NIST, 2001. Special Publication 500-250.

[9] M.-Y. Kan. Web page classification without the web page.
In Proc. of WWW ‘04, 2004. Poster paper.

[10] R. Malouf. A comparison of algorithms for maximum
entropy parameter estimation. In Proc. of 6th Conf. on
Natural Language Learning, pages 49-55, 2002.

[11] J. Nielsen and M. Tahir. Homepage usability: 50 websites
deconstructed. New Riders Publishing, USA, 2001.

[12] K. Nigam, J. Lafferty, and A. McCallum. Using maximum
entropy for text classification. In IJCAI-99 Workshop on
Machine Learning for Information Filtering, 1999.

[13] A. Ratnaparkhi. Maximum Entropy Models for Natural
Language Ambiguity Resolution. PhD thesis, Univ. of
Pennsylvania, 1998.

[14] D. Shen, Z. Chen, Q. Yang, H.-J. Zeng, B. Zhang, Y. Lu
and W.-Y. Ma. Web-page Classification through
Summarization. In Proc. of SIGIR ‘04, 2004.

[15] L. K. Shih and D. Karger. Using URLs and table layout for
web classification tasks. In Proc. of WWW ‘04, 2004.

[16] S. Slattery and M. Craven. Combining statistical and
relational methods for learning in hypertext domains. In 8th
Int'l Conf. on Inductive Logic Programming, 1998.

[17] A. Sun, E.-P. Lim, and W.-K. Ng. Web classification using
support vector machine. In 4th Int'l Workshop on Web
Information and Data Management (WIDM 2002),
Virginia, USA, November 2002.

[18] Y. Yang, S.Slattery, and R. Ghani. A study of approaches to
hypertext categorization. J. of Intelligent Information
Systems, 18(2-3):219-241, 2002.

