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1 PROOF OF THEOREM 4

We will prove the theorem for the case when H contains
probabilistic hypotheses. The proof can easily be trans-
ferred to the case where H is the labeling set by following
the construction in (Cuong et al., 2013, sup.).

Let H = {hq, ha, ..., h, } with n probabilistic hypotheses,
and assume a uniform prior on them. A labeling is gener-
ated by first randomly drawing a hypothesis from the prior
and then drawing a labeling from this hypothesis. This in-
duces a distribution on all labelings.

We construct k independent distractor instances
r1,T3,...,Tr with identical output distributions for
the n probabilistic hypotheses. Our aim is to trick the
greedy algorithm 7 to select these k instances. Since the
hypotheses are identical on these instances, the greedy
algorithm learns nothing when receiving each label.

Let H(Y7) be the Shannon entropy of the prior label dis-
tribution of any x; (this entropy is the same for all z;).
Since the greedy algorithm always selects the k instances
1, T3, ..., and their labels are independent, we have

Hey(m) = kH(Y7).

Next, we construct an instance xo where its label will deter-
ministically identify the probabilistic hypotheses. Specif-
ically, P[h;(zg) = 4|h;] = 1 for all i. Note that
H(Yy) =Inn.

To make sure that the greedy algorithm 7 selects the
distractor instances instead of zg, a constraint is that
H(Y1) > H(Yy) = Inn. This constraint can be satisfied
by, for example, allowing ) to have n + 1 labels and letting
P[h(x;)|h] be the uniform distribution for all j > 1 and
h € H. In this case, H(Y1) =In(n+ 1) > Inn.

We compare the greedy algorithm 7 with an algorithm 7 4
that selects xq first, and hence knows the true hypothesis
after observing its label.

Finally, we construct n(k — 1) more instances, and the
algorithm 74 will select the appropriate £ — 1 instances
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from them after figuring out the true hypothesis. Let the
instances be {z(; ;) : 1 <i<mnand1 <j<k—1}. Let
Y(’Z?j) be the (random) label of z(; ;) according to the hy-

pothesis h. For all h € H, Y(}l?j) has identical distributions

for1 < j <k — 1. Thus, we only need to specify Y(}il,l)‘

We specify Y({Zl) as follows. 1If h # h;, then let
]P’[Y(’i’l) = 0] = 1. Otherwise, let IP’[Y(’lL 1) = 0] = 0, and
the distribution on other labels has entropy H (th

(1) 2
all hypotheses are defined the same way.

When the true hypothesis is unknown, the distribution for
Y(1,1) has entropy

1 1

H(Yy) = H( =)+ —H(Y{}",),

o
where H(1— 1) is the entropy of the Bernoulli distribution
(1-1,1).

As we want the greedy algorithm to select the dis-
tractors, we also need H(Y1) > H(Y(1,1)), giving

H(Y[',)) < n(H(Y:) ~ H(1 - 1)),

Algorithm 7 4 first selects z, identifies the true hypothe-

sis exactly, and then selects k — 1 instances with entropy

H(Y/}",). Thus,

Hen(7a) = Inn+ (k= )H(Y[Y)).

Hence, we have
Hen[ (7‘(‘) kH(i/l)

Heon(wa) ~ lun+ (k- DHYY)

Set H(Y(}l”l)) ton(H(Y1) — H(1— 1)) — ¢ for some small
constant c¢. The above ratio becomes
kH (Y1)
Inn+(k—1)n(H(Y:)—H(1— 1)) = (k—1)c

Since H(1 — 1) approaches 0 as n grows
and H(Y;)=In(n+1), we can make the ratio
Hepi(7)/Hen(m4) as small as we like by increasing
n. Furthermore, Hen (7)/Hent(ma) > Hent(7)/ Hent(7*).
Thus, Theorem 4 holds.




2 PROOF OF THEOREM 5

It is clear that the version space reduction function f satis-
fies the minimal dependency property, is pointwise mono-
tone and f(0,h) = O for all h. Let zp < dom(D) and
yp & D(xp). From Equation (3), we have

arg max min{ f (dom(D) U {}, D U {(z.)})

— f(dom(D), D)}
= argmfxmyjn f(dom(D) U {z}, DU {(x,y)})

= argmaxmin[l —polyp U {y};ep U{z}]
= argminmaxpo [yp U{y};zp U {z}]

U ; U
= arg min max Polyp Uy} op U {z]
r oy polyp; 2p]
= argminmax pply; x|.
z oy

Thus, Equation (6) is equivalent to Equation (3). To apply
Theorem 3, what remains is to show that f is pointwise
submodular.

Consider f,(S) & f(S,h) for any h. Fix A C B C X
and x € X'\ B. We have

fn(AUA{z}) = fu(4)
= po[h(A); Al = po[h(A U {z}); AU {x}]

= Y M- D> pol¥]
h(A)=h(A) K (A)=h(A)
' (z)=h(zx)
= Zpo = h(A)L(W(x) # h()).
Similarly, we have
fn(BUA{z}) = fn(B)
> polW1L(K (B) = h(B))1(K (x) # h(z)).
h,
Since A C B, all pairs h, b’ such that h’'(B) = h(B) also
satisfy h/(A) = h(A).
Ths, fi,(AU {2}) — fu(4) > fa(BU{z}) — fu(B) and

fn is submodular. Therefore, f is pointwise submodular.

3 PROOF OF THEOREM 7

Consider any prior py such that pg[h] > 0 for all h. Fix
any D and D’ where D' = D U & with £ # 0, and
fix any © € X \ dom(D’). For a partial labeling D, let
zp ¥ dom(D) and yp &f D(zp). We have

A(z|D)
= Enepplfr(dom(D) U {z}, h) —
= Enwpol D polW]L(h, 1)
h(zp)=h(zp)
— Y polW]L(h )]

h'(zp)=h(zp)
h'(z)=h(zx)

= Ehwpo D, polW]L(h, 1)
W (2)#h(x)
= > okl D polW]L(h1).
pp[h]>0 K (zp)=h(zp)
W (2)#h(x)

fr(dom(D), )]

Note that if pp[h] > 0, then

Po [h] Do [h]
pplh] = = :
polyp;Zp]  Xh(ap)—yp Poll]
Thus, A(z|D) =
2 po[h]>0 2= po[r)>0 Polhlpolk']L(h, 1)
W (2)#£h(2)
2 h(wp)=yp Poll]
Zth Z W~D PO [h]po[hl]L(}% h/)
_ ' (z)#h(z)
> h~p Polh]

Similarly, for D', we also have

A(z|D)
2nepr 22w Dolhlpolh1L(h, h')
_ W (z)#h()
>h~pr Polh]
= Z > polhlpo[l1L(h, 1)
Z}LNDIPO ,LND WD
b (z)#h(z)

—Z Zpo polh

h~D h'~D
K (z)#h(x)

L(h,h")1(h = E or b = &)]

where h ~ £ denotes that & is not consistent with £. Now
we can construct the loss function L such that L(h, k') = 0
for all h, b’ satisfying h = &€ or b’ = £. Thus,

TS, o wllmLR )
A = > nop PolF]

From the assumption pg[h] > 0 for all h, we have

S hope polh] < 3 polh]. Thus, A([D') > A(a|D)
and f7, is not adaptive submodular.



4 SUFFICIENT CONDITION FOR
ADAPTIVE SUBMODULARITY OF f;,

From the previous section, let

ey S

h~D h'~D
W (2)#h(2)

polhlpo [h/]L(f% h/)

B 3" 3" polhlpolh)L(h, H)L(h % € or B o €)
h~D p'~D
I (x)#h(2)

Cat N polh] and DNy polh]1(h » E).

h~D h~D

In this section, we allow £ to be empty. Note that

A(z|D) = % and A(z|D') = é:—g. A sufficient con-
dition for f7, to be adaptive submodular with respect to pg

. A A-B .
is that for all D, D', and x, we have 5 2 b This

condition is equivalent to % < %. That means
2 2

w~p DPolhpo[W]L(h,h")
W (z) #h(z)

> n~p Polh]

> hep 2o w~p PolRlpo[W]L(h, h')1(h = E or b = &)
< i (z)#h(x)

B 2o Po[A]1(h < €)

for all D, D’, and x. This condition holds if L is the 0-1
loss. However, it remains open whether this condition is
true for any interesting loss function other than 0-1 loss.

S PROOF OF THEOREM 8

It is clear that ¢, satisfies the minimal dependency property
and Equation (8) is equivalent to Equation (3). It is also
clear that ¢, is pointwise monotone and ¢(f), h) = 0 for
all h. Thus, to apply Theorem 3, what remains is to show
that ¢, is pointwise submodular.

Consider t7, ,(S) ¥ t1(S,h) forany h. Fix AC B C X
and z € X'\ B. We have

tL’h(A U {x}) — tL’h(A)
S el LA el

R/(A)=h(A) h"(A)=h(A)

EDIENEDY

h'(A)=h(A) h'(A)=h(A)
h'(z)=h(z) h"(x)=h(z)

=SS lpolW L B pol
B’ R
1(W/(A) = h(A) and 1" (A) = h(A)) -
1(h'(x) # h(z) or ' (z) # h(x))].

po[h/] L(h/’ h//)po [h//}

Similarly, we have

ton(BU{z}) —tpn(B)
= D> InolW 1 LR ) polh]-
A R
1(h'(B) = h(B) and " (B) = h(B)) -
1(h/(z) # h(x) or B (x) # h(x))].

Since A - B, all pairs h,h
1(W/(B) = Nh(B)and h'(B) = h(B)) =1
1(W(A) = h(A) and B (A) = h(A)) = 1.

Thus, tL7h(AU {x}) 7tL7h(A) > tL,h(BU {:c}) 7tL7h(B)
and tr,j, is submodular. Therefore, ¢, is pointwise sub-
modular.

that
satisfy

such
also

6 POINTWISE SUBMODULARITY OF f,

Consider fr, ,(S) & fr(S,h) forany h. Fix AC BC X
and z € X'\ B. We have

fL,h(A U {:L‘}) - fL,h(A)
> po[WL(h, 1) = > poll/IL(h, K
'(A)=h(A)

R'(A)=h(A)
B! (z)=h(z)

= polW]L(h, k') L(W'(A) = h(A)L(W (x) # h(x)).
™

h

Similarly, we have

foa(BU{z}) — frn(B)
= po[l'IL(h, W )1(K'(B) = h(B))1(K (x) # h(x)).
”

Since A C B, all pairs h, b’ such that h'(B) = h(B) also
satisfy h'/(A) = h(A).

Thus, fr,n(AU{z})—fLn(A) = foa(BU{z})—fLn(B)
and fr, j, is submodular. Therefore, f;, is pointwise sub-
modular.

7 PROOF OF PROPOSITION 1

Let zp 4 dom(D) and yp &f D(zp). Using Equation (7)
and the definition of f7, we have



*

T

= argmngthD [fro(xp U{z},h) — fr(zp,h))

= arg maXIEthD [fo(xzp U {z}, h)]

= argmaxIEthD Zpo |L(h,R)

— Y polW]L(h, 1))

h(zp)=h'(zp)
h(z)=h'(x)

> polW1L(h, 1)
h(zp)=h'(zp)
h(z)=h'(x)

S polH 1L (A, 1)

pp[h']>0
h(z)=h'(x)

= argminEy.,,
T

= argminEy.,,
T

Note that if pp[h'] > 0, then

polh'] = po [ |polyp; xp].

Hence, the last expression above is equal to

argmln]EthDZpD po[yDJ/’D} (h,h’)

pp[h/]>0
h(z)=h'(z)

> polW|L(h, I

pp[h/]>0
h(z)=h'(z)

— argmin polt] Y polt)

h h(z)=h'/(x)

= argmlnz Z pD Z pD[h’]L(h7h/)

Y h(z)=y ! (z)=y
= argmgcinZZpD pr[h’](L(h,h’)-
y h h'
L(h(z) =1’
= argmlinZEh’h/NpD[L(h, h') -

Y

= argminE; .,
xT

~—

L(h(z) = h'(z) = y)].

Thus, Proposition 1 holds.

8 PROOF OF PROPOSITION 2

Let zp 4 dom(D) and yp & D(zp). Using Equation (8)
and the definition of ¢;,, we have

*

X

~ argmaxminfty (ep U{e}h, DU {(@,)}) ~ t1(ap. D)

= argmax min[tL(xD U{z},DU{(z,y)})]

= argmax mln Z Zpo

h! R

- 2 D wl]

h(zp)=yp h'(zp)=yp
W' (z)=y h" (z)=y

h/ h”) O[h//]

h/ h//) O[h//H

_ ’opn "
= arg mxlnmax Z Z polh'1L(R', W/ )po[R”
h'(zp)=yp h"'(zp)=yp
R (z)=y  h"(z)=y
= arg mln max Z Zpo L(KW, " )po[h"]

pv[h}>0 pp[h"1>0
R (z)=y h”(w)

— 3 ! 1 1
= argminmax Z polh ZL (A", W )po[h"].

pp[h']1>0  pp[h'']>0
h' (z)=y h (z)=y

Using the same observation about pg[h'] and po[h”'] as in
the previous section, we note that the last expression above
is equal to

argminmax >, (pp[h/]polyp; op) -
pp[h']>0
W (z)=y
> LW 1" )po " |polyp; wp))
pp[h']>0
h' (z)=y

ZL h/ h// h//]

= arg mm max E pD

po[h ]>0 pp[h'']>0
b (@)= h" (z)=y
— 3 I / " "
= argmmmm;mx pr[h] Z LR, m"pp[h"]
W (z)=y R (x)=y
= arg mln max pr ZPD [R")(L(W ") -
h! h!!

L(h"(x) = h'(x) = y))

= argminmax Ep prpp [L(A', B") -
z oy

L(h"(x) = h'(z) = y)].

Thus, Proposition 2 holds.
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