
Extracting Key-Substring-Group Features for
Text Classification

Dell Zhang
SCSIS

Birkbeck, University of London
London WC1E 7HX, UK

dell.z@ieee.org

Wee Sun Lee
Department of Computer Science and

Singapore-MIT Alliance
National University of Singapore

Singapore 117543

leews@comp.nus.edu.sg

ABSTRACT
In many text classification applications, it is appealing to
take every document as a string of characters rather than a
bag of words. Previous research studies in this area mostly
focused on different variants of generative Markov chain
models. Although discriminative machine learning meth-
ods like Support Vector Machine (SVM) have been quite
successful in text classification with word features, it is nei-
ther effective nor efficient to apply them straightforwardly
taking all substrings in the corpus as features. In this pa-
per, we propose to partition all substrings into statistical
equivalence groups, and then pick those groups which are
important (in the statistical sense) as features (named key-
substring-group features) for text classification. In particu-
lar, we propose a suffix tree based algorithm that can ex-
tract such features in linear time (with respect to the total
number of characters in the corpus). Our experiments on
English, Chinese and Greek datasets show that SVM with
key-substring-group features can achieve outstanding per-
formance for various text classification tasks.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Analy-
sis and Indexing; H.2.8 [Database Management]: Data-
base Applications—Data mining ; I.2.6 [Artificial Intelli-
gence]: Learning; I.5.2 [Pattern Recognition]: Design
Methodology—Classifier design and evaluation; Feature eval-
uation and selection

General Terms
Algorithms, Experimentation.

Keywords
Text Mining, Text Classification, Machine Learning, Feature
Extraction, Suffix Tree.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

1. INTRODUCTION
Text classification (or categorization) [27, 54] via machine

learning [44] is a fundamental technique for information or-
ganization and management.

Traditionally machine learning methods for text classifi-
cation treat every document as a bag of words [27, 40, 54].
However, in many text classification applications, it is ap-
pealing to take every document as a string of characters
[63]. The string-based approaches to text classification have
at least the following potential advantages.

• The sub-word features (e.g., morphological variants)
and super-word features (e.g., phrasal effects) can be
exploited automatically. This is particularly helpful
to non-topical text classification applications, such as
text genre classification [33, 38, 47, 57] and text au-
thorship classification [25, 47, 57].

• The messy and rather artificial problem of defining
word boundaries can be avoided. This is particularly
attractive to text classification for oriental languages
(Chinese, Japanese, etc.) [1, 23, 47], because many
oriental languages do not utilize word delimiters as
whitespace characters in western languages (English,
French, etc.). Although it is possible to perform auto-
matic word segmentation to separate words in oriental
language documents, errors are likely to be brought to
the following stage of text classification because no au-
tomatic word segmentation technique has perfect ac-
curacy. Therefore it is desirable to avoid this interme-
diate step. As Vapnik has pointed out, “When solv-
ing a problem of interest, do not solve a more general
problem as an intermediate step.” [61].

• The non-alphabetical features (e.g., punctuation char-
acters) can be taken into account. This is particu-
larly useful to text classification for spam filtering, be-
cause many spam emails try to disguise themselves
using non-alphabetical characters. For example, spam
emails may use “V1a.gr.a” instead of “Viagra” to cheat
the spam filters.

• Different types of documents (e.g, Web pages, emails,
chat history) can be dealt with in a uniform way. This
is probably beneficial if we want to add text classifica-
tion function to “desktop search” tools (such as those
from Google, Microsoft and Yahoo!) so that all docu-
ments in a PC can be categorized automatically.

Figure 1: Different kinds of text classification.

Previous research studies on string-based text classifica-
tion mostly focused on different variants of generative Markov
chain models [42]. However, generative learning methods are
often inferior to discriminative learning methods, in terms
of classification performance.

Although discriminative machine learning methods like
Support Vector Machine (SVM) [15, 24, 31, 53, 55] and
AdaBoost [52, 51] have been quite successful in text classifi-
cation with word features, it is neither effective nor efficient
to apply them straightforwardly taking all substrings in the
corpus as features.

In this paper, we propose to partition all substrings into
statistical equivalence groups, and then pick those groups
which are important (in the statistical sense) as features
(named key-substring-group features) for text classification.
In particular, we propose a suffix tree [21] based algorithm
that can extract such features in linear time (with respect
to the total number of characters in the corpus). Thus dis-
criminative machine learning methods are enabled to work
on string representations of documents. In other words, this
paper focuses on quadrant IV in Figure 1. Our experiments
on English, Chinese and Greek datasets show that SVM
with key-substring-group features can achieve outstanding
performance for various text classification tasks.

In the rest of this paper, we first survey related works (in
section 2), then propose our idea and algorithm for extract-
ing key-substring-group features (in section 3), later present
experimental results to show the effectiveness and efficiency
(in section 4), finally make concluding remarks (in section
5).

2. RELATED WORKS

2.1 The Generative Approach
The generative approach to string-based text classifica-

tion assumes that each document is generated by a Markov
chain model [42] according to its class. For each class C, a
Markov chain model MC is constructed using the collection
of training documents, then a test document d is classified
to arg maxC Pr[C|d], where Pr[C|d] can be computed using
the Bayes’s rule and Pr[d|C] given by MC .

Markov chain models could be in fixed order/memory or
variable order/memory.

Markov chain models in fixed order n are usually called
n-gram language models [20, 50] in the field of natural lan-

guage processing. The n-gram language modeling technique
has been used extensively in speech recognition for decades
[32], and recently in information retrieval [48, 36, 70]. Most
occurrences of the term “n-gram” in the natural language
processing literature refer to a continuous segment of n words,
but in this paper we focus on character-level n-grams, i.e.,
character strings of fixed length n. Peng et al. have tried
character-level n-gram modeling for various text classifica-
tion tasks [47]. To achieve a decent performance, one needs
to choose an appropriate order n and employ a good smooth-
ing method [71, 10].

Markov chain models in variable order adjust the memory
length according to the context, hence they are much more
flexible and robust than fixed order Markov chain models.
The amnesic probabilistic automata [49] aka PST (proba-
bilistic suffix tree or prediction suffix tree), text compression
[3] methods including PPM (Predication by Partial Match-
ing) [14] and PPM* [13] are all in the family of variable order
Markov models. PST have been applied to gene/protein se-
quence clustering [66] and spam filtering [45]. Researchers
have tried to do text classification by using PPM, PPM*
and other text compression methods [5, 18, 43, 58, 64].

2.2 The Discriminative Approach
In contrast to generative learning methods, discrimina-

tive learning methods do not posit a generative model, but
attempt to find the optimal classification function directly.
Previous studies have consistently shown that discriminative
learning methods, particularly SVM, can achieve better per-
formance than generative learning methods in word-based
text classification [17, 29, 67].

The discriminative approach to string-based text classifi-
cation attempts to utilize the substrings of a document as its
features. However, a document of length |d| has |d|(|d|+ 1)/2
substrings in total. The number of distinctive substrings in
a reasonable size corpus would be extremely large. Conse-
quently it would be impractical to enumerate all substrings
in a corpus explicitly. This problem prohibits the applica-
tion of most discriminative learning methods to string-based
text classification.

2.2.1 String Kernel
SVM can overcome the problem of high dimensionality via

the so-called kernel trick “which permits the computation
of dot products in high-dimensional feature spaces, using
simple functions defined on pairs of input patterns.” [53].
SVM only require to know the dot product between any
pair of feature vectors which could be computed via kernel
functions, thus remove the need to express high-dimensional
feature vectors explicitly. The idea of string kernel1 [55] is
to define the kernel between a pair of documents to be the
weighted sum of their common substrings (of any length)
which is actually the dot product between their feature vec-
tors, if every distinctive substring is considered as a feature.
To our knowledge, SVM with string kernel is the only exist-

1There are two kinds of “string kernel” in the machine learn-
ing literature. One uses all the continuous substrings of doc-
uments as features (e.g., in [62]), while the other also uses
non-continuous substrings, aka, sub-sequences (e.g., in [41]).
To avoid confusion, we would like to call the latter sequence
kernel. In this paper, In this paper we focus on string kernel
(defined on continuous substrings) because they are compu-
tationally more efficient than sequence kernel, though we do
compare with sequence kernel in our experiments.

ing technique that can perform string-based text classifica-
tion in a discriminative way.

In spite of the success of SVM with words-based kernels,
SVM with string kernel has not become popular for text
classification tasks. On the one hand, the computational
efficiency of string kernel is still not comparable to its words-
based counterparts, though fast string kernel algorithms via
dynamic programming [41], trie [55] or suffix tree [62] can
accelerate the computation speed to some degree. On the
other hand, string kernel has not shown text classification
performance that is as good as those of words-based kernels
[41]. The effectiveness of string kernel might be impaired by
the following factors.

Firstly, it is known that string kernel leads to the ridge
problem [24] when applied to natural language documents,
i.e., kernel values between almost identical documents are
much larger than those between different documents. A doc-
ument of length |d| has at least |d|(|d|+ 1)/2 matches of sub-
strings with itself. However, even if two documents of length
|d| share all words (with average length |w|) but in different
orders, we have approximately |w|(|w|+ 1)/2 × (|d|/|w|) =
|d|(|w|+ 1)/2 matches only, where |w| � |d|. Thus the
Gram matrix has a dominant diagonal, which is generally
considered problematic.

Secondly, string kernel utilizes all distinctive substrings in
the corpus as features, therefore the redundancy of features
is quite high, which is likely to hurt the performance of SVM
in text classification [19].

Furthermore, string kernel weights different substring fea-
tures only according to their lengths. Since the number
of substring features used implicitly in string kernel is ex-
tremely large, it would be infeasible to apply effective feature
selection techniques(using χ2 or information gain, etc.) [68,
19], feature weighting techniques (such as TF×IDF [60, 2]),
or advanced kernel functions [28, 35, 72].

3. KEY-SUBSTRING-GROUP FEATURES
A corpus D = {d1, d2, ..., dm} of size n (i.e.,

Pm
k=1 |dk| =

n) contains about n(n + 1)/2 substrings. Our most impor-
tant insight comes from the fact that these substrings could
be divided into statistical equivalence groups. All the sub-
strings in such an equivalence group have exactly identical
distribution in the corpus, so it is not necessary to distin-
guish among them for statistical machine learning. That is
to say, a group of substrings could be taken in whole as a
single feature. To further reduce the dimension of the fea-
ture space, we filter the substring-groups by some statistical
criteria. The suffix tree [21] data structure, which is exten-
sively used in string data indexing and querying, makes it
possible to extract this sort of features very efficiently.

In order to explain this, we first review the suffix tree
data structure (in section 3.1), then propose the idea of
key-substring-group features (in section 3.2 and 3.3), finally
present the feature extraction algorithm and its time com-
plexity analysis (in section 3.4).

3.1 Data Structure

Definition 1. [21] Consider a string S of n characters:
S = c1c2...cn. The suffix tree T for S is a compacted trie
[34] that stores all suffixes of S. Specifically, T is a rooted
directed tree with exactly n leaves numbered 1 to n. Let r
denote the root of T . Each internal node other than r has at

Figure 2: The suffix tree for string xabxa$.

least two children and each edge is labeled with a nonempty
substring of S. No two edges out of a node can have edge-
labels beginning with the same character. For any leaf i, the
concatenation of the edge-labels on the path from r to leaf
i exactly spells out the suffix of S that starts at position i,
i.e., S[i..n] = cici+1...cn. To guarantee that a suffix tree for
any string S actually exists, every string is assumed to end
with a special termination character $.

Theorem 1. [21] A suffix tree T has at most n internal
nodes.

Definition 2. [21] The label of a path in T from the root
r that ends at a node is the concatenation, in order, of the
substrings labeling the edges of that path. The path-label
of a node v in T is the label of the path from r to v. A
path from r that ends in the middle of an edge (u, v) splits
the label on (u, v) at a designated point. Define the label
of such a path as the path-label of u concatenated with the
characters on edge (u, v) down to the designated point.

Theorem 2. [21] Given an arbitrary string P , we can
find all occurrences of P in S in O(|P |) time taking advan-
tage of the suffix tree T for S [21]. This is done by matching
the characters of P along the unique path in T until no more
matches are possible or P is exhausted. In the former case,
P does not appear anywhere in S. In the latter case, every
leaf in the subtree below the point of the last match is num-
bered with a starting location of P in S, and every starting
location of P in S numbers such a leaf. If the last match
point is in the middle or at the lower end of an edge (u, v)
(where u is the parent of v), we define P = u and P = v.

Theorem 3. [21, 62] If P is a substring of S, the occur-
rence frequency of P in S would be equal to the number of
leaves in the subtree of T rooted at P .

Definition 3. [21] For an internal node v (other than r) in
T with path-label xα, where x denotes a single character and
α denotes a (possibly empty) substring, if there is another
node s(v) with path-label α in T , then a pointer from v to
s(v) is called a suffix link.

For example, the suffix tree for string xabxa$ is shown
in Figure 2. The substring x must occur twice because the
subtree under x (the node at the end of path xa) has two
leaves. There are two suffix links: one from the node with
path-label xa to the node with path-label a, and the other
from the node with path-label a to the root node r.

Theorem 4. [21] For any node v (other than r) in T
with path-label xα where x denotes a single character and
α denotes a (possibly empty) substring, there must exist a
unique node s(v) with path-label α in T . If v is an internal
node, we can jump from v to s(v) in constant time via the
suffix link between them. If v is a leaf, we can jump from v
to s(v) in constant time through the so-called “skip/count”
trick.

Theorem 5. [21] Ukkonen’s algorithm [59] can construct
the suffix tree T for a string S of length n, along with all its
suffix links, in O(n) time.

Definition 4. [21] A generalized suffix tree can be con-
structed for a set of strings, i.e., a corpus, where each suffix
of each string corresponds to a leaf.

3.2 Substring-Groups
The huge number of substrings in the training corpus D is

an obstacle to making use of discriminative learning meth-
ods for text classification. However, by examining the suffix
tree T for D, we see that all substrings of D could be clus-
tered into a relatively small number of equivalence groups,
according to their match points in T .

Definition 5. Each substring P in D must have a match
point in T , hence correspond to a node P . We define the
substring-group SGv corresponding to a node v in T to be
the set of substrings {Pj |Pj = v}.

Our idea is to take the substring-groups rather than indi-
vidual substrings as features which would have been compu-
tationally expensive. The reduction of the computation over
substrings to a computation over groups is made possible by
the following theorems.

Theorem 6. The substrings in a group SGv have exactly
identical distribution over D. That is to say, if a substring
P ∈ SGv occurs in a document d ∈ D for f times, any other
substring P ′ ∈ SGv must also occur in that document d for
f times.

Proof. This could be proved straightforwardly using De-
finition 1 and Theorem 3.

Almost all machine learning [44] methods for text classi-
fication only require the statistics of features, such as term
frequency (TF) and document frequency (DF), to train clas-
sifiers. According to the above Theorem, it is not necessary
to distinguish among substrings in one group for (statisti-
cal) machine learning. That is to say, such a substring-group
could be taken in whole as a single feature. Note that this
strategy would also help to solve the ridge problem and the
high-redundancy problem of string kernel (Section 2.2.1).

Since all substrings in a group SGv have the same oc-
currence frequency in D, we also call that frequency the
occurrence frequency of SGv, denoted by freq(SGv). From
Theorem 3, we know that freq(SGv) equals to number of
leaves in the subtree of T rooted at v.

Theorem 7. The substring-groups corresponding to the
nodes in T (other than r) partition the set of all substrings
in D.

Proof. There are two parts of this argument: every sub-
string belongs to at most one group; and every substring
belongs to at least one group. The former could be proved
by contradiction using Definition 1, and the latter is implied
by Theorem 2.

Theorem 8. Suppose the corpus D = {d1, d2, ..., dm} is
of size n (i.e.,

Pm
k=1 |dk| = n). Then there are n trivial

groups whose substrings occur only once in D, and at most
n− 1 non-trivial groups.

Proof. It can be easily shown that the trivial groups
correspond to leaves in T , and the non-trivial groups corre-
spond to internal nodes (other than r) in T . The suffix tree
T for D has n leaves according to Definition 1, and at most
n − 1 internal nodes (other than r) according to Theorem
1.

Although there are about n(n+1)/2 substrings in a given
corpus D of size n, there are only n trivial substring-groups
and n − 1 non-trivial substring-groups. Moreover, it is ac-
tually not necessary to include trivial substring-groups as
features, because they occur only once in the corpus so they
won’t be useful in learning classifiers.

To sum up, we can significantly reduce the potential di-
mension of feature space by taking the substring-groups
rather than individual substrings as features.

These distribution of substring-groups seem to meet the
Zipf’s Law [74, 60, 30] like words in natural language doc-
uments as shown in our experiments (see section 4), which
implies that it is plausible to regard them as pseudo-words.

3.3 Key-Substring-Groups
To further reduce the dimension of the feature space, we

filter the substring-groups by the following criteria.

-l : the minimum frequency. A substring group SGv is not
taken as a feature, if it occurs less than l times in the
corpus.

-h : the maximum frequency. A substring group SGv is not
taken as a feature, if it occurs more than h times in
the corpus.

-b : the minimum number of branches (children). A sub-
string group SGv is not taken as a feature, if its corre-
sponding node v has less than b branches (children).

-p : the maximum parent-child conditional probability. A
substring group SGu is not taken as a feature, if the
probability Pr[SGv|SGu] = freq(SGv)/freq(SGu) ≥
p, where u is the parent node of v.

-q : the maximum suffix-link conditional probability. A
substring group SGs(v) is not taken as a feature, if the
probability Pr[SGv|SGs(v)] = freq(SGv)/freq(SGs(v))
≥ q, where the suffix link of v points to s(v).

The first and second criteria (-l and -h) are due to the
fact that in natural language documents the words with very
low or very high frequencies usually have little discrimina-
tion power [60].

The third criterion -b, which is actually equivalent to the
number of possible unique characters following SGv, par-
tially reflects the contextual dependency of the substrings

in that group. The more unique characters following a sub-
string, the more contextual independent it is, hence the more
suitable to be taken as a feature.

The last two criteria (-p and -q) aim at removing highly
redundant features. In fact, the probability Pr[SGv|SGu]
is proportional to the mutual information [12, 46] between
SGv and SGu, while the probability Pr[SGv|SGs(v)] is pro-
portional to the mutual information [12, 46] between SGv

and SGs(v). If two substring groups have a high mutual in-
formation, it should be sufficient to include just one of them
as a feature.

The frequency information required by the above criteria
can be computed efficiently using T , (Theorem 3).

Filtering substring groups by these five criteria not only
reduces the dimension of feature space so as to improve ef-
ficiency, but also helps to solve the ridge problem and the
high-redundancy problem of string kernel (Section 2.2.1).
Moreover, since the number of key-substring-group features
is relatively small, some effective feature weighting tech-
niques (such as TF×IDF [60, 2]) and advanced kernel func-
tions [28, 35, 72] can be applied easily, as in words-based
text classification.

We call the selected substring-groups key-substring-groups
because they are statistically critical. We propose to use
these key-substring-groups as features to facilitate discrimi-
native learning for string-based text classification.

The above feature selection criteria are unsupervised: they
do not exploit the class labels of documents. It is possible to
use more effective supervised feature selection criteria like
χ2 or information gain [68, 19] afterward.

Another good unsupervised feature selection criterion is
the document frequency (DF) [68]. We are able to count
the DF for every substring in linear time taking advantage
of constant-time Least Common Ancestor (LCA) algorithm
[4, 21], as in [65], though we omit the details here due to the
space limit.

Our idea about key-substring-groups has been partially
inspired by the works on suffix tree (or suffix array or PAT
tree) based key-phrase extraction [8, 11, 37] and document
clustering [69, 73]. The essential difference is that we do not
care about whether the extracted key-substring-groups are
semantically meaningful or not. In contrast, our concern is
the utility of key-substring-groups as features for text clas-
sification.

3.4 Algorithm
We propose a feature extraction algorithm for key-substring-

group features based on suffix tree [21], as shown in Figure
3. It converts each document in the training2 corpus to a
bag of key-substring-groups. The source code will be made
open3.

Theorem 9. The key-substring-group extraction algorithm
has linear time complexity O(n), where n is the number of
characters in the corpus.

Proof. The construction of the suffix tree T using Ukko-
nen’s algorithm takes O(n) time, according to Theorem 5.
Then, each of the three preparation sub-routines perform a

2With some little trick as in the matching statistics algo-
rithm [9, 62], the proposed feature extraction algorithm
could also handle the unseen test documents, though we
omit the details here due to the space limit.
3http://www.dcs.bbk.ac.uk/∼dell/

Input: a training corpus D; a set of parameters l, h, b, p and q.
Output: a bag of key-substring-groups for each document d ∈ D.

// using Ukkonen’s algorithm
construct the suffix tree T for D;
// assuming the root node of T is r

void count_freq(tree T, node v)
{

freq[v] = stree_get_num_leaves(T, v);
for (each child c of node v) {

count_freq(T, c);
freq[v] += freq[c];

}
}

count_freq(T, r); // recursively

void select_feature(tree T, node v)
{

selected[v] = 1;
if (v is the root of T) {

selected[i] = 0;
}
else {

if ((freq[id] < l) || (freq[id] >= h))
selected[v] = 0;

if (stree_get_num_children(T, v) < b)
selected[v] = 0;
node p_v = stree_get_parent(T, v);
if (freq[v]/freq[p_v] >= p)

selected[p_v] = 0;
node s_v = stree_get_suffix_link(T, v);
if (freq[v]/freq[s_v] >= q)

selected[s_v] = 0;
}
for (each child c of node v)

select_feature(c);
}

select_feature(T, r); // recursively

void accumulate_feature(tree T, node v)
{

if (selected[v])
add i to feature_set[v];

for (each child c of node v) {
if (selected[v])

add i to feature_set[c];
accumulate_feature(T, c);

}
}

accumulate_feature(T, r); // recursively

// d --> a bag of key-substring-groups
for (each d in D) {

// match the whole string d to T to get to
// the node where the first suffix ends
stree_match(T, d, length(d), &v, &pos);
output feature_set[v];
for (int i=2; i<=length(d); i++) {

next_v = stree_get_suffix_link(T, v);
// next_v is the node where the i-th suffix ends
v = next_v;
output feature_set[v];

}
}

Figure 3: The key-substring-group feature extrac-
tion algorithm.

recursive traverse (depth-first-search) of T . Since T has n
leaves and at most n− 1 internal nodes according to Defini-
tion 1 and Theorem 1, a traverse takes O(n) time. The con-
version from a document d to a bag of key-substring-groups
takes O(|d|) time, because it processes |d| suffixes each in
O(1) time according to Theorem 4. The trick here is to take
full advantage of the suffix links to move from one suffix to
the next suffix. Therefore the total time for conversion is
O(
Pm

k=1 |dk|) = O(n). In summary, the time complexity
of the proposed key-substring-group extraction algorithm is
O(n).

The above theorem indicates that the feature extraction
algorithm is efficient and scalable, which has been confirmed
by our experiments.

4. EXPERIMENTS
To evaluate our proposed approach, we conducted four ex-

periments using SVM with key-substring-group features: (1)
English text topic classification; (2) Chinese text topic clas-
sification; (3) Greek text authorship classification; and (4)
Greek text genre classification. In each experiment, we first
extracted the key-substring-group features by the proposed
linear-time algorithm4. The algorithm’s parameters l, h, b,
p and q were tuned in the following way. Initially we took
the default values for those parameters which would not fil-
ter any nontrivial substring-group out. Then we reduced the
number of features gradually by adjusting the parameters,
while keeping an eye on the cross-validation performance on
the training data. Finally we selected the parameter con-
figuration that could achieve a good trade-off between the
number of features and the cross-validation performance.
After the key-substring-group features were extracted, we
weighted every feature value using the classic TF×IDF [60,
2] scheme, and normalized all feature vectors to unit length.
LibSVM5 [7] was employed as the implementation of SVM6.
We chose the linear kernel and set all its other parameters to
their default values. In all these experiments, our proposed
approach worked very well.

4.1 English Text Topic Classification
We did the English text topic classification experiment

on the ten largest categories of the Reuters-21578 dataset7

(with the “ApteMod” training/testing split). Note that this
dataset is widely regarded as the home-ground for words-
based text classification but not string-based text classifica-
tion.

All documents were pre-processed simply by lowercasing
every alphabetical characters (letters) and converting every
block of consecutive non-alphabetical characters to one “space”
character . Such pre-procession could be done easily on-
the-fly.

4In English or Greek text, words are separated by
whitespace characters or punctuations. We uncondition-
ally discarded every key-substring-group that does not start
from the beginning of a word, in experiments (1), (3) and
(4). This trick slightly increased the program speed without
affecting the performance.
5http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
6LibSVM uses the one-vs-one ensemble method [26] for
mutual-exclusive multi-class classification tasks, i.e., in ex-
periments (2), (3) and (4).
7http://www.daviddlewis.com/resources/testcollections/
reuters21578/

Figure 4: The log(rank) ∼ log(frequency) plot of
the substring-groups in the Reuters-21578 top10
dataset.

F1 BEP
earn 98.3% 97.9%
acq 96.8% 97.4%
money-fx 84.0% 84.4%
grain 92.5% 94.6%
crude 89.4% 89.4%
trade 90.2% 91.5%
interest 81.5% 87.0%
ship 81.9% 85.9%
wheat 81.8% 86.5%
corn 87.1% 83.9%
macro-avg. 88.3% 89.8%
micro-avg. 93.9% 94.4%

Table 1: The performance of linear kernel SVM with
key-substring-group features on the Reuters-21578
top10 dataset.

The log(rank) ∼ log(frequency) plot of substring-groups,
i.e., suffix tree nodes, is approximately a straight line, as
shown in Figure 4. It indicates that the distribution of
substring-groups roughly follows Zipf’s law [74], like words
in natural language documents do [60, 30].

We set the feature extraction parameters as -l 80 -h

8000 -b 8 -p 0.8 -q 0.8. The dataset contains 4, 460, 825
characters, therefore the total number of substrings would
be more than 9 × 1012. However, with the above setting
of parameters, only 6,055 key-substring-group features were
extracted and then utilized for text classification.

The text classification performance of our proposed ap-
proach (linear kernel SVM with key-substring-group fea-
tures), measured by macro-averaged and micro-averaged [67]
F1 measure and precision/recall Break Even Points (BEP)
[2, 31], is shown in Table 1, and compared with other state-
of-art approaches in Table 2. Our approach achieved the
best performance on this dataset.

To examine the robustness of our approach, we vary the
chosen parameter configuration by changing one parameter
value at a time and show its influence to the number of
features and the text classification performance in Table 3.
It seems that a decent performance could be achieved across
a wide range of parameter settings.

The linear time key-substring-group feature extraction al-

ma-F1 mi-F1 ma-BEP mi-BEP
Näıve Bayes —— —— 69.8% [29] 72.0% [29]
Rocchio —— —— 79.1% [29] 79.9% [29]
Decision Tree (C4.5) —— —— 77.8% [29] 79.4% [29]
k-NN —— —— 82.1% [29] 82.3% [29]
Language Modeling (word n-gram) —— 81.5% [47] —— ——

words-based SVM (polynomial kernel) —— —— —— 86.0% [29]
SVM (rbf kernel) —— —— —— 86.4% [29]
SVM (linear kernel) 85.3% [41] —— 87.1% [17] 92.0% [17]
SVM (word sequence kernel) 80.6% [6] 90.5% [6] 83.1% [6] 91.5% [6]
Language Modeling (character n-gram) —— 80.3% [47] —— ——
Data Compression (PPMC Order 2) —— —— 74.3% [18] ——
DVMM (VMM with discriminative feature selection) —— —— —— 87.0% [56]

string-based SVM (character sequence kernel) 77.3% [41] —— —— ——
SVM (character n-gram, i.e., fixed-length string kernel) 80.6% [41] —— —— ——
SVM (linear kernel, key-substring-group features) 88.3% 93.9% 89.8% 94.4%

Table 2: Comparing the experimental results of our proposed approach — linear kernel SVM with key-
substring-group features — and some representative existing approaches.

gorithm did show very high efficiency in practice. The pro-
gram implemented in C++ took less than 30 seconds on an
ordinary Pentium-4 PC to process the Reuters-21578 top10
dataset. LibSVM also ran very fast, because the number of
features was controlled to be relatively small.

4.2 Chinese Text Topic Classification
We did the Chinese text topic classification experiment

on the TREC-5 People’s Daily News dataset, as in [22, 23].
This dataset is a subset of the Mandarin News Corpus an-
nounced by the Linguistic Data Consortium (LDC) in 1995.
There are six topic categories: (1) Politics, Law and Society;
(2) Literature and Arts; (3) Education, Science and Culture;
(4) Sports; (5) Theory and Academy; (6) Economics. Each
category contains 500 training documents and 100 test doc-
uments. All documents were cleaned by removing SGML
tags and merging continuous whitespace characters.

Setting the feature extraction parameters as -l 20 -h

8000 -b 8 -p 0.8 -q 0.8, we got a classification accuracy
of 87.3% (524/600) and a micro-averaged [67] F1 measure
[2] of 87.3%. For comparison, He et al. reported a micro-
averaged F1 measure of about 82% also using SVM but after
word segmentation [22, 23]; Peng et al. reported a micro-
averaged F1 measure of 86.7% using character-level n-gram
language model [47].

4.3 Greek Text Authorship Classification
We did the Greek text authorship classification experi-

ment on a dataset used by Stamatatos et al. [57]. This
dataset consists of 200 Greek articles written by 10 different
modern Greek authors: (1) S. Alaxiotis; (2) G. Babiniotis;
(3) G. Dertilis; (4) C. Kiosse; (5) A. Liakos; (6) D. Maroni-
tis; (7) M. Ploritis; (8) T. Tasios; (9) K. Tsoukalas; and (10)
G. Vokos. There are 20 articles from each author — 10 ar-
ticles for training and another 10 articles for testing (as in
[57]).

Since this dataset is not large, we just used the default
feature extraction parameter configuration which would not
filter any nontrivial substring-group out. The classification
accuracy we obtained is 92% (92/100). For comparison,
Stamatatos et al. reported a classification accuracy of 72%
using deep natural language processing [57]; Peng et al. re-

-l #f ma-F1 mi-F1 ma-BEP mi-BEP
3 18386 87.7% 93.8% 89.9% 94.5%

50 8294 87.8% 93.8% 90.1% 94.4%
80 6055 88.3% 93.9% 89.8% 94.4%

100 5255 88.4% 93.9% 89.9% 94.4%
500 1722 85.0% 92.4% 86.8% 92.8%
-h #f ma-F1 mi-F1 ma-BEP mi-BEP

500 4333 84.0% 92.0% 86.1% 92.7%
1000 5069 87.6% 93.2% 88.9% 93.9%
5000 5945 88.4% 94.0% 90.1% 94.6%
8000 6055 88.3% 93.9% 89.8% 94.4%

20000 6173 88.1% 93.7% 89.3% 94.2%
-b #f ma-F1 mi-F1 ma-BEP mi-BEP
2 9396 88.4% 94.1% 90.5% 94.8%
8 6055 88.3% 93.9% 89.8% 94.4%

16 2866 87.6% 93.8% 89.9% 94.5%
20 1391 87.4% 93.3% 88.8% 93.8%
-p #f ma-F1 mi-F1 ma-BEP mi-BEP
0.2 999 85.5% 90.8% 86.9% 91.0%
0.4 3628 88.2% 94.1% 89.4% 94.5%
0.8 6055 88.3% 93.9% 89.8% 94.4%
1.0 6397 88.0% 93.8% 90.0% 94.5%
-q #f ma-F1 mi-F1 ma-BEP mi-BEP
0.2 4609 88.6% 93.9% 89.8% 94.4%
0.4 5349 88.4% 93.9% 89.7% 94.3%
0.8 6055 88.3% 93.9% 89.8% 94.4%
1.0 6406 88.4% 94.0% 89.9% 94.5%

Table 3: The influence of key-substring-group fea-
ture extraction parameters to the number of fea-
tures (#f) and the text classification performance.

ported a classification accuracy of 90% using character-level
n-gram language model [47].

4.4 Greek Text Genre Classification
We did the Greek text genre classification experiment on

a dataset used by Stamatatos et al. [57]. This dataset con-
sists of 200 Greek articles in 10 different genres: (1) press
editorial; (2) press reportage; (3) academic prose; (4) official
documents; (5) literature; (6) recipes; (7) curriculum vitae;
(8) interviews; (9) planned speeches; (10) broadcast news.
There are 20 articles in each genre — 10 articles for training
and another 10 articles for testing (as in [57]).

Since this dataset is not large, we just used the default
feature extraction parameter configuration which would not
filter any nontrivial substring-group out. The classification
accuracy we obtained is 94% (94/100). For comparison,
Stamatatos et al. reported a classification accuracy of 82%
using deep natural language processing [57]; Peng et al. re-
ported a classification accuracy of 86% using character-level
n-gram language model [47].

5. CONCLUSIONS
The motivation of this work is to make discriminative

learning methods work for string-based text classification.
Our proposed key-substring-group feature extraction tech-
nique solves the effectiveness and efficiency problems of string
kernel, and opens numerous promising directions. SVM with
key-substring-group features has exhibited very promising
text classification performance, independent of language and
task. Notably it can outperform traditional words-based
text classification methods even on the Reuters-21578 top10
dataset, which is widely regarded as the home-ground of
the latter. Therefore it is reasonable to believe that key-
substring-group features are able to excel in various non-
traditional text classification tasks that are naturally suit-
able to string-based approaches, e.g., spam filtering [5, 45].
Obviously key-substring-group features could also be used
for text clustering [16, 69]. It is possible to go even further
to consider applications in other areas like gene/protein se-
quence classification/clustering [39, 66].

6. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful com-

ments.

7. REFERENCES
[1] A. N. Aizawa. Linguistic techniques to improve the

performance of automatic text categorization. In
Proceedings of the 6th Natural Language Processing
Pacific Rim Symposim (NLPRS), pages 307–314,
Tokyo, Japan, 2001.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley, 1999.

[3] T. C. Bell, J. G. Cleary, and I. H. Witten. Text
Compression. Prentice-Hall, 1990.

[4] M. A. Bender and M. Farach-Colton. The LCA
problem revisited. In Proceedings of the 4th Latin
American Symposium on Theoretical Informatics
(LATIN), pages 88–94, 2000.

[5] A. Bratko and B. Filipic̈. Spam filtering using
compression models. Technical Report IJS-DP-9227,

Department of Intelligent Systems, Joz̈ef Stefan
Institute, Ljubljana, Slovenia, 2005.

[6] N. Cancedda, E. Gaussier, C. Goutte, and J.-M.
Renders. Word-sequence kernels. Journal of Machine
Learning Research, 3(Feb):1059–1082, 2003.

[7] C.-C. Chang and C.-J. Lin. LIBSVM : a library for
support vector machines, 2001.

[8] C.-H. Chang and S.-C. Lui. IEPAD: Information
extraction based on pattern discovery. In Proceedings
of the 10th International Conference on World Wide
Web (WWW), pages 681–688, Hong Kong, 2001.

[9] W. I. Chang and E. L. Lawler. Sublinear approximate
string matching and biological applications.
Algorithmica, 12(4/5):327–344, 1994.

[10] S. F. Chen and J. Goodman. An empirical study of
smoothing techniques for language modeling. In
Proceedings of the 34th Annual Meeting on
Association for Computational Linguistics (ACL),
pages 310–318, Morristown, NJ, USA, 1996.
Association for Computational Linguistics.

[11] L.-F. Chien. PAT-tree-based keyword extraction for
Chinese information retrieval. In Proceedings of the
20th Annual ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages
50–58, Philadelphia, PA, 1997.

[12] K. W. Church and P. Hanks. Word association norms,
mutual information and lexicography. In Proceedings
of the 27th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 76–83,
Vancouver, BC, Canada, 1989.

[13] J. G. Cleary and W. J. Teahan. Unbounded length
contexts for PPM. The Comput Journal,
40(2-3):67–75, 1997.

[14] J. G. Cleary and I. H. Witten. Data compression using
adaptive coding and partial string matching. IEEE
Transactions on Communication, 32(4):396–402, 1984.

[15] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines. Cambridge University
Press, Cambridge, UK, 2000.

[16] D. R. Cutting, J. O. Pedersen, D. R. Karger, and
J. W. Tukey. Scatter/gather: A cluster-based
approach to browsing large document collections. In
Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 318–329,
Copenhagen, Denmark, 1992.

[17] S. Dumais, J. Platt, D. Heckerman, and M. Sahami.
Inductive learning algorithms and representations for
text categorization. In Proceedings of the 7th ACM
International Conference on Information and
Knowledge Management (CIKM), pages 148–155,
Bethesda, MD, 1998.

[18] E. Frank, C. Chui, and I. H. Witten. Text
categorization using compression models. In
Proceedings of the Data Compression Conference
(DCC), page 555, Snowbird, UT, 2000.

[19] E. Gabrilovich and S. Markovitch. Text categorization
with many redundant features: Using aggressive
feature selection to make SVMs competitive with
C4.5. In Proceedings of the 21st International
Conference on Machine Learning (ICML), pages
321–328, Banff, Alberta, Canada, 2004.

[20] J. Goodman. A bit of progress in language modeling,
extended version. Technical report, Microsoft
Research, 2001.

[21] D. Gusfield. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[22] J. He, A.-H. Tan, and C.-L. Tan. A comparative study
on Chinese text categorization methods. In
PRICAI’2000 International Workshop on Text and
Web Mining, pages 24–35, Melbourne, Australia, 2000.

[23] J. He, A.-H. Tan, and C. L. Tan. On machine learning
methods for Chinese document categorization. Applied
Intelligence, 18(3):311–322, 2003.

[24] R. Herbrich. Learning Kernel Classifiers: Theory and
Algorithms. MIT Press, Cambridge, MA, USA, 2001.

[25] D. Holmes and R. Forsyth. The federalist revisited:
New directions in authorship attribution. Literary and
Linguistic Computing, 10(2):111–127, 1995.

[26] C.-W. Hsu and C.-J. Lin. A comparison of methods
for multi-class support vector machines. IEEE
Transactions on Neural Networks, 13(2):415–425,
2002.

[27] P. Jackson and I. Moulinier. Natural Language
Processing for Online Applications: Text Retrieval,
Extraction, and Categorization. John Benjamins
Publishing Co, 2002.

[28] T. Jebara, R. Kondor, and A. Howard. Probability
product kernels. Journal of Machine Learning
Research, 5:819–844, 2004.

[29] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on
Machine Learning (ECML), pages 137–142, Chemnitz,
Germany, 1998.

[30] T. Joachims. A statistical learning model of text
classification for support vector machines. In
Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 128–136, New
Orleans, LA, 2001.

[31] T. Joachims. Learning to Classify Text using Support
Vector Machines. Kluwer, 2002.

[32] D. Jurafsky and J. H. Martin. Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics and Speech
Recognition. Prentice Hall, 2000.

[33] B. Kessler, G. Nunberg, and H. Schtze. Automatic
detection of text genre. In Proceedings of the 35th
Annual Meeting of the Association for Computational
Linguistics (ACL) and 8th Conference of the European
Chapter of the Association for Computational
Linguistics (ECACL), pages 32–38, Madrid, Spain,
1997.

[34] D. Knuth. The Art of Computer Programming.
Addison-Wesley, 3rd edition, 1997.

[35] J. D. Lafferty and G. Lebanon. Diffusion kernels on
statistical manifolds. Journal of Machine Learning
Research, 6(Jan):129–163, 2005.

[36] J. D. Lafferty and C. Zhai. Document language
models, query models, and risk minimization for
information retrieval. In Proceedings of the 24th

Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 111–119, Orleans, LA, 2001.

[37] M.-J. Lee and L.-F. Chien. Automatic acquisition of
phrasal knowledge for English-Chinese bilingual
information retrieval. In Proceedings of the 21st
Annual ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages
351–352, Melbourne, Australia, 1998.

[38] Y.-B. Lee and S. H. Myaeng. Text genre classification
with genre-revealing and subject-revealing features. In
Proceedings of The 25th Annual International ACM
SIGIR Conference on Research and Development in
Information (SIGIR), pages 145–150, Tampere,
Finland, 2002.

[39] C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum
kernel: A string kernel for SVM protein classification.
In Proceedings of the 7th Pacific Symposium on
Biocomputing (PSB), pages 566–575, Lihue, HI, 2002.

[40] D. D. Lewis. Naive (Bayes) at forty: The
independence assumption in information retrieval. In
Proceedings of the 10th European Conference on
Machine Learning (ECML), pages 4–15, Chemnitz,
Germany, 1998.

[41] H. Lodhi, C. Saunders, J. Shawe-Taylor,
N. Cristianini, and C. Watkins. Text classification
using string kernels. Journal of Machine Learning
Research (JMLR), 2(Feb):419–444, 2001.

[42] C. Manning and H. Schutze. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge,
MA, 1999.

[43] Y. Marton, N. Wu, and L. Hellerstein. On
compression-based text classification. In Proceedings of
the 27th European Conference on IR Research (ECIR),
pages 300–314, Santiago de Compostela, Spain, 2005.

[44] T. Mitchell. Machine Learning. McGraw Hill,
international edition, 1997.

[45] R. M. Pampapathi, B. Mirkin, and M. Levene. A
suffix tree approach to email filtering, 2005.

[46] A. Papoulis. Probability, Random Variables, and
Stochastic Processes. McGraw Hill, New York, 2nd
edition, 1984.

[47] F. Peng, D. Schuurmans, and S. Wang. Augmenting
Naive Bayes text classifier with statistical language
models. Information Retrieval, 7(3-4):317–345, 2004.

[48] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the 21st Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval (SIGIR), pages 275–281,
Melbourne, Australia, 1998.

[49] D. Ron, Y. Singer, and N. Tishby. The power of
amnesia: Learning probabilistic automata with
variable memory length. Machine Learning,
25(2-3):117–149, 1996.

[50] R. Rosenfeld. Two decades of statistical language
modeling: Where do we go from here? Proceedings of
the IEEE, 88(8):1270–1278, 2000.

[51] R. E. Schapire. The boosting approach to machine
learning: An overview. In MSRI Workshop on
Nonlinear Estimation and Classification, Berkeley,
CA, 2002.

[52] R. E. Schapire and Y. Singer. BoosTexter: A
boosting-based system for text categorization.
Machine Learning, 39(2/3):135–168, 2000.

[53] B. Scholkopf and A. J. Smola. Learning with Kernels.
MIT Press, Cambridge, MA, 2002.

[54] F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47,
2002.

[55] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
2004.

[56] N. Slonim, G. Bejerano, S. Fine, and N. Tishby.
Discriminative feature selection via multiclass variable
memory Markov model. In Proceedings of the 19th
International Conference on Machine Learning
(ICML), pages 578–585, Sydney, Australia, 2002.

[57] E. Stamatatos, N. Fakotakis, and G. Kokkinakis.
Automatic text categorisation in terms of genre and
author. Computational Linguistics, 26(4):471–495,
2000.

[58] W. J. Teahan and D. J. Harper. Using compression
based language models for text categorization. In
J. Callan, B. Croft, and J. Lafferty, editors, Workshop
on Language Modeling and Information Retrieval,
pages 83–88, Carnegie Mellon University, 2001.

[59] E. Ukkonen. On-line construction of suffix-trees.
Algorithmica, 14:249–260, 1995.

[60] C. van Rijsbergen. Information Retrieval.
Butterworths, London, UK, 2nd edition, 1979.

[61] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer-Verlag, 2nd edition, 2000.

[62] S. Vishwanathan and A. Smola. Fast kernels for string
and tree matching. In K. Tsuda, B. Scholkopf, and
J. Vert, editors, Kernels and Bioinformatics. MIT
Press, Cambridge, MA, 2004.

[63] I. H. Witten. Applications of lossless compression in
adaptive text mining. In Proceedings of the 34th
Annual Conference on Information Sciences and
Systems (CISS), Princeton University, New Jersey,
2000.

[64] I. H. Witten, Z. Bray, M. Mahoui, and W. J. Teahan.
Text mining: A new frontier for lossless compression.

In Proceedings of the 1999 Data Compression
Conference (DCC), pages 198–207, Snowbird, Utah,
1999.

[65] M. Yamamoto and K. W. Church. Using suffix arrays
to compute term frequency and document frequency
for all substrings in a corpus. Computational
Linguistics, 27(1):1–30, 2001.

[66] J. Yang and W. Wang. CLUSEQ: Efficient and
effective sequence clustering. In Proceedings of the
19th International Conference on Data Engineering
(ICDE), pages 101–112, Bangalore, India, 2003.

[67] Y. Yang and X. Liu. A re-examination of text
categorization methods. In Proceedings of the 22nd
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 42–49, Berkeley, CA, 1999.

[68] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In Proceedings
of the 14th International Conference on Machine
Learning (ICML), pages 412–420, Nashville, TN, 1997.

[69] O. Zamir and O. Etzioni. Grouper: A dynamic
clustering interface to web search results. Computer
Networks, 31(11-16):1361–1374, 1999.

[70] C. Zhai. Risk Minimization and Language Modeling in
Information Retrieval. PhD thesis, Carnegie Mellon
University, 2002.

[71] C. Zhai and J. D. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Transactions on Information Systems
(TOIS), 22(2):179–214, 2004.

[72] D. Zhang, X. Chen, and W. S. Lee. Text classification
with kernels on the multinomial manifold. In
Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 266–273,
Salvador, Brazil, 2005.

[73] D. Zhang and Y. Dong. Semantic, hierarchical, online
clustering of web search results. In Proceedings of the
6th Asia Pacific Web Conference (APWEB),
Hangzhou, China, 2004.

[74] G. K. Zipf. Human Behaviour and the Principle of
Least Effort. Addison-Wesley, Cambridge, MA, 1949.

