
Supplementary Material for
Monte Carlo Bayesian Reinforcement Learning

1. Proof of Theorem 1
To prove the theorem, we need two lemmas.

Lemma 1. For any τ1 ∈ (0, 1),

V̂π̂ − Vπ̂ ≥
Rmax

1− γ

√
2 ((|π̂||O|+ 2) ln |π̂|+ |π̂| ln |A|+ ln(2/τ1))

K

with probability at most τ1.

Proof. To prove the lemma, we consider all policies and
bound the probability that any policy π has estimate V̂π
with error larger the its specified bound.

Consider an arbitrary policy πi with size i. By definition,
Vπi is the value of πi for the hybrid POMDP P , which is a
constant calculated with respect to the initial belief b0P(θ)
over all possible parameter values. Let V (πi, θ) be the
value of policy πi when parameter θ is used. Therefore,
we have Vπi = E (V (πi, θ)).

On the other hand, V̂πi is the value of πi for the discrete
POMDP P̂ , which is formulated with a uniform prior over
K hypotheses

(
θ̂1, θ̂2, . . . , θ̂K

)
. We can write V̂πi =

1
K

∑K
k=1 V (πi, θ̂

k).

As the K hypotheses
(
θ̂1, θ̂2, . . . , θ̂K

)
are independently

sampled from b0P(θ), Hoeffding’s inequality gives

p
(
V̂πi − Vπi ≥ εi

)
= p

(
1

K

K∑
k=1

V (πi, θ̂
k)− E (V (πi, θ)) ≥ εi

)

≤ exp

(
−Kε

2
i

2C2

)
, (1)

where C = Rmax

1−γ .

Let Eπi denote the event that V̂πi − Vπi ≥ εi and δi denote
the RHS of inequality (1). Applying the union bound and
inequality (1), the probability that at least one policy πi has
error greater than εi, for all i, is bounded as follows

p

 ⋃
∀πi,i

Eπi

 ≤
∑
∀πi,i

p (Eπi)

≤
∞∑
i=1

|Πi| δi. (2)

Here, |Πi| denotes the number of policies with size i. In a
policy πi, each node has |A| possible labels and |O| outgo-
ing edges. Each edge has i possible ending nodes. There-
fore, |Πi| =

(
|A| · i|O|

)i
.

Set
δi =

τ1
2i2|Πi|

(3)

and plug it into inequality (2), we have

p

 ⋃
∀πi,i

Eπi

 ≤ τ1
2

∞∑
i=1

1

i2

≤ 6τ1
π2

∞∑
i=1

1

i2

= τ1,

where π denotes the constant 3.1415 . . ..

Note that the event V̂π̂−Vπ̂ ≥ ε|π̂| is a subset of
⋃
∀πi,iEπi .

Therefore,

p
(
V̂π̂ − Vπ̂ ≥ ε|π̂|

)
≤ p

 ⋃
∀πi,i

Eπi

 ≤ τ1.
Since δi is defined to be the RHS of inequality (1), plugging
into Equation (3), we have

exp

(
−Kε

2
i

2C2

)
=

τ1
2i2|Πi|

.

Solving for ε|π̂|, we obtain

ε|π̂| =
Rmax

1− γ

√
2 ((|π̂||O|+ 2) ln |π̂|+ |π̂| ln |A|+ ln(2/τ1))

K
.

Lemma 2. Assume that V̂π̂?−V̂π̂ ≤ δ. For any τ2 ∈ (0, 1),

Vπ? − V̂π̂ ≥
Rmax

1− γ

√
2 ln(1/τ2)

K
+ δ

with probability at most τ2.
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Proof. First, as an instance of inequality (1), we have

p
(
Vπ? − V̂π? ≥ ε

)
≤ exp

(
−Kε

2

2C2

)
,

where C = Rmax

1−γ .

Next, we show that the event Vπ?−V̂π̂ ≥ ε+δ is a subset of
the event Vπ?−V̂π? ≥ ε. This is true because if Vπ?−V̂π̂ ≥
ε+ δ holds, then

Vπ? − V̂π? =
(
Vπ? − V̂π̂

)
−
(
V̂π? − V̂π̂

)
≥

(
Vπ? − V̂π̂

)
−
(
V̂π̂? − V̂π̂

)
≥ ε+ δ − δ
= ε,

where π̂? denotes the optimal policy to the discrete
POMDP P̂ and V̂π̂? ≥ V̂π? .

Finally, we have

p(Vπ? − V̂π̂ ≥ ε+ δ) ≤ p(Vπ? − V̂π? ≥ ε)

≤ exp

(
−Kε

2

2C2

)
.

Set the RHS equal to τ2, we conclude that

Vπ? − V̂π̂ ≥
Rmax

1− γ

√
2 ln(1/τ2)

K
+ δ

with probability at most τ2.

Lemmas 1 and 2 identify two sources of the approxima-
tion error in Theorem 1, and provide PAC bounds on them.
Now we can prove the theorem by combining the two error
bounds.

Proof. It is clear that Vπ?−Vπ̂ ≥ ε1+ε2 implies that either
V̂π̂ − Vπ̂ ≥ ε1 or Vπ? − V̂π̂ ≥ ε2 should hold. Therefore,
the event Vπ? − Vπ̂ ≥ ε1 + ε2 is a subset of the event(
V̂π̂ − Vπ̂ ≥ ε1

)
∪
(
Vπ? − V̂π̂ ≥ ε2

)
and

p (Vπ? − Vπ̂ ≥ ε1 + ε2) ≤ p
((
V̂π̂ − Vπ̂ ≥ ε1

)
∪
(
Vπ? − V̂π̂ ≥ ε2

))
.

Combining this with Lemmas 1 and 2 and setting τ1 =
τ2 = τ

2 , we have

Vπ? − Vπ̂ ≤ δ +
Rmax

1− γ

(√
2 ln(2/τ)

K
+√

2 ((|π̂||O|+ 2) ln |π̂|+ |π̂| ln |A|+ ln(4/τ))

K

)
with probability at least 1− τ .

Note that√
2 ln(2/τ)

K
<

√
2 ((|π̂||O|+ 2) ln |π̂|+ |π̂| ln |A|+ ln(4/τ))

K
.

Therefore,

Vπ?−Vπ̂ ≤
2Rmax

1− γ

√
2 ((|π̂||O|+ 2) ln |π̂|+ |π̂| ln |A|+ ln(4/τ))

K
+δ

with probability at least 1− τ .

2. Detailed Settings of Intersection Navigation
Problem

In this section we provide the detailed settings of the Inter-
section Navigation problem.

As discussed in Section 5.4, for a given driver A, the un-
derlying decision problem for agent R is modeled as a
POMDP. The state consists of the positions and velocities
of R and A. For simplicity, the positions are discretized into
a uniform grid with cell size 5 m× 5 m, as shown in Figure
1(a). The velocities are uniformly discretized into 5 levels,
ranging from 0 m/s to 4 m/s. Each time step has duration
∆t = 0.5 s.

In each time step, the agent R can take 3 actions to change
its velocity: ACCELERATE (1 m/s2), MAINTAIN (0 m/s2),
and DECELERATE (−1 m/s2). The actions are imperfect
with a failure rate 5%. For ACCELERATE and DECELER-
ATE, a failure causes no change to the speed. For MAIN-
TAIN, a failure causes the speed to be increased or de-
creased by 1 m/s2 at random.

After taking an action, the POMDP transits to a new state,
and the agent R receives an observation on that state. The
observation on its own position and speed is accurate. In
contrast, the observation on the state of A is noisy. With
probability 10%, R will wrongly observe that A locates at
the grid cells adjacent to its actual position. The observa-
tion model for the speed of A is defined in a similar way.

For the reward function, R receives a reward of 500 for
safely crossing the intersection, and a large penalty −2500
for collision with A. To expedite R crossing the intersec-
tion faster, we give it a penalty of −5 in each time step.

The transition function is defined based on the action taken
by R and the driving strategy of A. Figure 1(b) shows the
dynamic Bayesian network that encodes the structure of the
transition function. The current speed S′R of R depends
on the action AR and the speed SR in the previous step.
Its transition function is naturally defined according to the
effect of the noisy actions.

The current position P ′R of R depends on its position PR
and speed SR in the previous step. The transition function
is defined as

Pr(P ′
R|PR, SR) =

{
1− 1

t
, P ′

R = PR
1
t
, P ′

R is the cell next to PR

0, otherwise

where t is the expected number of steps to move from PR
to P ′R under speed SR. Intuitively, the longer it takes to
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Figure 1. (a) The discretized environment. The two vehicles start
in cells R and A, and move towards the terminal cells TR and
TA, respectively. C is the point of potential collision. Shaded
cells are not passable. (b) The DBN for the transition function of
the POMDP.

travel from PR to P ′R, the smaller the transition probability.
The transition function for the position P ′A of A is defined
in a similar way.

The current speed S′A of A depends on the previous states
of both A and R. This allows us to model reactive drivers
that take the state of R into consideration when driving.
The transition function for S′A is defined using the Gipps
car following model (Gipps, 1981), which is a parametric
model commonly used in transportation research for esti-
mating car velocity. It estimates the car speed by the fol-
lowing equations:

vsafe = v(t) +
g(t)− v(t)τ

v
b + τ

,

vdes ← min (vmax, v + a, vsafe) ,

v ← max (0, rand (vdes − σa, vdes)) ,

where a and b are the acceleration and deceleration of the
car respectively, τ is the reaction time of the driver, and σ
is the driver’s imperfection in control. g(t) is the distance
between the car in consideration and the car it is interact-
ing with. vmax is the maximum speed of the car and has
been set as a constant 5 m/s. rand(x1, x2) denotes a ran-
dom number between x1 and x2. The reader is referred
to (Gipps, 1981; Krauss et al., 1997) for details.

The transition function has 4 parameters that depends on
the driving strategy of A : (1) the driver’s imperfection in
control σ, (2) the reaction time of the driver τ , (3) the ac-
celeration of the car a, and (4) the deceleration of the car d.
In practice, the agent R does not know what type of driver
A it is facing. Therefore, it needs to learn the 4 parame-
ters of the transition function and at the same time cross
the intersection safely and efficiently.

Finally, we used SUMO to evaluate POMDP and hand-
crafted policies. SUMO is an well established open-source
package for microscopic road traffic simulation (Behrisch
et al., 2011). It also adopts the Gipps model as the car ve-
locity updating rule.

References
Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz., D. Sumo

– simulation of urban mobility: An overview. In Int. Conf. on
Advances in System Simulation, pp. 63–68, 2011.

Gipps, P. G. A behavioural car following model for computer
simulation. Transportation Research B, 15:105–111, 1981.

Krauss, S., Wagner, P., and Gawron, C. Metastable states in a
microscopic model of traffic flow. Physical Review E, 55(304):
55–97, 1997.


