
RankCut – A Domain Independent Forward Pruning Method for Games

Yew Jin Lim and Wee Sun Lee
School of Computing

National University of Singapore
{limyewji,leews}@comp.nus.edu.sg

Abstract

Forward pruning, also known as selective search, is now em-
ployed in many strong game-playing programs. In this paper,
we introduce RankCut – a domain independent forward prun-
ing technique which makes use of move ordering, and prunes
once no better move is likely to be available. Since game-
playing programs already perform move ordering to improve
the performance of αβ search, this information is available at
no extra cost. As RankCut uses additional information un-
tapped by current forward pruning techniques, RankCut is
a complementary forward pruning method that can be used
with existing methods, and is able to achieve improvements
even when conventional pruning techniques are simultane-
ously employed. We implemented RankCut in a modern
open-source chess program, CRAFTY. RankCut reduces the
game-tree size by approximately 10%-40% for search depths
8-12 while retaining tactical reliability, when implemented
alongside CRAFTY’s existing forward pruning techniques.

Introduction
Alpha-Beta (αβ) pruning (Knuth & Moore 1975) and its
variants like NegaScout/Principal Variation Search (Reine-
feld 1989) and MTD(f) (Plaat 1996) have become the stan-
dard methods used to search game-trees as they greatly re-
duce the search effort needed. Nevertheless, search effort
increases exponentially with increasing search depth and,
apart from theoretical exceptions where decision quality de-
creases with search depth (Beal 1980; Nau 1979), it is gen-
erally accepted that searching deeper will result in higher
move decision quality (Junghanns et al. 1997). To further
reduce the number of nodes searched, game-playing pro-
grams perform forward pruning (Marsland 1986), where a
node is discarded without searching beyond that node if it is
believed that the node is unlikely to affect the final minimax
value of the node.

In this paper, we propose a new method, RankCut, which
estimates the probability of discovering a better move later
in the search by using the relative frequency of such cases
for various states during search. These probabilities are pre-
computed off-line using several self-play games. RankCut
can then reduce search effort by performing a shallow search
when the probability of a better move appearing is below a

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

certain threshold. RankCut implicitly requires good move
ordering to work well. However, game-playing programs
already perform move ordering as it improves the efficiency
of αβ search, and thus good move ordering is available at
no performance cost. We implemented RankCut in the open
source chess program, CRAFTY, and show its effectiveness
with test suites and matches.

Background
We assume that the reader is familiar with αβ search and
its relationship to the minimax algorithm. However, we re-
call some properties of the algorithms and several definitions
which will be relevant to this paper. αβ search reduces,
on average, the effective branching factor by two compared
to the minimax algorithm, and does better when the nodes
are evaluated in an optimal or near optimal order (Knuth
& Moore 1975). A reduced-depth search is a search with
depth d− r, where d is the original search depth and r is the
amount of depth reduction. The higher the value of r, the
more errors the reduced-depth search makes due to the hori-
zon effect (Berliner 1974). However, a reduced-depth search
will result in a smaller search tree and therefore a compro-
mise has to made between reduced search effort and the risk
of making more search errors.

Although it is technically more correct to refer to the value
of a node (and its corresponding position) in the minimax
framework, we will use the “value of a move” to refer to the
value of the node as result of that move as it is conceptually
easier to describe how to use move order information during
search in this manner.

Current Forward Pruning Techniques
We briefly describe current forward pruning techniques
in this section for the purpose of showing how they are
based on a similar principle. For more extensive read-
ings, we suggest (Marsland 1986; Buro 1999; Heinz 2000;
Björnsson & Marsland 2000b; Tabibi & Netanyahu 2002).

Null Move Pruning Null-move pruning (Beal 1989;
Goetsch & Campbell 1990; Donninger 1993), which was
introduced in the 1990s, enables programs to search deeper
with little tactical risk. Null move pruning assumes that not
making any move and passing (also known as making a null

1026

move), even if passing is illegal in the game, is always bad
for the player to move. So when searching to depth d, the
heuristic makes a null move by simply changing the turn to
move to the opponent and performs a reduced-depth search.
If the reduced-depth search returns a score greater than β,
then the node is likely to be a strong position for the player
to move and will have a score greater than β when searched
to depth d without the null move. The program should there-
fore fail-high and return β.

However, there is a class of positions known as zugzwang
positions where making the null move is actually good for
the player to move. This violates the assumption that null-
move pruning makes and causes search errors. As a result,
null-move pruning is generally avoided in endgame posi-
tions.

ProbCut The ProbCut heuristic (Buro 1995) prunes nodes
which are likely to fail outside the αβ bounds during search
by using simple statistical tools. ProbCut first requires off-
line computations to record results of both shallow and deep
searches of the same positions. The results of both searches
are then correlated using linear regression. ProbCut is there-
fore able to form a confidence interval from the result of a
shallow search to obtain an estimated range in which a deep
search will return. If this confidence interval falls outside
the αβ bounds, the program should fail high or low appro-
priately. ProbCut was successfully applied in Logistello, an
Othello program that beat the then World Human Othello
Champion 6-0 under standard time controls (Buro 1997).

Multi-ProbCut (Buro 1999) is an enhancement of Prob-
Cut which uses different regression parameters and prun-
ing thresholds for different stages of the game and multiple
depth pairings. Preliminary experiments show that Multi-
ProbCut can be successfully applied to chess (Jiang & Buro
2003), but requires a fair amount of work to get good results.

Futility Pruning Futility pruning applies to more restric-
tive situations but has been successfully used in chess pro-
grams. This heuristic was first introduced by Schaef-
fer (Schaeffer 1986) and is based on the observation that
evaluation functions can usually be separated into major and
minor components. For example, in chess, the major compo-
nent would include material count and the minor component
would include positional evaluations. As the minor compo-
nent of the evaluation is composed solely of smaller adjust-
ments to the score, it can typically be bounded. At frontier
nodes, or nodes that are 1-ply from the leaf nodes, if the eval-
uation of major components falls greatly outside αβ bounds
and the bounds on the evaluation of the minor component
cannot possibly adjust the score to within the αβ bound, the
frontier node can be safely pruned.

Heinz improved on futility pruning by applying futil-
ity pruning to pre- and pre-pre-frontier nodes and called it
“Extended Futility Pruning” (Heinz 1998b). Experiments
with well-known test suites and the chess program DARK-
THOUGHT (Heinz 1998a) showed improvements of 10% −
30% in fixed search depths of 8-12 plies.

Is There Anything Better?
Most forward pruning techniques can be seen as using the
same principle of locally testing the probability of a node
scoring outside the α or β bound, and pruning the nodes
which have a high probability of failing high or low. In other
words, for a node n with k moves, m1 . . . mk, current prun-
ing techniques test p(v(mi) ≥ β) and p(v(mi) ≤ α), where
v(mi) is the minimax evaluation of the board position af-
ter making move i, and prune if either of the probabilities
is high. For example, the null move heuristic decides to
prune mk if the search returns a score greater than β after
making a null move, as it assumes that doing nothing is gen-
erally bad for the player. This is equivalent to saying that
p(v(mk) ≥ β) is high and the program can prune the node
while taking little risk. ProbCut extends this by also consid-
ering that if p(v(mk) ≤ α) is high, the program should fail
low and return α. However, the fact that mk is the kth move
considered is not used by existing techniques.

Information on move ordering can be beneficial when
making forward pruning decisions. For example, consider
the same scenario where we are deciding whether or not
to prune mk, and the current best move has remained the
first move m1, while v(m1) > v(m2) > v(m3) . . . >
v(mk−2) > v(mk−1). Furthermore, if we know that, under
similar conditions in representative games, no moves ranked
k or higher have ever been found to be better, then it is un-
likely that mk will return a score better than the score of the
current best move. This means mk can be be pruned with a
small risk of error based on move order information.

One pruning method that utilizes ordering is N -Best Se-
lective Search. In N -Best Selective Search, only the N
best moves, as ranked by an evaluation function, are actu-
ally searched. This heuristic requires the move ordering to
be able to rank the best move consistently within the top N
moves. However, the simple N -best selective search either
introduces too many errors or prunes too little, depending
on how N is set. For example, consider a node where the
best move changes every time a new move is searched. Ev-
idently, move ordering is not performing well and pruning
after a small number of moves is likely to introduce errors.
One easy, but wrong, solution would be to increase N to a
high value where such occurrences are rare. However if we
now consider a node where the best move has not changed
since the first move, and the scores of the subsequent moves
are decreasing in a monotonic fashion, then it is likely that a
high value of N is too conservative for this particular case,
and forward pruning opportunities have been lost.

A better way of factoring in move order when pruning is
by considering the probability Πx(~fi) = p(v(mi) > x | ~fi),
where ~fi = (f(m1), . . . , f(mi−1)) are the salient features
of the previous moves considered, and x is an adaptive
bound. In our experiments, x is set to vbest, the score of
the current best move. However, x can also be set to a value
like α, or a variable bound so as to minimize the risk of er-
ror. For brevity, we use Π(~fi) to represent Πvbest

(~fi). Good
features allow Π(~fi) to identify when moves are unlikely to
affect the final score, and examples include the current move
number and the scores of prior moves. So when performing

1027

forward pruning, the probability Π(~fi) gives the likelihood
of mi returning a score better than the current best move, and
if it is below a certain threshold, we can prune this move as
it is unlikely to affect the final score. This approach is more
adaptive than the static N -best selection search.

Since good move ordering is essential to achieving more
cutoffs when using αβ search (Knuth & Moore 1975),
heuristics like the History Heuristic (Schaeffer 1989) and
the Killer Heuristic (Akl & Newborn 1977) together with
domain dependent knowledge are used to improve move or-
dering. Good move ordering is therefore usually available
in practical implementations, and is another good reason to
consider move order in any forward pruning decision. This
observation is not new – Björnsson and Marsland (Björnsson
& Marsland 2000a) mention this insight, but still restrict
the application to only the possibility of failing high, or
p(v(mi) > β | v(m1) < β, . . . , v(mi−1) < β). Mori-
arty and Miikkulainen (Moriarty & Miikkulainen 1994) and
Kocsis (Kocsis 2003, Chapter 4) also considered pruning
nodes while taking move ordering into consideration by us-
ing machine learning techniques like neural networks to es-
timate the probability. However, the results of these exper-
iments have not been conclusive and more research in their
effectiveness is needed.

RankCut
In this section, we introduce a new domain independent for-
ward pruning method called RankCut and show its effective-
ness by implementing it in an open source chess program,
CRAFTY1.

Concept
In the previous section we suggested considering the proba-
bility Π(~fi) when forward pruning. However, if the moves
are ordered and Π(~fi) is low, then the remaining moves
mj , where j > i, should also have low probabilities
Π(~fj). Testing each probability Π(~fi) is thus often redun-
dant and RankCut considers instead the value of Π′(~fi) =
p(max{v(mi), v(mi+1), . . . , v(mk)} > vbest | ~fi), where k
is the total number of legal moves of the current node. Rank-
Cut can be thought of as asking the question “Is it likely that
any remaining move is better than the current best move?”.
These probabilities are estimated off-line by using the rela-
tive frequency of a better move appearing and can be repre-
sented by x/y where x is the number of times a move mj ,
where j ≥ i, returns a score better than the current best when
in the state ~fi and y is the total number of instances of the
state ~fi, regardless of whether the best move changes. This
off-line procedure of collecting the statistics requires modi-
fying the game-playing program to store the counts, and then
playing a number of games under the same (or longer) time
controls expected.

RankCut tests Π′(fmi) < t for each move, where t ∈
(0, 1) is user-defined. If true, RankCut does not prune the
move but instead does a reduced-depth search and returns

1Available at ftp://ftp.cis.uab.edu/pub/hyatt

the score of that shallow search. The full-width nature of the
reduced-depth search helps to retain tactical reliability while
reducing search effort. RankCut is domain independent as it
does not require any game logic and is easily added to an αβ
search as shown in Pseudocode 1.

Pseudocode 1 RankCut(α, β, depth)
if depth == 0 then

return LeafEvaluate()
pruneRest← false
for move← NextMove() do

r← 0
Compute(~fi)
if (pruneRest || Π′(~fi) < t) then

r← DepthReduction()
pruneRest← true

score← −RankCut(−β,−α, depth− 1− r)
if α < score then

pruneRest← false
α← score

if score ≥ β then
return score

return score

The main modifications to the αβ algorithm are the test
of Π′(~fi) and computations of ~fi. Prior to making a move,
RankCut tests Π′(~fi) < t and if true, makes a reduced-depth
search. Otherwise, the usual αβ algorithm is executed.

One potential problem is that RankCut assumes the statis-
tics of Π(~fi) collected without forward pruning remain the
same when forward pruning. While our experiments in-
dicate that this assumption is reasonable for practical pur-
poses, one possible solution is to recollect the statistics with
forward pruning until the probabilities stabilize. However,
more experiments are needed to verify this approach.

Implementation in CRAFTY

CRAFTY is a very strong open-source chess engine and its
rating is about 2600 on a 1.2 GHz Athlon with 256MB
of RAM when tested independently by the Swedish Chess
Computer Association, or SSDF2. CRAFTY uses modern
computer chess techniques such as bitboards, 64-bit data
structures, negascout search, killer move heuristics, static
exchange evaluation, quiescence search, and selective ex-
tensions. We incorporated RankCut into CRAFTY Ver-
sion 19.19, which features null move pruning and futility
pruning, and ran all experiments on a PowerMac 1.8GHz.
We will differentiate between the two versions of CRAFTY
when needed in our discussions by calling them ORIGINAL
CRAFTY and RANKCUT CRAFTY.

CRAFTY has 5 sequential phases of move generation –
(1) Principal variation from the previous search depth during
iterative deepening, (2) capture moves sorted based on the
expected gain of material, (3) Killer moves, (4) at most 3
History moves, and (5) the rest of the moves. We modified
CRAFTY so that at phase 4 or the History move phase, it

2Details at http://web.telia.com/∼u85924109/ssdf/

1028

would continue sorting remaining moves according to the
History heuristic until no more suitable candidate was found.

During testing, we discovered that the probability of a bet-
ter move appearing for moves generated in phases before the
History Move phase is always too high to trigger a pruning
decision. RANKCUT CRAFTY saves computational effort
by only starting to forward prune when move generation is
in History move phase.

The probabilities Π′(~fi) were calculated by collecting the
statistics from 50 self-play games, each with a randomly-
chosen opening, where CRAFTY played against itself in a
time control of 80 minutes per 40 moves. The pruning
threshold t and the amount of depth reduction in the shal-
low search were conservatively set at 0.75% and 1 ply, re-
spectively. As we calculated the relative frequencies with a
small set of 50 games, we use the probabilities Π′(~fi) only
if 1,000 or more instances of ~fi were seen to ensure that the
statistics are reliable. The following features ~fi were used:

1. Current depth of search

2. Whether or not player is in check

3. Current move number

4. Number of times the best move has changed

5. Difference between the score of the current best move
from the given α bound (discretised to 7 intervals)

6. Difference between the score of the last move from the
current best move (discretised to 7 intervals)

7. Phase of the move generation (History Moves or Remain-
ing Moves)

CRAFTY uses search extensions to explore promising po-
sitions more deeply. RANKCUT CRAFTY therefore does not
reduce the search depth even when Π′(~fi) < t if CRAFTY
extends the search depth as CRAFTY has signaled that the
current node needs more examination. RANKCUT CRAFTY
is also set to forward prune only nodes that have search
depth, defined as the length of a path from the current node
to the leaf nodes, greater or equal to 7. This is because move
ordering tends to be less reliable when iterative deepening is
initially searching the first few depths. Furthermore, when
searching higher search depths, move ordering also becomes
less reliable when the search is further from the root.

Test Suites We tested RANKCUT CRAFTY with all 2,180
positions from the tactical chess test suites ECM, WAC and
WCS (See Appendix) by searching to fixed depths of 8, 10,
and 12 plies respectively. Table 1 shows the results of these
results and compares them with the results of the ORIGI-
NAL CRAFTY. The last three rows of Table 1 also show the
combined results of the three test suites.

The absolute standard error (Heinz 1999a) of n test posi-
tions with k correct solutions is SE = n×

√
p× (1− p)/n

where p = k/n. The standard error allows us to ascer-
tain whether the errors introduced by the pruning method is
within ‘statistical’ error bounds. The combined results of all
three suites for ORIGINAL CRAFTY in Table 1 shows that
the standard error for “Sum-08”, “Sum-10” and “Sum-12”

are SE8 = 19.6, SE10 = 18.1 and SE12 = 16.7, respec-
tively. RANKCUT CRAFTY, however, solves only 3, 6 and
16 fewer test positions while searching less nodes and tak-
ing less time (with the difference from ORIGINAL CRAFTY
denoted by ∆ columns). Hence all the results of RANKCUT
CRAFTY are within one standard error of the results of the
results of ORIGINAL CRAFTY.

We also tested using the LCT II test (See Appendix),
a set of 35 positions divided into positional, tactical and
end-game positions. The LCT II estimates an ELO rating
for the program based on the solution times. Both ORIG-
INAL CRAFTY and RANKCUT CRAFTY solved the same
28 out of 35 problems, but due to faster solutions, RANK-
CUT CRAFTY obtained a rating 2635 ELO whereas ORIGI-
NAL CRAFTY was estimated at 2575 ELO. During the test,
ORIGINAL CRAFTY searched to an average of 15.7 plies
whereas RANKCUT CRAFTY was able to search to an av-
erage of 16.5 plies, almost 1 ply deeper on average.

Match Games against Original We played RANKCUT
CRAFTY against ORIGINAL CRAFTY with a set of 62-
openings, consisting of 32 openings used in (Jiang & Buro
2003), 10 Nunn positions, and 20 Nunn-II positions (See
Appendix) under the time control of 40 moves/40 minutes.
This 124-game match resulted in a decisive result of +40 -10
=74 or 62.0% in favor of RANKCUT CRAFTY. We will out-
line the statistical tools used in (Heinz 1999b) to show that
this result is statistically significant.

The standard error of a scoring rate w = x/n is s(w) =√
w × (1− w)/n, where x ≤ n is the number of points

scored in a match of n games. Let z% denote the upper crit-
ical value of the standard N(0, 1) normal distribution for a
desired %-level statistical confidence, where z90% = 1.645
and z95% = 1.96. Then w± z%× s(w) is the %-level confi-
dent interval on the real winning probability of a player with
scoring rate w.

We can now derive the %-level confident lower bound on
the difference in real winning probability between two play-
ers of scoring rates w1 = x1/n1, and w2 = x2/n2, where
w1 ≥ w2. Let l% = (w1−z%×s(w1))−(w2+z%×s(w2)).
If l% > 0, we are %-level confident that the player with the
higher scoring rate is indeed stronger than the other.

From above, l95% ≈ 0.099 and therefore we can claim
that RANKCUT CRAFTY is indeed stronger than ORIGINAL
CRAFTY with 95% confidence.

Match Games against FRUIT 2.1 FRUIT is one of the
strongest chess programs in the world. FRUIT 2.2.1 finished
in second place at the 2005 World Computer Chess Cham-
pionships (Björnsson & van den Herik 2005) and obtained a
rating of more than 2800 when tested by SSDF. FRUIT was
an open-source chess engine until Version 2.13. Due to a
lack of time, we could only test the ORIGINAL CRAFTY
and RANKCUT CRAFTY against FRUIT 2.1 with the 32-
openings used in (Jiang & Buro 2003) under blitz time con-
trols of 2 min + 10 sec/move. ORIGINAL CRAFTY lost to
Fruit by +11 -39 =14 or 28.1% and RANKCUT CRAFTY
lost to Fruit by +15 -40 =9 or 30.5%. We are unable to

3Source code is available at http://arctrix.com/nas/fruit/

1029

Original RankCut
Test Suite #Nodes Avg Time (s) #Solved ∆Nodes ∆% ∆Time ∆% ∆Solved
ECM-08 1,170,566,012 1.68 549 -104,561,591 -8.9% -0.03 -1.98% -2
ECM-10 11,641,894,779 15.43 620 -3,636,256,257 -31.2% -3.98 -25.80% -7
ECM-12 88,924,232,803 120.92 678 -36,761,238,388 -41.3% -47.34 -39.15% -13
WAC-08 160,052,139 0.63 289 -11,554,559 -7.2% -0.02 -2.87% -2
WAC-10 1,961,241,110 6.85 294 -667,242,604 -34.0% -1.26 -18.32% 0
WAC-12 13,361,000,868 66.92 297 -4,763,207,469 -35.7% -35.95 -53.72% -1
WCS-08 914,031,896 1.11 840 -96,470,205 -10.6% -0.06 -4.96% 1
WCS-10 9,534,443,036 10.75 863 -2,234,703,349 -23.4% -2.32 -21.60% 1
WCS-12 77,536,489,398 87.36 873 -212,586,355 -36.1% -27.36 -31.31% -2
Sum-08 2,244,650,047 1.27 1678 -212,586,355 -9.5% -0.04 -3.23% -3
Sum-10 23,137,578,925 12.10 1777 -6,538,202,210 -28.3% -2.84 -23.50% -6
Sum-12 179,821,723,069 98.08 1848 -69,528,669,092 -38.7% -36.60 -37.31% -16

Table 1: Comparison of performance in test suites with fixed depths

draw any conclusion based on such a small sample of games
under blitz time controls, but the results suggests that the
performance gains of RANKCUT CRAFTY extend to games
against other chess engines.

Discussion
The results on the test suites and match against ORIGINAL
CRAFTY provide strong evidence that RankCut improves
the performance of CRAFTY. This is significant as CRAFTY
already implements null-move pruning and futility pruning.

We have done some preliminary testing to compare the
performance of Multi-ProbCut (MPC) in CRAFTY (Jiang &
Buro 2003) to RANKCUT CRAFTY, and we are able to show
that RANKCUT CRAFTY outperforms MPC CRAFTY in a
64-game match with a 95%-level confidence. However, as
MPC CRAFTY was based on CRAFTY 18.18 and RANK-
CUT CRAFTY is based on CRAFTY 19.19, we are unable
to draw the conclusion that RankCut is a better forward-
pruning method than Multi-ProbCut in chess. While this
research is necessary to ascertain the effectiveness of each
forward pruning method, we believe that RankCut com-
plements existing forward pruning methods and should be
viewed as a technique to allow game-playing programs to
factor in move order when forward pruning.

RankCut is able to identify when moves generated be-
yond a certain point are not likely to affect the final score,
and therefore we believe that RankCut will benefit game-
playing programs most in games with large branching fac-
tor and where good or bad moves are easily identifiable.
One candidate is the game of Go where the number of le-
gal moves ranges from 100–360 for the opening phase and
most of the middle-game. Another example is the game of
Abalone, a two-player game invented in 1990 by Laurent
Levi and Michel Lalet. Abalone has an average branching
factor of 80 (Aichholzer, Aurenhammer, & Werner 2002)
which places the game-tree complexity of Abalone between
those of chess and Go.

We have done some initial experiments in the game of
Abalone by training a neural network as an leaf evalua-
tion function and implemented RankCut together with αβ

search. Due to the large branching factor of Abalone, αβ
search without forward pruning could only search up to an
average of 4 plies in 1 minute, but is able to search up
to an average of 8 plies in 1 minute with RankCut. Un-
der fixed time limits of 1 minute per move, αβ search
with RankCut was able to beat the commercial version of
ABA-PRO (Aichholzer, Aurenhammer, & Werner 2002),
arguably the strongest Abalone-playing entity, at a fixed
playing level of 9 by +12 -5 =3 in a 20-game series, whereas
αβ search without RankCut lost handily by +2 -15 =5 to
ABA-PRO. However, as this match was not under tourna-
ment conditions, we are unable to draw any concrete con-
clusion on the playing strength of our Abalone program.

Conclusion
In this paper, we introduce RankCut, a domain-independent
forward pruning technique that exploits the move order-
ing that current game-playing programs typically perform
for efficiency in αβ search. RankCut can be implemented
within an existing αβ search, and we successfully imple-
mented RankCut in CRAFTY, an open-source chess-playing
program. Compared to the unmodified version of CRAFTY,
RankCut reduces the game-tree size by 10%-40% for search
depths 8-12 while retaining tactical reliability. After playing
a 124-game match against the original CRAFTY, RankCut
CRAFTY had a winning percentage of 62%. This is despite
the fact that CRAFTY also features null-move pruning and
futility pruning. The simplicity of RankCut makes imple-
mentation in various games easy, and it can even be imple-
mented on top of existing forward pruning techniques.

Acknowledgement
This work is supported in part by an A*Star-NUS Gradu-
ate Fellowship to Yew Jin Lim. We thank Jürg Nievergelt,
Oon Wee Chong and the anonymous referees for their help-
ful comments.

Appendix – Experimental Setup
• Test suites “Encyclopedia of Chess Middlegames” (ECM,

879 positions), “Win at Chess” (WAC, 300 positions), and

1030

“1001 Winning Chess Sacrifices” (WCS, 1001 positions).

• LCT II Test. http://perso.wanadoo.fr/
lefouduroi/test lct native.htm

• Nunn Positions. http://www.chessbaseusa.
com/fritz5/nunnmtch.htm

• Nunn-II Positions. http://www.
computerschach.de/index.php?option=
com remository&Itemid=52&func=
fileinfo&id=3

• The hardware used was a Apple PowerMac Dual 1.8 GHz
PowerPC G5 with 2.25 GB Ram.

• All versions of CRAFTY used the default settings of 3
MB for hash table, and 768KB for pawn hash table. No
endgame database was used.

• Pondering was turned off. CPU time was used during test
suites and elapsed time was used during matches.

References
Aichholzer, O.; Aurenhammer, F.; and Werner, T. 2002.
Algorithmic fun - abalone. Special Issue on Foundations
of Information Processing of TELEMATIK 1:4–6.

Akl, S. G., and Newborn, M. M. 1977. The principle con-
tinuation and the killer heuristic. In ACM Annual Confer-
ence, 466–473.

Beal, D. F. 1980. An analysis of minimax. In Advances in
Computer Chess 2, 103–109. Edinburgh University Press.

Beal, D. F. 1989. Experiments with the null move. In
Advances in Computer Chess 5. Elsevier Science. 65–79.

Berliner, H. J. 1974. Chess as Problem Solving: The
Development of a Tactics Analyzer. Ph.D. Dissertation,
Carnegie-Mellon University.

Björnsson, Y., and Marsland, T. A. 2000a. Risk manage-
ment in game-tree pruning. Inf. Sci 122(1):23–41.

Björnsson, Y., and Marsland, T. A. 2000b. Selective depth-
first search methods. In van den Herik, H. J., and Iida, H.,
eds., Games in AI Research, 31–46.

Björnsson, Y., and van den Herik, H. J. 2005. The 13th

world computer-chess championship. International Com-
puter Games Association Journal 28(3).

Buro, M. 1995. ProbCut: An effective selective exten-
sion of the α−β algorithm. International Computer Chess
Association Journal 18(2):71–76.

Buro, M. 1997. The othello match of the year: Takeshi
murakami vs. logistello. International Computer Chess As-
sociation Journal 20(3):189–193.

Buro, M. 1999. Experiments with Multi-ProbCut and
a new high-quality evaluation function for Othello. In
van den Herik, H. J., and Iida, H., eds., Games in AI Re-
search.

Donninger, C. 1993. Null move and deep search: Selective
search heuristics for obtuse chess programs. International
Computer Chess Association Journal 16(3):137–143.

Goetsch, G., and Campbell, M. S. 1990. Experiments with
the null-move heuristic. In Marsland, T., and Schaeffer, J.,
eds., Computers, Chess, and Cognition. Springer-Verlag.
159–168.
Heinz, E. A. 1998a. Darkthought goes deep. International
Computer Chess Association Journal 21(4):228–244.
Heinz, E. A. 1998b. Extended futility pruning. Interna-
tional Computer Chess Association Journal 21(2):75–83.
Heinz, E. A. 1999a. Adaptive null-move pruning. Inter-
national Computer Chess Association Journal 22(3):123–
132.
Heinz, E. A. 1999b. Self-play experiments revisited. In
van den Herik, J., and Monien, B., eds., Advances in Com-
puter Chess 9, 73–91.
Heinz, E. A. 2000. AEL pruning. International Computer
Games Association Journal 23(1):21–32.
Jiang, A., and Buro, M. 2003. First experimental results
of probcut applied to chess. In van den Herik, H. J.; Iida,
H.; and Heinz, E. A., eds., Advances in Computer Games
Conference 10, 19–31.
Junghanns, A.; Schaeffer, J.; Brockington, M.; Bjornsson,
Y.; and Marsland, T. 1997. Diminishing returns for addi-
tional search in chess. In van den Herik, J., and Uiterwijk,
J., eds., Advances in Computer Chess 8, 53–67. Univ. of
Rulimburg.
Knuth, D. E., and Moore, R. W. 1975. An analysis of
alpha-beta pruning. Artificial Intelligence 6:293–326.
Kocsis, L. 2003. Learning Search Decisions. Ph.D. Dis-
sertation, Universiteit Maastricht, IKAT/Computer Science
Department.
Marsland, T. A. 1986. A review of game-tree pruning.
International Computer Chess Association Journal 9(1):3–
19.
Moriarty, D., and Miikkulainen, R. 1994. Evolving neural
networks to focus minimax search. In Proceedings of 12th
National Conference on Artificial Intelligence (AAAI-94),
1371–1377.
Nau, D. S. 1979. Quality of decision versus depth of search
on game trees. Ph.D. Dissertation, Duke University.
Plaat, A. 1996. Research Re: search & Re-search. Ph.D.
Dissertation, Erasmus University Rotterdam, Rotterdam,
Netherlands.
Reinefeld, A. 1989. Spielbaum Suchverfahren, volume
Informatik-Fachberichte 200. New York, NY: Springer-
Verlag. In german.
Schaeffer, J. 1986. Experiments in Search and Knowledge.
Ph.D. Dissertation, University of Waterloo.
Schaeffer, J. 1989. The history heuristic and alpha-
beta search enhancements in practice. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence PAMI-
11(11):1203–1212.
Tabibi, O. D., and Netanyahu, N. S. 2002. Verified null-
move pruning. International Computer Games Association
Journal 25(3):153–161.

1031

