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1 PROOF OF THEOREM 4

We will prove the theorem for the case when H contains
probabilistic hypotheses. The proof can easily be trans-
ferred to the case where H is the labeling set by following
the construction in (Cuong et al., 2013, sup.).

LetH = {h1, h2, . . . , hn}with n probabilistic hypotheses,
and assume a uniform prior on them. A labeling is gener-
ated by first randomly drawing a hypothesis from the prior
and then drawing a labeling from this hypothesis. This in-
duces a distribution on all labelings.

We construct k independent distractor instances
x1, x2, . . . , xk with identical output distributions for
the n probabilistic hypotheses. Our aim is to trick the
greedy algorithm π to select these k instances. Since the
hypotheses are identical on these instances, the greedy
algorithm learns nothing when receiving each label.

Let H(Y1) be the Shannon entropy of the prior label dis-
tribution of any xi (this entropy is the same for all xi).
Since the greedy algorithm always selects the k instances
x1, x2, . . . , xk and their labels are independent, we have

Hent(π) = kH(Y1).

Next, we construct an instance x0 where its label will deter-
ministically identify the probabilistic hypotheses. Specif-
ically, P[hi(x0) = i |hi] = 1 for all i. Note that
H(Y0) = lnn.

To make sure that the greedy algorithm π selects the
distractor instances instead of x0, a constraint is that
H(Y1) > H(Y0) = lnn. This constraint can be satisfied
by, for example, allowing Y to have n+1 labels and letting
P[h(xj)|h] be the uniform distribution for all j ≥ 1 and
h ∈ H. In this case, H(Y1) = ln(n+ 1) > lnn.

We compare the greedy algorithm π with an algorithm πA
that selects x0 first, and hence knows the true hypothesis
after observing its label.

Finally, we construct n(k − 1) more instances, and the
algorithm πA will select the appropriate k − 1 instances

from them after figuring out the true hypothesis. Let the
instances be {x(i,j) : 1 ≤ i ≤ n and 1 ≤ j ≤ k − 1}. Let
Y h
(i,j) be the (random) label of x(i,j) according to the hy-

pothesis h. For all h ∈ H, Y h
(i,j) has identical distributions

for 1 ≤ j ≤ k − 1. Thus, we only need to specify Y h
(i,1).

We specify Y h
(i,1) as follows. If h 6= hi, then let

P[Y h
(i,1) = 0] = 1. Otherwise, let P[Y h

(i,1) = 0] = 0, and

the distribution on other labels has entropy H(Y h1

(1,1)), as
all hypotheses are defined the same way.

When the true hypothesis is unknown, the distribution for
Y(1,1) has entropy

H(Y(1,1)) = H(1− 1

n
) +

1

n
H(Y h1

(1,1)),

whereH(1− 1
n ) is the entropy of the Bernoulli distribution

(1− 1
n ,

1
n ).

As we want the greedy algorithm to select the dis-
tractors, we also need H(Y1) > H(Y(1,1)), giving
H(Y h1

(1,1)) < n(H(Y1)−H(1− 1
n )).

Algorithm πA first selects x0, identifies the true hypothe-
sis exactly, and then selects k − 1 instances with entropy
H(Y h1

(1,1)). Thus,

Hent(πA) = lnn+ (k − 1)H(Y h1

(1,1)).

Hence, we have

Hent(π)

Hent(πA)
=

kH(Y1)

lnn+ (k − 1)H(Y h1

(1,1))
.

Set H(Y h1

(1,1)) to n(H(Y1)−H(1− 1
n ))− c for some small

constant c. The above ratio becomes
kH(Y1)

lnn+ (k − 1)n(H(Y1)−H(1− 1
n ))− (k − 1)c

.

Since H(1 − 1
n ) approaches 0 as n grows

and H(Y1) = ln(n+ 1), we can make the ratio
Hent(π)/Hent(πA) as small as we like by increasing
n. Furthermore, Hent(π)/Hent(πA) ≥ Hent(π)/Hent(π

∗).
Thus, Theorem 4 holds.
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It is clear that the version space reduction function f satis-
fies the minimal dependency property, is pointwise mono-
tone and f(∅, h) = 0 for all h. Let xD def= dom(D) and
yD def= D(xD). From Equation (3), we have

arg max
x

min
y
{f(dom(D) ∪ {x},D ∪ {(x, y)})

− f(dom(D),D)}
= arg max

x
min
y
f(dom(D) ∪ {x},D ∪ {(x, y)})

= arg max
x

min
y

[1− p0[yD ∪ {y};xD ∪ {x}]]

= arg min
x

max
y

p0[yD ∪ {y};xD ∪ {x}]

= arg min
x

max
y

p0[yD ∪ {y};xD ∪ {x}]
p0[yD;xD]

= arg min
x

max
y

pD[y;x].

Thus, Equation (6) is equivalent to Equation (3). To apply
Theorem 3, what remains is to show that f is pointwise
submodular.

Consider fh(S) def= f(S, h) for any h. Fix A ⊆ B ⊆ X
and x ∈ X \B. We have

fh(A ∪ {x})− fh(A)

= p0[h(A);A]− p0[h(A ∪ {x});A ∪ {x}]
=

∑
h′(A)=h(A)

p0[h′]−
∑

h′(A)=h(A)
h′(x)=h(x)

p0[h′]

=
∑
h′

p0[h′]1(h′(A) = h(A))1(h′(x) 6= h(x)).

Similarly, we have

fh(B ∪ {x})− fh(B)

=
∑
h′

p0[h′]1(h′(B) = h(B))1(h′(x) 6= h(x)).

Since A ⊆ B, all pairs h, h′ such that h′(B) = h(B) also
satisfy h′(A) = h(A).

Thus, fh(A ∪ {x})− fh(A) ≥ fh(B ∪ {x})− fh(B) and
fh is submodular. Therefore, f is pointwise submodular.
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Consider any prior p0 such that p0[h] > 0 for all h. Fix
any D and D′ where D′ = D ∪ E with E 6= ∅, and
fix any x ∈ X \ dom(D′). For a partial labeling D, let
xD def= dom(D) and yD def= D(xD). We have

∆(x|D)

= Eh∼pD [fL(dom(D) ∪ {x}, h)− fL(dom(D), h)]

= Eh∼pD [
∑

h′(xD)=h(xD)

p0[h′]L(h, h′)

−
∑

h′(xD)=h(xD)
h′(x)=h(x)

p0[h′]L(h, h′)]

= Eh∼pD

∑
h′(xD)=h(xD)
h′(x) 6=h(x)

p0[h′]L(h, h′)

=
∑

pD[h]>0

pD[h]
∑

h′(xD)=h(xD)
h′(x) 6=h(x)

p0[h′]L(h, h′).

Note that if pD[h] > 0, then

pD[h] =
p0[h]

p0[yD;xD]
=

p0[h]∑
h(xD)=yD

p0[h]
.

Thus, ∆(x|D) =∑
pD[h]>0

∑
pD[h′]>0

h′(x) 6=h(x)

p0[h]p0[h′]L(h, h′)∑
h(xD)=yD

p0[h]

=

∑
h∼D

∑
h′∼D

h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)∑
h∼D p0[h]

.

Similarly, for D′, we also have

∆(x|D′)

=

∑
h∼D′

∑
h′∼D′

h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)∑
h∼D′ p0[h]

=
1∑

h∼D′ p0[h]
[
∑
h∼D

∑
h′∼D

h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)

−
∑
h∼D

∑
h′∼D

h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)1(h � E or h′ � E)]

where h � E denotes that h is not consistent with E . Now
we can construct the loss function L such that L(h, h′) = 0
for all h, h′ satisfying h � E or h′ � E . Thus,

∆(x|D′) =

∑
h∼D

∑
h′∼D

h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)∑
h∼D′ p0[h]

.

From the assumption p0[h] > 0 for all h, we have∑
h∼D′ p0[h] <

∑
h∼D p0[h]. Thus, ∆(x|D′) > ∆(x|D)

and fL is not adaptive submodular.



4 SUFFICIENT CONDITION FOR
ADAPTIVE SUBMODULARITY OF fL

From the previous section, let

A def=
∑
h∼D

∑
h′∼D

h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)

B def=
∑
h∼D

∑
h′∼D

h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)1(h � E or h′ � E)

C def=
∑
h∼D

p0[h] and D def=
∑
h∼D

p0[h]1(h � E).

In this section, we allow E to be empty. Note that
∆(x|D) = A

C and ∆(x|D′) = A−B
C−D . A sufficient con-

dition for fL to be adaptive submodular with respect to p0
is that for all D, D′, and x, we have A

C ≥
A−B
C−D . This

condition is equivalent to A
C ≤

B
D . That means∑

h∼D
∑

h′∼D
h′(x) 6=h(x)

p0[h]p0[h′]L(h, h′)∑
h∼D p0[h]

≤

∑
h∼D

∑
h′∼D

h′(x)6=h(x)

p0[h]p0[h′]L(h, h′)1(h � E or h′ � E)∑
h∼D p0[h]1(h � E)

for all D, D′, and x. This condition holds if L is the 0-1
loss. However, it remains open whether this condition is
true for any interesting loss function other than 0-1 loss.
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It is clear that tL satisfies the minimal dependency property
and Equation (8) is equivalent to Equation (3). It is also
clear that tL is pointwise monotone and tL(∅, h) = 0 for
all h. Thus, to apply Theorem 3, what remains is to show
that tL is pointwise submodular.

Consider tL,h(S) def= tL(S, h) for any h. Fix A ⊆ B ⊆ X
and x ∈ X \B. We have

tL,h(A ∪ {x})− tL,h(A)

=
∑

h′(A)=h(A)

∑
h′′(A)=h(A)

p0[h′]L(h′, h′′) p0[h′′]

−
∑

h′(A)=h(A)
h′(x)=h(x)

∑
h′′(A)=h(A)
h′′(x)=h(x)

p0[h′]L(h′, h′′) p0[h′′]

=
∑
h′

∑
h′′

[p0[h′]L(h′, h′′) p0[h′′] ·

1(h′(A) = h(A) and h′′(A) = h(A)) ·
1(h′(x) 6= h(x) or h′′(x) 6= h(x))].

Similarly, we have

tL,h(B ∪ {x})− tL,h(B)

=
∑
h′

∑
h′′

[p0[h′]L(h′, h′′) p0[h′′] ·

1(h′(B) = h(B) and h′′(B) = h(B)) ·
1(h′(x) 6= h(x) or h′′(x) 6= h(x))].

Since A ⊆ B, all pairs h, h′ such that
1(h′(B) = h(B) and h′′(B) = h(B)) = 1 also satisfy
1(h′(A) = h(A) and h′′(A) = h(A)) = 1.

Thus, tL,h(A∪{x})−tL,h(A) ≥ tL,h(B∪{x})−tL,h(B)
and tL,h is submodular. Therefore, tL is pointwise sub-
modular.

6 POINTWISE SUBMODULARITY OF fL

Consider fL,h(S) def= fL(S, h) for any h. Fix A ⊆ B ⊆ X
and x ∈ X \B. We have

fL,h(A ∪ {x})− fL,h(A)

=
∑

h′(A)=h(A)

p0[h′]L(h, h′)−
∑

h′(A)=h(A)
h′(x)=h(x)

p0[h′]L(h, h′)

=
∑
h′

p0[h′]L(h, h′)1(h′(A) = h(A))1(h′(x) 6= h(x)).

Similarly, we have

fL,h(B ∪ {x})− fL,h(B)

=
∑
h′

p0[h′]L(h, h′)1(h′(B) = h(B))1(h′(x) 6= h(x)).

Since A ⊆ B, all pairs h, h′ such that h′(B) = h(B) also
satisfy h′(A) = h(A).

Thus, fL,h(A∪{x})−fL,h(A) ≥ fL,h(B∪{x})−fL,h(B)
and fL,h is submodular. Therefore, fL is pointwise sub-
modular.

7 PROOF OF PROPOSITION 1

Let xD def= dom(D) and yD def= D(xD). Using Equation (7)
and the definition of fL, we have



x∗

= arg max
x
Eh∼pD [fL(xD ∪ {x}, h)− fL(xD, h)]

= arg max
x
Eh∼pD [fL(xD ∪ {x}, h)]

= arg max
x
Eh∼pD (

∑
h′

p0[h′]L(h, h′)

−
∑

h(xD)=h′(xD)
h(x)=h′(x)

p0[h′]L(h, h′))

= arg min
x
Eh∼pD

∑
h(xD)=h′(xD)
h(x)=h′(x)

p0[h′]L(h, h′)

= arg min
x
Eh∼pD

∑
pD[h′]>0

h(x)=h′(x)

p0[h′]L(h, h′).

Note that if pD[h′] > 0, then

p0[h′] = pD[h′]p0[yD;xD].

Hence, the last expression above is equal to

arg min
x
Eh∼pD

∑
pD[h′]>0

h(x)=h′(x)

pD[h′]p0[yD;xD]L(h, h′)

= arg min
x
Eh∼pD

∑
pD[h′]>0

h(x)=h′(x)

pD[h′]L(h, h′)

= arg min
x

∑
h

pD[h]
∑

h(x)=h′(x)

pD[h′]L(h, h′)

= arg min
x

∑
y

∑
h(x)=y

pD[h]
∑

h′(x)=y

pD[h′]L(h, h′)

= arg min
x

∑
y

∑
h

pD[h]
∑
h′

pD[h′](L(h, h′) ·

1(h(x) = h′(x) = y))

= arg min
x

∑
y

Eh,h′∼pD [L(h, h′) ·

1(h(x) = h′(x) = y)].

Thus, Proposition 1 holds.

8 PROOF OF PROPOSITION 2

Let xD def= dom(D) and yD def= D(xD). Using Equation (8)
and the definition of tL, we have

x∗

= arg max
x

min
y

[tL(xD ∪ {x},D ∪ {(x, y)})− tL(xD,D)]

= arg max
x

min
y

[tL(xD ∪ {x},D ∪ {(x, y)})]

= arg max
x

min
y

[
∑
h′

∑
h′′

p0[h′]L(h′, h′′)p0[h′′]

−
∑

h′(xD)=yD
h′(x)=y

∑
h′′(xD)=yD
h′′(x)=y

p0[h′]L(h′, h′′)p0[h′′]]

= arg min
x

max
y

∑
h′(xD)=yD
h′(x)=y

∑
h′′(xD)=yD
h′′(x)=y

p0[h′]L(h′, h′′)p0[h′′]

= arg min
x

max
y

∑
pD[h′]>0
h′(x)=y

∑
pD[h′′]>0
h′′(x)=y

p0[h′]L(h′, h′′)p0[h′′]

= arg min
x

max
y

∑
pD[h′]>0
h′(x)=y

p0[h′]
∑

pD[h′′]>0
h′′(x)=y

L(h′, h′′)p0[h′′].

Using the same observation about p0[h′] and p0[h′′] as in
the previous section, we note that the last expression above
is equal to

arg min
x

max
y

∑
pD[h′]>0
h′(x)=y

(pD[h′]p0[yD;xD] ·

∑
pD[h′′]>0
h′′(x)=y

L(h′, h′′)pD[h′′]p0[yD;xD])

= arg min
x

max
y

∑
pD[h′]>0
h′(x)=y

pD[h′]
∑

pD[h′′]>0
h′′(x)=y

L(h′, h′′)pD[h′′]

= arg min
x

max
y

∑
h′(x)=y

pD[h′]
∑

h′′(x)=y

L(h′, h′′)pD[h′′]

= arg min
x

max
y

∑
h′

pD[h′]
∑
h′′

pD[h′′](L(h′, h′′) ·

1(h′′(x) = h′(x) = y))

= arg min
x

max
y
Eh′,h′′∼pD [L(h′, h′′) ·

1(h′′(x) = h′(x) = y)].

Thus, Proposition 2 holds.
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