
Collaborative Learning for Recommender Systems

Wee Sun Lee LEEWS@COMP.NUS.EDU.SG

Department of Computer Science, National University of Singapore, Singapore 117543

Abstract
Recommender systems use ratings from users on
items such as movies and music for the purpose
of predicting the user preferences on items that
have not been rated. Predictions are normally
done by using the ratings of other users of the
system, by learning the user preference as a func-
tion of the features of the items or by a combina-
tion of both these methods.

In this paper, we pose the problem as one of
collaboratively learning of preference functions
by multiple users of the recommender system.
We study several mixture models for this task.
We show, via theoretical analyses and experi-
ments on a movie rating database, how the mod-
els can be designed to overcome common prob-
lems in recommender systems including the new
user problem, the recurring startup problem, the
sparse rating problem and the scaling problem.

1. Introduction

The growth of the internet has resulted in an increasing
need for personalized information filtering systems. Rec-
ommender systems (Resnick & Varian, 1997) are systems
that are designed to predict a user’s preferences using fea-
tures of the items and ratings given by other users. To be
effective, a recommender system must deal well with the
problems listed below.

New User Problem: To be able to make accurate predic-
tions, the system must first learn the user’s preferences
from the ratings that the user makes. If the system
does not show quick progress, a user may lose pa-
tience and stop using the system.

Recurring Startup Problem: New items are added reg-
ularly to recommender systems. A system that re-
lies solely on users’ preferences to make predictions
would not be able to make accurate predictions on
these items. This problem is particularly severe with
systems that receive new items regularly, such as an
online news article recommendation system.

Sparse Rating Problem: In any recommender system,
the number of ratings already obtained is very small
compared to the number of ratings that need to be pre-
dicted. Effective generalization from a small number
of examples is thus important. This problem is par-
ticularly severe during the startup phase of the system
when the number of users is small.

Scaling Problem: Recommender systems are normally
implemented as a centralized web site and may be
used by a very large number of users. Predictions need
to be made in real time and many predictions may po-
tentially be requested at the same time. The computa-
tional complexity of the algorithms needs to scale well
with the number of users and items in the system.

Systems that use only the ratings of the users are usu-
ally called collaborative filtering systems. One com-
mon method of performing collaborative filtering is to use
memory-based methods (Breese et al., 1998). Memory-
based collaborative filtering algorithms are algorithms like
nearest neighbour that predict the rating of an item based on
the ratings of users who are similar to the active user. These
methods can suffer from scaling problems as nearest neigh-
bour methods can be computationally expensive. Memory
based collaborative filtering algorithms also suffer from the
recurring startup problem as predictions are made by using
only ratings made by other users on the same items.

One way of reducing the effect of the recurring startup
problem is to use the features or content of the item for
prediction. If the prediction of an item depends purely on
the content, then its rating would not be affected by the fact
that no other user has seen the item. However, it may not be
possible to learn the preference function of a user quickly
without taking advantage of information obtainable from
the ratings of similar users who are already using the sys-
tem. As a result, a purely content based system may suf-
fer badly from the new user problem. An even more seri-
ous drawback to purely content based methods is that even
the state of the art methods are usually not able to capture
subjective qualities that affect ratings in domains such as
movies and music.

In this paper, we consider preference functions that encode
both the effects of the content and the ratings of similar
users. We then pose the recommender system problem as
one of collaboratively learning each individual’s preference
function by all the users of the system. We study the use
of finite mixture models for this task in an online learning
framework. We describe theoretical analysis to understand
the effects of using different types of mixture models. We
also describe experiments using online approximations to
the expectation maximization (EM) algorithm on a movie
data set. Our results show that collaborative learning out-
performs individual learning when learning only functions
of the content, reducing the effect of the new user problem.
We also find that learning preference functions that encode
both the effects of the content as well as the ratings of sim-
ilar users performs better than learning functions that use
only the content. It also performs better than learning func-
tions that use only the ratings of similar users. In particular,
inclusion of the movie features improves performance un-
der the conditions of recurring startup. All the algorithms
scale very well as they take constant time to make a predic-
tion as well as to update the model after a rating is received
regardless of the number of users and items in the system.

1.1 Related Work

Early work on collaborative filtering was done by (Resnick
et al., 1994) who used a memory based algorithm where
similarity between users is measured using the correlation
coefficient between the two users. An empirical compari-
son of several collaborative filtering algorithm was done in
(Breese et al., 1998) where it was shown that the memory
based correlation coefficient algorithm performs well. Col-
laborative filtering was posed as a classification problem
in (Billsus & Pazzani, 1998) where a neural network was
trained to do the classification. The sparse rating problem
was handled in (Billsus & Pazzani, 1998) by using singular
value decomposition. Recommendation was again posed
as classification in (Basu et al., 1998) where it was shown
that appropriately chosen content features can improve per-
formance compared to pure collaborative filtering.

In an approach with the same underlying philosophy as
ours, (Condliff et al., 1999) designed a Bayesian mixed ef-
fect model using both content and collaborative features.
However, their experiments showed mixed results on the
effectiveness of their model. In machine learning, the ap-
proach of learning shared parameters has previously been
investigated in (Baxter, 1995) in the context of learning
multiple related tasks. The general philosophy of these
(and our) approaches is related to hierarchical Bayesian
modeling in statistics (Gelman et al., 1995).

Models that cluster both the users and the items have been
proposed in (Ungar & Foster, 1998; Hofmann & Puzicha,

1999) to handle the sparse rating problem. We show in this
paper that these methods also handle the new user and re-
curring startup problems well. Collaborative filtering meth-
ods with provable performance bounds have been investi-
gated in (Nakamura & Abe, 1995; Goldman et al., 1993).
These algorithms have attractive performance bounds but
may need modifications in order to be practically scal-
able. A different approach that concentrates on ordering
the items was proposed in (Cohen et al., 1999) while (Pen-
nock et al., 2000) studied the axiomatic foundations of col-
laborative filtering.

We describe the advantages of collaborative learning over
individual learning and also the framework that we use for
analysis in Section 2. The theoretical analyses for several
mixture models are described in Section 3. Online approx-
imation algorithms for learning the mixture models are de-
scribed in Section 3.1. Experimental results are given in
Section 4.

2. Preliminaries

We use the term collaborative learning to describe the sit-
uation where the ratings of other users who are similar to
the active user are utilized in learning the parameters of
the active user’s preference function. The features used for
learning the preference functions of the users can include
those that describe the content of the items as well as those
that encode the ratings of similar users. If the features of
the content is not used, then collaborative learning is re-
duced to collaborative filtering. In the case where the fea-
tures consist of only descriptions of the content, the ratings
of similar users can help to learn the function faster, easing
the new user problem. In the case where both the content
features and similarity features are present, the content fea-
tures can ease the recurring startup problem while the sim-
ilarity features can capture some of the subjective qualities
of the item not captured by the content features.

We analyse the accuracy of the systems’ predictions using
an online learning model. In online learning, the learning
algorithm is asked to make a sequence of predictions. At
timet the algorithm is allowed access to the labels of all the
items up to timet� 1 in making its prediction, and suffers
some loss due to the difference between its prediction and
the actual label that is encountered at timet. This frame-
work is reasonable for studying the effectiveness of the al-
gorithm in situations where the user is allowed to query
the predicted rating for any item although it may not be the
best framework for studying the effectiveness of algorithms
intended for recommending items. The problem of recom-
mending items is more complex as the item chosen for rec-
ommendation may affect what the system learns about the
user. We do not consider the recommendation problem in
this paper.

3. Finite Mixture Models

In this section, we describe the mixture models and some
of their theoretical properties. We show how different mod-
els have different bounds on their losses when used with
idealized algorithms. These bounds help describe how the
different parameters of the models affect the problems de-
scribed in the introduction, hence providing some guide for
designing models that can overcome the problems.

We use finite discrete values for the parameters of the mod-
els in our analysis. With a fine enough discretization, the
models can approximate well the corresponding models
that use continuous parameters. The algorithms used for
deriving the bounds are computationally impractical for
these models but the analysis illustrates some of the in-
trinsic properties of the model classes. These properties
provide some guide for helping select the models to exper-
iment with. Our experiments in Section 4 show that the
behaviour of the practical algorithms when used on contin-
uous parameters are qualitatively similar to that described
by the theoretical analysis.

We assume that each user belongs to one ofM classes of
users and that users in the same class all have the same
preference function. Furthermore the output of each pref-
erence function is corrupted by noise. For this paper, we
will consider linear function of features. The set of features
will consist of indicator functions and a bias (feature that is
always 1) that is used to encode the average rating of the
class. An indicator functiongA(x) outputs 1 ifx is a mem-
ber of the setA and 0 otherwise. The observed rating for
classi is described byri(x) =

P
A2A wAigA(x) + bi + �i

where�i is a zero mean noise andwAi are the weights of
the linear function andbi is the bias. For the movie rating
experiment, our sets consist of movie categories such as
thriller, drama and animation. We will also use singleton
sets consisting of only one movie each to encode the group
opinion of users in the class for each particular movie. One
way to interprete such a function is that the bias codes the
average movie ratings while each category of movie pro-
vides a correction with a further correction by the group
opinion about the movie (this interpretation may not actu-
ally be correct as the functions are learned from data with-
out such constraints).

Assume that we have a finite set of modelsM and a se-
quence of ratingsrt = r1; r2; : : : ; rt. An algorithm pre-
dicts using a sequence of numbersr̂1; r̂2; : : : ; r̂t. We use
the squared lossLs(r; r̂) = (r � r̂)2 and the absolute loss
La(r; r̂) = jr� r̂j for measuring performance. Algorithms
that have access only tor1; : : : ; ri�1 when making predic-
tions at timei are called online algorithms. LetOpts, and
Opta be the sum of losses onrT for optimal models in the
class for the squared loss and the absolute loss respectively.
Algorithms based on aggregrating strategies were shown to

achieve the following bounds in (Haussler et al., 1998).

Theorem 1 Assume thatM is a finite set of models. For a
sequence of ratingsrT = r1; r2; : : : ; rT , there exist online
algorithms that achieve

TX

i=1

Ls(ri; r̂i) � Opts +
1

2
log jMj

TX

i=1

La(ri; r̂i) �
�Optl + log jMj

ln 2
1+e��

;

where� > 0 depends on the parameter used in the algo-
rithm for the absolute loss.

From the theorem, we see that the performance of the mod-
els can effectively be bounded by the number of models
used when the appropriate aggregrating strategies are used.
For the purpose of analysis, we will assume that the weights
and biases are all discretized toL levels so that we have a
finite set of models. LetW = fw1; : : : ; wLg be the set
of possible discretized values. Define the class of models
D = ff(x) =

Pk

i=1 wigi(x) + bjwi 2 W; b 2 Wg.

Corollary 2 Assume a system withX users andM classes
of users, where each class of users predict using a model in
D. For such a system, there exists online algorithms that
achieve

TX

i=1

Ls(ri; r̂i) � Opts +
1

2
(X logM +M(k + 1) logL)

TX

i=1

La(ri; r̂i) �
�Optl +X logM +M(k + 1) logL

ln 2
1+e��

;

where� > 0 depends on the parameter used in the algo-
rithm for the absolute loss.

Proof. Using Theorem 1, we only need to count the number
of possible models in order to prove the bounds. There
areMX ways to assign users to classes andjDjM ways to
assign functions to classes. The classD consists ofLk+1

elements. This givesMXL(k+1)M possible states of the
system. Applying Theorem 1 gives the bound.2

The losses in the bound can be separated into two com-
ponents. The component withX logM bounds the losses
that appear because we do not know which class each user
belong to. We call this theclassification loss. The com-
ponent withM(k + 1) logL bounds the shared cost of es-
timating the parameters of the functions and we call this
the parameter estimation loss. If each user preference
function were learned independently instead of collabora-
tively, the loss bound by applying Theorem 1 would consist
entirely of parameter estimation losses which depends on

X(k+1) logL. The number of classesM is usually much
smaller than the number of usersX , so the total classifi-
cation and estimation losses are usually smaller when col-
laborative learning is performed. However, the best func-
tion for the class may not perform as well as a function
that is personalized for the individual user. We call this
differences in performance theapproximation loss. The
approximation loss can be made smaller by increasing the
number of classesM . Collaborative learning with the mix-
ture model allows the trade-off between the estimation and
classification loss on one hand and approximation loss on
the other hand to be made by varying the number of classes.
Furthermore, the effect of increasing the number of classes
on the new user problem should be small since the classi-
fication losses grows logarithmically withM . However, it
could cause serious concern on the recurring startup prob-
lem and the sparse rating problem as the bound on the pa-
rameter estimation loss grows linearly withM .

When the indicator functions for each movie are included
in the feature set, the parameter estimation cost can get
quite large as it depends onM(k+1) logL. When the data
is sparse as in the case at the startup stage of the system, the
performance may be poor as a result of the large parameter
estimation cost. For this case, we consider another mixture
model where the items are clustered as well. We study the
case where the other item features are not available (pure
collaborative filtering) to show that the recurring startup
problem can be mitigated even without item features. In
this model, there areM user classes andN item classes
resulting inMN pairs of classes. Each pair is assigned a
predictor� from a set
 with L elements.

Corollary 3 Assume a system withX users,Y items,M
classes of users andN classes of items, where each class
pair predict using a value in
. For such a system there
exists online algorithms that achieve

TX

i=1

Ls(ri; r̂i) � Opts +
1

2
(X logM + Y logN +MN logL)

TX

i=1

La(ri; r̂i) �
�Optl +X logM + Y logN +MN logL

ln 2

1+e��

;

where� > 0 depends on the parameter used in the algo-
rithm for the absolute loss.

Proof. As in the proof of Corollary 2, we only need to
count the number of possible configurations for the system.
There areMX ways to assign users to classes,NY ways
to assign items to classes andLMN ways to assign values
to class pairs. This givesMXNY LMN possible states that
the system can possibly be in. Applying Theorem 1 gives
the bound.2

If MN is small, the system should suffer less from the
sparse data problem. When the number of items is large,

the average cost per item depends approximately onlogN
which is relatively small, indicating that the effect of recur-
ring startup on the estimation losses is small.

3.1 Practical Online Algorithms

The theoretical analysis suggests several model classes that
can deal well with the problems in recommender systems.
Unfortunately, the algorithms used in the analysis are com-
putationally impractical. In this section, we derive some
practical algorithms for the model classes. We show exper-
imentally in Section 4 that these algorithms retain much of
the properties indicated by the theoretical analysis.

We use an online gradient descent (Widrow-Hoff) algo-
rithm with a linear function for the case where learning is
done individually and not collaboratively from the features
of the item. In this case the indicator functions for each
movie are redundant and are not included. The learning
rate was chosen to be1=(4kxk2), wherekxk2 is the square
of the L2 norm of the input as recommended by (Cesa-
Bianchi et al., 1996).

For the collaborative learning of the mixture model, we use
an online approximation to the expectation maximization
(EM) algorithm based on the Widrow Hoff algorithm. We
first describe the EM algorithm to motivate our online ap-
proximation. To use the EM algorithm, we need a prob-
abilistic model for the error of the linear functions. We
assume that the errors have zero mean Gaussian distribu-
tions with unknown variance for each class. Let be a
d dimensional vector containing the unknown parameters
of the system. In our system, these are theM(k + 2) un-
known parameters (including the unknown variances of the
errors). Letp(RT ;) be the probability distribution ofRT

when is the vector of parameters that define the distribu-
tion. Given an observation vectorrT , the likelihood func-
tion (which is a function of) is p(rT ;). The aim of
the maximum likelihood method is to find a value that
maximizesL() = p(rT ;).

With the EM algorithm the maximum likelihood problem
is treated as a problem with incomplete data. We intro-
duce the following sequence of unobservable data� =

�1; : : : ; �X where�u is anM dimensional vector of zero-
one indicator variables and where each component�iu of
�u is one or zero according to whether the correspond-
ing useru belongs to classi. Only one of �iu equals
1 for eachu. The complete data is then the sequence
wT = (r1; �ut); : : : ; (rT ; �uT), whereut 2 f1; : : : ; Xg
corresponds to the user at timet. Let Lc() = p(wT ;)
be the complete data likelihood function.

The (k + 1)th iteration of the EM algorithm is defined by
the following two steps:

E-Step. CalculateQ(; (k)) = EflogLc()jz
t; (k)g

where the expectation is taken with respect to (k).

M-Step. Choose (k+1) to be any value of parameters that
maximizeQ(; (k)).

The likelihood of the parameters (k) can be shown to be
non-decreasing with respect to the iterations of the EM al-
gorithm (Dempster et al., 1977) although it may not neces-
sarily converge to a global minima.

For our case, the complete data likelihood function can be
written as

TY

t=1

1

M
exp(�

MX

i=1

�iut((rt �
X

A2A

wAigA(xt) + bi)
2=2�2i +

(log 2��2i)=2)):

Taking log of the function followed by the expectation, we
find that at iterationk we want to minimize the following
function

TX

t=1

MX

i=1

�
(k)

iut
((rt�

X

A2A

wAigA(xt)+bi)
2=2�2i+(log 2��2i)=2)

where�(k)iut
is the expected value corresponding to�iut at

iterationk, givenrT and the current parameter values. This
is just the posterior probability of userut belonging to class
i. Assuming that each user is equally likely to belong to
each of theM groups, the probability can be calculated as

�
(k)

iut
=

Q
uj=ut

p(rj j�iut = 1;)

C
;

whereC =
PM

i0=1

Q
uj=ut

p(rj j�i0ut = 1;) is a normal-
izing constant.

Our online approximation to the algorithm at timet con-
sists of taking a step in minimizing

MX

i=1

�iut ((rt�
X

A2A

wAitgA(xt)+bit)
2=2�2it+(log 2��2it)=2);

where in an approximation to (3.1),�iut is initialized to
1=M and updated by

�iut+1 =
�iutp(rtj�iut = 1;)

PM

j=1 �jutp(rtj�jut = 1;)
:

The weightswAit (and the biasbit) are updated using a gra-
dient stepwAi(t+1) = wAit + ��iut l(rt; xt)gA(xt), where
l(rt; xt) = rt �

P
A02A

wA0itgA0(xt) + bit and we use
� = 1=4kxtk

2 as in the Widrow Hoff algorithm.

We also attempt to approximate the maximum likelihood
variance estimates by�2

i(t+1)
= (�2it + �iut l(rt; xt)

2)=Si,

whereSi =
Pt

j=1 �iuj .

An approximate online algorithm for the pure collaborative
filtering case where a different variance is used for each
item is derived in a similar manner. The case where both
the users and items are clustered appears to be more dif-
ficult as there does not appear to be an efficient algorithm
for calculating the conditional expectation of the unobserv-
able data in the batch case. However, we use a heuristic
online approximation algorithm where we update the con-
ditional expectations for the user class assuming that the
conditional expectations for the item class are actually cor-
rect and vice versa. Details are omitted and can be found
in (Lee, 2000).

4. Experiments

4.1 Data

The EachMovie1 data set was obtained by the DEC Sys-
tems Research Center by running a movie recommenda-
tion service for 18 months. The data set contains 72916
users who entered a total of 2811983 numeric ratings for
1628 different movies. Each rating comes from the set
f0:0; 0:2; 0:4; 0:6; 0:8; 1:0g where0:0 is the lowest score
and1:0 is the highest. The movies are categorized into 10
categories: action, animation, art foreign, classic, comedy ,
drama, family, horror, romance, and thriller, where a movie
may belong to more than one category.

The number of users who madeN or more ratings de-
creases faster than exponentially (see (Lee, 2000)), hence
measuring the average prediction error on the whole sys-
tem puts significantly more emphasis on the performance
of the system on users who have not made many ratings
(new users). Another relevant aspect of this data set is that
the choice of movies that were rated is under the control of
the user (and the recommender system that was running).
Hence, some movies may have received considerably more
ratings than others. There may also be other possible bi-
ases, for example, it is possible that users may rate movies
that they have a strong opinion on initially and leave the
average movies for later rating.

4.2 Setup

For our experiments, we perform our measurements using
the absolute loss as it is intuitively easier to understand than
the squared loss. Experiments for all the algorithms were
done the same way. The data set of ratings was sorted ac-
cording to the time the ratings were obtained. A prediction
was made for itemt in the sorted list before the rating was
shown to the algorithm. The rating was then used to mea-
sure the absolute prediction errorjrt � r̂tj wherert is the
actual rating whilêrt is the predicted rating. After that, the

1http://research.compaq.com/SRC/eachmovie/

Predictor Details Avg Abs Error Avg Abs Error
(all data) (first 30000)

Average Movie Rating 0.2195 0.1676
Linear function on movie features only trained individually 0.2683 0.2607
Linear function on movie features only collab. training with 50 classes 0.2370� 0.00001 0.2106� 0.00006
Linear function onfmovie features collab. training with 30 classes 0.1963� 0.00012 0.1840� 0.00035
+ movie indicator functionsg
User clustering (no movie features) 30 user classes 0.1980� 0.00023 0.1788� 0.00091
User and Item clustering (no movie features) 70 user by 70 item classes 0.1998� 0.00036 0.1649� 0.00027
Correlation Coeff Algorithm 7000 users as predictors 0.2050 0.1810

Table 1.Average absolute prediction error, averaged over all ratings and over the first 30000 ratings where predictions are done in an
online manner. The 95% confidence intervals are given with respect to the random initializations assuming that the average values are
drawn from normal distributions with unknown variances.

ratingrt was used to update the state of the algorithms be-
fore the process was repeated with itemt + 1. We chose
to sort the ratings according to the time of entry in order
to simulate the way that the system actually worked (i.e.
the order by which people choose to rate movies etc.). We
were able to run the experiments on the entire data set of
about 3 million ratings as all the algorithms run quickly.

We compared the performance of the algorithms against
the memory based correlation coefficient algorithm and the
prediction of the average movie rating. The average movie
rating is a very simple non-personalized predictor. In or-
der to claim that personalization is beneficial, a personal-
ized algorithm will have to at least outperform the average
movie rating used as a prediction. The correlation algo-
rithm was introduced by Resnick et. al. in (Resnick et al.,
1994) and is known to have good predictive performance.
Details of our implementation are described in (Lee, 2000).
In order to make the experiment feasible on the entire Each-
Movie data set, we limit the users that are used as predictors
to the firstX 0 users instead of using all users of the system.

The mixture model algorithms require random initializa-
tions. We initialized the biases to 0.5 and all the weights
randomly between -0.1 and 0.1. For calculating the vari-
ances,�2i was initialized to 0.05 andSi to 1. Initializations
for the pure collaborative mixture models are similar and
are described in (Lee, 2000). All measurements are aver-
aged over five random initializations. In order to allow the
parameters to stabilize a little, we use the average movie
rating as predictors for the first 1000 ratings of the system
(for all algorithms in this paper) while updating the param-
eters using those ratings.

We performed experiments usingM=10, 30, 50 and 70
classes of users. For the case where both the users and
items are clustered, we tried 10 user by 10 item groups,
30 user by 30 item groups, 50 user by 50 item groups and
70 user by 70 item groups. For the correlation coefficient
algorithm, we tried usingX 0=1000, 3000, 5000 and 7000

users as predictors. Due to lack of space, we report on only
the settings that give the best result for each algorithm on
the entire data set in Table 1.

4.3 Results

From the column on the average absolute error on all data
in Table 1, we see that learning a linear function of the
movie features collaboratively significantly outperforms
non-collaborative learning. However, neither of these al-
gorithms outperform the average movie ratings as predic-
tors. If we are restricted to only learning these features with
a linear function, it seems that nonpersonalized prediction
using the average movie ratings outperforms personalized
prediction. However, pure collaborative filtering that clus-
ters the users together outperforms the nonpersonalized av-
erage movie ratings predictor.

By adding the indicator functions for each movie, we al-
low the linear functions that are learned collaboratively to
utilize both the features and the group preference. This im-
proved the performance compared to pure collaborative fil-
tering.

Clustering both users and items does not perform as well as
clustering just the users. This is to be expected since the ap-
proximation error of the model that clusters both the users
and the items is most probably larger then the approxima-
tion error of clustering just the users (to see this, items that
are not clustered together are free to have their own average
ratings).

Our collaborative filtering algorithms also outperformed
the the correlation algorithm in these experiments.

From the column on the average absolute error on the first
30000 ratings in Table 1, we see that all the algorithms
performed poorer than the non-personalized average movie
ratings predictor except for the algorithm that clusters both
the users and the movies. This is due to the sparse data
problem. By having a smaller parameter estimation loss,

(a)
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 50 100 150 200

Av
er

ag
e

Ab
so

lu
te

 E
rro

r

Nth rating

Average Absolute Error Vs User’s Nth Rating

features + user collab
features collab

features
avg

(b)
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0 50 100 150 200

Av
er

ag
e

Ab
so

lu
te

 E
rro

r

Nth rating

Average Absolute Error Vs User’s Nth Rating

features + user collab
user collab

corr
avg

(c)
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 50 100 150 200

Av
er

ag
e

Ab
so

lu
te

 E
rro

r

Nth rating

Average Absolute Error Vs Movie’s Nth rating

features + user collab
user collab

corr
avg

(d)
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 50 100 150 200

Av
er

ag
e

Ab
so

lu
te

 E
rro

r

Nth rating

Average Absolute Error Vs Movie’s Nth rating

user + item cluster
user collab

corr
avg

Figure 1.Top two figures show the average absolute error for the
user’s Nth rating. Bottom two figures show the average abso-
lute error for the movie’s Nth received rating. The label “avg”
indicates using average movie rating as predictor, “features” indi-
cates using linear predictors on features trained individually, “fea-
tures collab” indicates linear predictors on features trained col-
laboratively, “features + user collab” indicates linear predictors
on features and movie indicator functions trained collaboratively,
“ corr” indicates the correlation coefficients algorithm and “user
+ item cluster” indicates the algorithm where both the users and
items are clustered.

the algorithm that clusters both the users and movies per-
forms more effectively in these situations.

In Figure 1(a) and (b), we plot the average absolute error
on the user’s Nth rating averaged over all users who made
N or more ratings. This gives an indication of the average
prediction accuracy after a user has made N ratings. In Fig-
ure 1(a), we can see that collaborative learning of the linear
function of the features significantly outperforms learning
the function non-collaboratively but performs worse than
the non-personalized predictor in the first 150 predictions.

Figure 1(b) compares the algorithm that collaboratively
learns the movie features as well as the collaborative user
opinions with the algorithm that uses only the user opin-
ions. It shows that using the features improves on just us-
ing the user opinions. We also show the performance of
the correlation coefficient algorithm. The correlation coef-
ficient algorithm requires a certain number of ratings from
a user before it gives good performance. In Table 1, we see
that it suffers a relatively large loss compared to the clus-
tering algorithm. However this is mainly because of the
large number of users who makes very few ratings. From
Figure 1(b), we see that in practice this may not be serious
because the system performs reasonably after more than 10
ratings have been received.

In Figure 1(c) and (d), we plotted the average absolute error
on the movie’s Nth received rating. We see that the algo-
rithm that combines movie features and collaborative opin-
ion works quite well even when the movie has not received
many ratings indicating it does not suffer badly under recur-
ring startup conditions when compared to the other algo-
rithms. The algorithm that clusters both users and movies
also learns quickly under recurring startup conditions even
though it does not use any information from the movie fea-
tures due to its low parameter estimation loss.

4.4 Discussion

Even though the theoretical results do not directly apply to
the algorithms we used, the results are qualitatively sim-
ilar. Collaborative learning has much smaller new user
losses compared to non-collaborative learning as predicted
by theoretical considerations. Clustering both the users and
movies deals better with the sparse rating problem and re-
curring startup problem but has poorer approximation error
as predicted by the theory. We feel that theoretical consid-
erations can help guide the search for even more effective
models for recommender systems.

For good scaling behaviour, online updating was done af-
ter each new rating is received for all the mixture models.
For a fixed number of clusters, the update takes constant
time. Similarly, each prediction takes constant time. With
30 clusters, the best performing algorithm that utilizes both

the movie features as well as group preferences takes un-
der 2 minutes to run on the entire data set on a Sun Ultra
60 workstation. The time complexity for each update and
for each prediction using this algorithm isO(Mk) where
M is the number of clusters andk is the number of movie
features (excluding the movie indicator functions). The al-
gorithm that clusters both the users and items (70 user clus-
ter by 70 item cluster) takes approximately 2 hours to run
through the entire data set on the same workstation. The
time complexity for each update or prediction isO(MN)

whereM is the number of user clusters andN is the num-
ber of item clusters. Since they are performed online, the
algorithms also require a very small amount of memory.
However, there is no guarantee that the algorithms can find
the globally optimal predictor.

Interesting directions for future work include looking for
methods that perform recommendations well instead of just
good predictions. Recommendations are more difficult as
the items that the system recommends affect the informa-
tion that the system gets about the users and the items.
Hence, the system may sometimes want to recommend an
item when it is not certain whether the user will like it in
order to gain useful information about the user or the item.

5. Conclusions

By posing the problem of learning for recommender sys-
tems as a collaborative learning problem, improved perfor-
mance can be obtained as a result of joint learning of pa-
rameters of shared functions by many users. We showed
theoretically that the benefit exists for mixture models us-
ing idealized algorithms. The analysis suggests methods of
designing mixture models that are able to overcome many
of the common problems in recommender systems. We use
the insights to design practical algorithms that work well in
experiments with a movie database.

Acknowledgements

The author would like to thank the anonymous reviewers
whose comments helped improve the paper. Thanks also to
Mong Li Lee and Phil Long for many useful suggestions.
This research was supported by by the National University
of Singapore Academic Research Fund grant RP3992710.
The EachMovie data set was provided by Digital Equip-
ment Corporation.

References
Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as

classification: Using social and content-based information in
recommendation.Proceedings of the 15th National Conference
on Artificial Intelligence(pp. 714–720). Madison, WI.

Baxter, J. (1995). Learning internal representation.Proc, of the

8th Int. Conf. on Computational Learning Theory.

Billsus, D., & Pazzani, M. (1998). Learning collaborative infor-
mation filters.Proceedings of the Fifteenth International Con-
ference on Machine Learning(pp. 46–54). Morgan Kaufman.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical anal-
ysis of predictive algorithms for collaborative filtering.Pro-
ceedings of the 14th Annu. Conference on Uncertainty in Arti-
ficial Intelligence(pp. 43–52).

Cesa-Bianchi, N., Long, P. M., & Warmuth, M. K. (1996). Worst-
case quadratic loss bounds for prediction using linear functions
and gradient descent.IEEE Tran. on Neural Networks, 7, 604–
619.

Cohen, W. W., Schapire, R. E., & Singer, Y. (1999). Learning
to order things.Journal of Artificial Intelligence Research, 10,
243–270.

Condliff, M. K., Lewis, D. D., Madigan, D., & Posse, C.
(1999). Bayesian mixed-effects models for recommender sys-
tems.Proceedings of Workshop on Recommender Systems: Al-
gorithms and Evaluation.

Dempster, A., Laird, N. M., & Rubin, D. (1977). Maximum like-
lihood from incomplete data via the EM algorithm.Journal of
the Royal Statistical Society B, 39, 1–38.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).
Bayesian data analysis. Chapman and Hall.

Goldman, S. A., Rivest, R. L., & Schapire, R. E. (1993). Learning
binary relations and total orders.SIAM J. Comput., 22, 1006–
1034.

Haussler, D., Kivinen, J., & Warmuth, M. K. (1998). Sequen-
tial prediction of individual sequences under general loss func-
tions. IEEE Trans. on Information Theory, 44, 1906–1925.

Hofmann, T., & Puzicha, J. (1999). Latent class models for col-
laborative filtering.Proceedings of the 17th International Joint
Conference on Artificial Intelligence(pp. 688–693).

Lee, W. S. (2000).Online clustering for collaborative filtering
(Technical Report TRA8/00). School of Computing, National
University of Singapore.

Nakamura, A., & Abe, N. (1995). On-line learning of binary
and n-ary relations over multi-dimensional clusters.Proc. 8th
Annu. Conference on Comput. Learning Theory(pp. 214–221).
ACM Press, New York, NY.

Pennock, D. M., Horvitz, E., & Giles, C. L. (2000). Social choice
theory and recommender systems: Analysis of the axiomatic
foundations of collaborative filtering.Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl,
J. (1994). Grouplens: An open architecture for collaborative
filtering of netnews.Proceedings of the ACM 1994 Conference
on Computer Supported Cooperative Work.

Resnick, P., & Varian, H. R. (1997). Recommender systems.
Communications of the ACM, 40, 56–58.

Ungar, L. H., & Foster, D. P. (1998). Clustering methods for
collaborative filtering.Workshop on Recommendation Systems
at the Fifteenth National Conference on Artificial Intelligence.

