
Learning with Positive and Unlabeled Examples Using
Weighted Logistic Regression

Wee Sun Lee LEEWS@COMP.NUS.EDU.SG

Department of Computer Science and Singapore-MIT Alliance, National University of Singapore, Singapore 117543

Bing Liu LIUB @CS.UIC.EDU

Department of Computer Science, University of Illinois, Chicago, 851 South Morgan St., Chicago IL 60607-7053

Abstract
The problem of learning with positive and unla-
beled examples arises frequently in retrieval ap-
plications. We transform the problem into a prob-
lem of learning with noise by labeling all unla-
beled examples as negative and use a linear func-
tion to learn from the noisy examples. To learn
a linear function with noise, we perform logistic
regression after weighting the examples to han-
dle noise rates of greater than a half. With ap-
propriate regularization, the cost function of the
logistic regression problem is convex, allowing
the problem to be solved efficiently. We also
propose a performance measure that can be esti-
mated from positive and unlabeled examples for
evaluating retrieval performance. The measure,
which is proportional to the product of precision
and recall, can be used with a validation set to se-
lect regularization parameters for logistic regres-
sion. Experiments on a text classification corpus
show that the methods proposed are effective.

1. Introduction
In retrieval applications it is very common to have situa-
tions where positive and unlabeled examples are available
but negative examples cannot be obtained without paying
an additional cost. For example, in trying to learn a classi-
fier for a user’s preference for web pages, the user’s book-
marks can be considered as positive examples while unla-
beled examples can be sampled from the web. In direct
marketing, it is desirable to have a classifier that can iden-
tify future customers from the customer profiles. The com-
pany’s current list of customers can be considered as posi-
tive examples, while new databases of unlabeled examples
can be purchased at a low cost compared to the cost of ob-
taining negative examples.
In this paper, we use the following simple model for learn-
ing with positive and unlabeled examples: positive exam-

ples are randomly labeled positive with probability1 − α
and are left unlabeled with probabilityα (see (Denis,
1998)). Under this assumption, if we labeled all the un-
labeled examples as negative, we will never make an error
on a negative example but will randomly label positive ex-
amples as negative with probabilityα.
One problem with this formulation is that the value ofα
is unknown. Blum and Mitchell (Blum & Mitchell, 1998)
observed that givenα < 1, functionf , noisy observed la-
bel Y ′, actual labelY and inputX, Pr[f(X) = 1|Y ′ =
−1] + Pr[f(X) = −1|Y ′ = 1] is linearly related to
Pr[f(X) = 1|Y = −1]+Pr[f(X) = −1|Y = 1]. The ex-
pressionPr[f(X) = 1|Y ′ = −1] + Pr[f(X) = −1|Y ′ =
1] is the expected sum of observed false positive and false
negative error frequencies. Since the target function has
zero actual error, minimizing the sum of observed false
positive and false negative frequencies will give a good ap-
proximation of the target function when the target function
is in the function class used and the sample size is large
enough. This avoids the need to know the value ofα.
Minimizing the expected sum of false positive and false
negative error frequencies can be shown to be equivalent
to minimizing expected weighted error where false posi-
tives are multiplied byPr[Y ′ = −1] and false negatives
are multiplied byPr[Y ′ = 1]. Unfortunately, minimizing
weighted errors is NP-hard for linear functions (Hoffgen
et al., 1995). In this paper, instead of minimizing weighted
errors, we learn the real-valued conditional probability of
observing a positive label given the input by performing
logistic regression. We perform regularization by forming
the cost function to optimize from the sum of squared of
the weights of the linear function and the sum of weighted
logit losses. The resulting cost function is convex and we
optimize using simple gradient descent.
In practice, the function class that we use may not be the
correct function class to use for learning. Even if the cor-
rect target function class is known, we may want to use
a simpler approximating function (for example by regu-
larization) when the training sample is small in order to
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obtain better generalization. In this paper, we show that
pr/Pr[Y = 1] wherep is the precisionPr[Y = 1|f(X) =
1] andr is the recallPr[f(X) = 1|Y = 1], can be esti-
mated from positive and unlabeled examples. This func-
tion is maximized by the target function and generally we
want both the precision and recall to be high in a retrieval
situation. Being able to estimate the function from posi-
tive and unlabeled examples allows us to use performance
on a validation set to select the appropriate regularization
parameter to use for learning. We performed experiments
using a validation set to select the regularization parame-
ter for logistic regression on a text classification task. The
results show that the method used is effective.
The paper has two main contributions. The first is the use
of a real valued output instead of thresholded binary out-
puts for linear function on weighted examples for learning
with positive and unlabeled examples. This allows the use
of maximum likelihood which gives a convex cost function
for optimization. The second contribution is the introduc-
tion of a performance measure that can be estimated from
positive and unlabeled examples. This performance mea-
sure can be used for selecting the regularization parameter
from a validation set when only positive and unlabeled ex-
amples are available.
In Section 2, we discuss related work. Section 3 describes
in detail our algorithm for learning linear functions. We
derive our estimate forpr/Pr[Y = 1] using positive and
unlabeled data in Section 4 and give experimental results in
Section 5.

2. Related Works
A theoretical study of Probably Approximately Correct
(PAC) learning from positive and unlabeled examples was
done in (Denis, 1998). Using the model where a positive
example is left unlabeled with constant probability, it was
shown that function classes learnable under the statistical
queries model (Kearns, 1998) is also learnable from pos-
itive and unlabeled examples. Learning from positive ex-
ample was also studied theoretically in (Muggleton, 2001)
within a Bayesian framework where the distribution of
functions and examples are assumed known. Sample com-
plexity for the case where the positive and unlabeled exam-
ples can be sampled is given in (Liu et al., 2002), where it
was shown that maximizing the number of examples classi-
fied as negative while constraining the function to correctly
classify positive examples will give good performance with
large enough sample size.
In (Liu et al., 2002), the expectation maximization (EM)
algorithm was used with the naive bayes model to approxi-
mately maximize the number of examples classified as neg-
ative while approximately constraining the positive exam-
ples to be classified correctly. This is done by initializing
the generative model for the negative examples with a sub-

set of unlabeled examples that are highly likely to be neg-
ative, followed by performing EM iterations where the la-
bels of the positive examples are kept positive but the labels
of unlabeled examples are allowed to change. A similar
algorithm using support vector machines (SVM) was pro-
posed in (Yu et al., 2002). The algorithm first finds some
examples that can be confidently labeled as negative and
then trains the support vector machine with the positive ex-
amples and the examples that have been confidently labeled
as negative. As the support vector machine tries to find
the maximal margin hyperplane, more unlabeled examples
may be classified as negative than the initially labeled nega-
tive examples. This forms a new negative set which is again
used to train the support vector machine along with the pos-
itive set. The process is iterated in order to label more and
more unlabeled examples as negative while retaining the
positive examples correctly labeled. Both the EM and iter-
ated SVM algorithms are not guaranteed to find functions
that label large number of unlabeled examples as negative
even when such functions exists in the function class.
The naive bayes algorithm was modified to learn from pos-
itive and unlabeled examples in (Denis et al., 2002). This
is done by subtracting an estimate of the positive examples
from the negative model. However, the algorithm requires
prior knowledge of the probability of positive examples.
An alternative to using such knowledge would be to use
performance estimates that can be estimated from positive
and unlabeled examples, such as the functionpr/Pr[Y =
1] that is proposed in this paper, on a validation set. When
the probability that the positive example is left unlabeled is
constant, it is also possible to modify the perceptron algo-
rithm so that it is able to learn from positive and unlabeled
examples using ideas from (Bylander, 1994; Blum et al.,
1996). However, so far our attempts on using such algo-
rithms have not been very successful, most probably due to
the lack of good regularization criterion as we have been
experimenting with datasets with very large input dimen-
sions.
It is also possible to discard the unlabeled data and learn
only from the positive data. This was done in the one-class
SVM (Scholkopf et al., 1999), which tries to learn the sup-
port of the positive distribution. This method appears to be
highly sensitive to the input representation and dimension-
ality (Manevitz & Yousef, 2001) and did not perform well
on the feature set that we used in this paper.
Besides learning from positive and unlabeled examples,
there has been considerable interest in learning from a
small number of labeled positive and negative examples
with a large number of unlabeled examples. Works on this
topic include (Nigam et al., 1998) which uses naive bayes
and the EM algorithm, (Joachims, 1999) which uses trans-
ductive SVM and (Blum & Mitchell, 1998) which exploits
conditional independence of multiple views of the data to



do co-training.

3. Learning Linear Functions
Linear functions of the formg(x) =

∑k
j=1 wjxj+b, where

xj , j = 1, . . . , n are the components of the input vectorx
and b is the bias, are practically effective and commonly
used in machine learning.
To model the process generating the positive and unla-
beled examples, we assume that positive examples are ran-
domly left unlabeled with probabilityα while negative ex-
amples are always left unlabeled. By labeling all unlabeled
examples as negative, positive examples are wrongly la-
beled with probabilityα while negative examples are never
wrongly labeled. LetX be the random variable repre-
senting the input vector,Y be the actual label andY ′ be
the observed noisy label. For any functionf we define
its expected observed sum of false positive and false neg-
ative error frequenciesC(f) = Pr[f(X) = −1|Y ′ =
1] + Pr[f(X) = 1|Y ′ = −1] and expected actual sum of
false positive and false negative error frequenciesC ′(f) =
Pr[f(X) = −1|Y = −1] + Pr[f(X) = 1|Y = −1]. Blum
and Mitchell (Blum & Mitchell, 1998) showed that if the
positive examples have constant noise rateα and the nega-
tive examples have constant noise rateβ, then

C(f) = 1− (1− α− β)γ(1− γ)(1− C ′(f))
Pr[Y ′ = 1] Pr[Y ′ = −1]

whereγ = Pr[Y = 1]. If we label the unlabeled examples
as negative, the positive examples will have noise rateα
while the negative examples will have noise rateβ = 0.
Minimizing C(f) will also minimizeC ′(f). Observing
that

Pr[f(X) = −1|Y ′ = 1] + Pr[f(X) = 1|Y ′ = −1]

=
Pr[f(X) = −1, Y ′ = 1]

Pr[Y ′ = 1]
+

Pr[f(X) = 1, Y ′ = −1]
Pr[Y ′ = −1]

=
Pr[Y ′ = −1] Pr[f(X) = −1, Y ′ = 1]

Pr[Y ′ = 1] Pr[Y ′ = −1]

+
Pr[Y ′ = 1] Pr[f(X) = 1, Y ′ = −1]

Pr[Y ′ = 1] Pr[Y ′ = −1]

minimizingPr[f(X) = −1|Y ′ = 1]+Pr[f(X) = 1|Y ′ =
−1] is equivalent to minimizing the expected weighted er-
rors, where false negatives are weighted byPr[Y ′ = −1]
while false positives are weighted byPr[Y ′ = 1].
However, minimizing weighted errors is NP-hard (Hoffgen
et al., 1995). Instead of minimizing the false positive and
false negative error frequencies, we assume that the func-
tion class is a real valued function class that is powerful
enough to represent the conditional probability that the la-
bel is positive given the input. We show that if we multiply
examples that are labeled positive byPr[Y ′ = −1] and ex-
amples that are labeled negative byPr[Y ′ = 1], the condi-
tional probability of a positive label given that the example

is a positive example is greater than 0.5 and the conditional
probability of a positive label given that the example is a
negative example is less than 0.5. This allows us to thresh-
old the real valued conditional probability at 0.5 to obtain
the correct classification.
Let ψ = Pr[Y ′ = 1] andγ = Pr[Y = 1]. The expected
fraction of examples that are labeled positive is

ψ = γ(1− α).

Similarly, the expected fraction of examples that are la-
beled negative is

(1− ψ) = γα+ (1− γ).

We first consider the behaviour of a positive instancex.
The probability that it is labeled positive is1 − α. Each
positively labeled example is multiplied by the weight1−ψ
giving an expected positive weight of

(1− α)(1− ψ) = (1− α) [γα+ (1− γ)]

onx. Similarly the expected negative weight onx is

αψ = α [γ(1− α)] .

Normalizing to equate the weights with probabilities, we
see that the conditional probability of the positive label has
been transformed into

(1− α) [γα+ (1− γ)]
(1− α) [γα+ (1− γ)] + α [γ(1− α)]

=
γα+ (1− γ)
2γα+ (1− γ)

.

This is greater than 0.5 as long asα < 1 and γ < 1.
Hence, after weighting, we can see that if we set the thresh-
old at 0.5, we will obtain the correct classification. Since
the probability of a negative example being labeled as pos-
itive is zero, thresholding at 0.5 will also give the correct
classification for negative examples.
To learn the conditional probability, we compose the lin-
ear functiong(x) with the sigmoid function to obtain
h(x) = 1/(1 + e−g(x)). We then perform maximum like-
lihood estimation on weighted positive and negative ex-
amples, where the weighting can be interpreted as mul-
tiple copies of the same examples. For each unweighted
example, we obtain the logit lossl(y, g(x)) = ln(1 +
e−yg(x)). Summing over weighted examples, we obtain

1
n(+)

∑
yi=1 l(y

i, g(xi))+ 1
n(−)

∑
yi=−1 l(y

i, g(xi)) where

n(+) is the number of positive examples,n(−) is the num-
ber of negative examples and(x1, y1), . . . , (xn, yn) is the
set of examples. This is equivalent to minimizing the cost∑
yi=1

n(−)

n(+) l(yi, g(xi)) +
∑
yi=−1 l(y

i, g(xi)). Finally, to
prevent overfitting, we add the sum of squared values of
the weights as a regularization term to obtain the final cost
function

∑
yi=1

n(−)

n(+) l(yi, g(xi)) +
∑
yi=−1 l(y

i, g(xi)) +

c(
∑k
j=1 w

2
j + b2), wherec is the regularization parameter



that can be adjusted to prevent overfitting. This cost func-
tion is convex.
If the function class is powerful enough to represent the
conditional probability, then maximum likelihood estima-
tion will give us accurate approximation when the sample
size is large enough. In the case where the function class
is not powerful enough, it is useful to view the logit loss as
an upper bound to the0 − 1 loss (Mason et al., 1999). In
this case, we are trying to minimize an upper bound to the
sum of false positive and false negative frequencies, which
still makes good sense even when the function class is not
powerful enough to give a good approximation to the real
valued conditional probability but can give a good approx-
imation to the classifier.
To optimize the cost, we do simple gradient descent. The
gradient of the loss functionl(y, g(x)) with respect towj is

simply dl(y,g(x))
dwj

= −xjye−yg(x)/(1 + e−yg(x)). Letwj,t
be thejth component of the weight vector at epocht and
let gt(x) =

∑k
j=1 wj,txj + b. Let

∆j,t =
∑
yi=1

n(−)

n(+)
xjy

ie−y
igt(x

i)/(1 + e−y
igt(x

i))

+
∑
yi=−1

xjy
ie−y

igt(x
i)/(1 + e−y

igt(x
i))

be the jth component of the negative gradient of the
weighted sum of losses at epocht. The jth component
negative gradient of the sum of squared weights is simply
−wj . We add a momentum termγ∆j,t−1, γ < 1, to the
gradient of the sum of losses (see e.g. (Mitchell, 1997)) to
accelerate convergence of the gradient descent. Our update
at each epocht then becomes

wj,t = (1− c)wj,t−1 + η(∆j,t + γ∆j,t−1),

whereη is the learning rate. Bias is implemented by ex-
tending the feature vector by an additional component and
setting the additional component to a constant for all ex-
amples. Updates for the bias is treated in the same way as
updates for the weights.

4. Estimating Performance using Positive and
Unlabeled Examples

Prevention of overfitting is crucial when learning with
noise. This can often be done by using a validation set to
select the regularization parameterc. Although the target
function minimizesPr[f(X) = 1|Y ′ = −1] + Pr[f(X) =
−1|Y ′ = 1], the sum of positive and negative error frequen-
cies is not necessarily good for selecting the regularization
parameter when the function class is not able to represent
the target function accurately.
The need to learn from positive and unlabeled examples
often arise in retrieval situations, where we have a collec-
tion of positive examples and would like to retrieve more

positive examples from a source of unlabeled examples.
In these scenarios, the ratio of positive to negative ex-
amples is often quite small. A commonly used perfor-
mance measure in retrieval situations is theF score, where
F = 2pr/(p+r) with precisionp = Pr[Y = 1|f(X) = 1]
and recallr = Pr[f(X) = 1|Y = 1]. TheF score is
the harmonic mean of the precision and recall. To get a
highF score, both precision and recall must be high. Un-
fortunately we do not know how to estimate theF score
from positive and unlabeled examples. Instead, we propose
a performance criteria for comparing models (or regular-
ization parameters)pr/Pr[Y = 1] that can be estimated
directly from the validation set without making additional
assumptions. To see this, note that

Pr[f(X) = 1|Y = 1] Pr[Y = 1]
= Pr[Y = 1|f(X) = 1] Pr[f(X) = 1]

⇔ Pr[f(X) = 1|Y = 1]
Pr[f(X) = 1]

=
Pr[Y = 1|f(X) = 1]

Pr[Y = 1]

⇔ r

Pr[f(X) = 1]
=

p

Pr[Y = 1]

Multiplying both sides byr, we find thatpr/Pr[Y = 1] =
r2/Pr[f(X) = 1]. Note that the recallr = Pr[f(X) =
1|Y = 1] can be estimated from the performance of the hy-
pothesis on the positive labeled examples of the validation
set, whilePr[f(X) = 1] can be estimated from the valida-
tion set, giving us an estimate of the desired model selec-
tion criteria. The performance measure is proportional to
the square of the geometric mean of precision and recall. It
has roughly the same behaviour as theF score in the sense
that it is large when bothp andr are large and is small if
eitherp or r is small.

5. Experiments
We performed experiments using the 20 Newsgroup dataset
(Lang, 1995). The dataset consists of documents from 20
newsgroups with roughly 1000 documents in each group.
The preprocessing is as follows:

• Removal of the headers of each document.

• Removal of stop words.

• Removal of words that ocurred no more than 5 times
in the entire corpus.

• Each document is represented by a vector where the
components of the vector are the term frequencies of
the bag of words in the document.

• The vectors are normalized to have length 1 except
when naive bayes based methods (which use the raw
word counts) are used.

• An additional component with value 1 is added to im-
plement the bias of the linear function.



Positive Set Best Crit. I Crit. II Best Crit. I Crit. II Best Crit. I Crit. II
α = 0 α = 0 α = 0 α = 0.3 α = 0.3 α = 0.3 α = 0.7 α = 0.7 α = 0.7

atheism 0.670 0.670 0.512 0.675 0.655 0.532 0.616 0.552 0.477
autos 0.814 0.814 0.790 0.804 0.804 0.716 0.731 0.710 0.710
space 0.875 0.875 0.800 0.887 0.887 0.797 0.747 0.738 0.747

graphics 0.633 0.633 0.478 0.643 0.643 0.601 0.518 0.498 0.483
motorcycles 0.888 0.888 0.798 0.873 0.870 0.713 0.799 0.799 0.703

christian 0.772 0.772 0.694 0.741 0.741 0.672 0.645 0.636 0.643
ms-windows 0.723 0.723 0.723 0.717 0.717 0.643 0.644 0.633 0.601

baseball 0.833 0.833 0.833 0.830 0.830 0.804 0.727 0.727 0.638
guns 0.750 0.750 0.720 0.730 0.730 0.552 0.628 0.618 0.596
pc 0.630 0.630 0.508 0.619 0.619 0.475 0.574 0.541 0.503

hockey 0.897 0.897 0.897 0.897 0.897 0.768 0.826 0.826 0.763
mideast 0.888 0.888 0.816 0.877 0.873 0.873 0.815 0.796 0.796

mac 0.749 0.749 0.710 0.767 0.767 0.627 0.677 0.677 0.614
crypt 0.887 0.887 0.874 0.877 0.868 0.824 0.843 0.843 0.816

politics 0.634 0.634 0.470 0.620 0.620 0.482 0.564 0.564 0.454
xwindows 0.773 0.773 0.739 0.760 0.760 0.573 0.681 0.636 0.625
electronics 0.670 0.670 0.647 0.666 0.666 0.540 0.527 0.527 0.435

religion 0.545 0.520 0.520 0.540 0.540 0.366 0.495 0.495 0.386
forsale 0.760 0.760 0.760 0.750 0.732 0.579 0.657 0.591 0.591
med 0.872 0.872 0.872 0.867 0.867 0.786 0.795 0.782 0.789

Average 0.763 0.762 0.708 0.757 0.754 0.646 0.675 0.659 0.619

Table 1. The F scores for using weighted logistic regression to learn with positive and unlabeled examples. Criteria I usespr/Pr[Y = 1]
for the selecting the regularization parameter. Criteria II uses the sum of false positive and false negative frequencies for selecting the
regularization parameter. Best indicates performance of the best regularization parameter on the test set.

We performed a random splitting of the data into 3 sets:
the training set containing 50% of the documents, the val-
idation set containing 20% of the documents and the test
set containing 30% of the documents. For each experi-
ment, each of the newsgroup was alternately made the pos-
itive group with the remaining 19 newsgroups made the
negative group. The linear function was trained on the
training data forT = 500 epochs with learning rateη =
1/(number examples), momentum parameterγ = 0.99 and
four decay parametersc ∈ {0.005, 0.01, 0.05, 0.1}. We
tested both the sum of the false positive and false negative
frequencies and the estimate ofpr/Pr[Y = 1] on the vali-
dation set to select the bestc parameter. The linear function
is retrained on the combined training and validation set us-
ing the selectedc parameter and then tested on the test data.
Three sets of experiments were performed. The first com-
pares the performance of linear function trained with the
logit loss on weighted examples (henceforth refered to as
weighted logistic regression) using two methods for se-
lecting the regularization parameter: the sum of false pos-
itive and false negative frequencies and the estimate of
pr/Pr[Y = 1]. Three values ofα are used. In this case,
different values ofαwill give a different number of positive
examples. The second set of experiments gives the result
of S-EM (Liu et al., 2002) and one-class SVM (Scholkopf

et al., 1999; Manevitz & Yousef, 2001) on the same feature
set for comparison purposes. The last set of experiments
uses a slightly different set-up where the number of pos-
itive examples are held constant but different number of
positive examples are added into the negative set to form
the unlabeled set. This simulates the situation where we
already have a set of positive examples and try to draw un-
labeled examples from a source with unknown probability
of obtaining a positive example.
We measure performance on the test set in terms of the F
score which is commonly used and familiar to information
retrieval practitioners.

5.1. Experiment 1

We created three different datasets. In the first set, no ad-
ditional errors (α = 0) were added. In the second, 30%
(α = 0.3) of the positive documents in the training and
validation sets respectively were made into unlabeled doc-
uments (labeled negative) while in the third data set, 70%
(α = 0.7) of the training and validation documents were
made into unlabeled documents.
The results are shown in Table 1, where we compare
the new criteria for selecting regularization parameter
pr/Pr[Y = 1] (Criteria I) with the best regularization pa-
rameter on the test set (Best) and using the sum of positive



Positive Set α = 0 α = 0 α = 0.3 α = 0.3 α = 0.7 α = 0.7
SVM NB S-EM One-Cls S-EM One-Cls

atheism 0.515 0.616 0.546 0.141 0.577 0.138
autos 0.697 0.768 0.644 0.136 0.542 0.139
space 0.771 0.891 0.844 0.117 0.631 0.115

graphics 0.514 0.595 0.513 0.123 0.480 0.122
motorcycles 0.833 0.814 0.784 0.167 0.698 0.161

christian 0.690 0.766 0.679 0.177 0.644 0.181
ms-windows 0.614 0.586 0.572 0.190 0.471 0.216

baseball 0.774 0.844 0.705 0.140 0.705 0.134
guns 0.593 0.777 0.673 0.167 0.580 0.166
pc 0.484 0.540 0.505 0.161 0.470 0.172

hockey 0.880 0.899 0.830 0.156 0.803 0.167
mideast 0.837 0.910 0.855 0.171 0.840 0.185

mac 0.697 0.560 0.515 0.166 0.450 0.173
crypt 0.834 0.926 0.849 0.197 0.721 0.193

politics 0.500 0.678 0.567 0.134 0.488 0.131
xwindows 0.701 0.677 0.628 0.137 0.618 0.141
electronics 0.476 0.641 0.527 0.108 0.349 0.107

religion 0.185 0.501 0.440 0.152 0.421 0.151
forsale 0.660 0.734 0.709 0.149 0.573 0.145
med 0.738 0.893 0.838 0.121 0.745 0.121

Average 0.650 0.731 0.661 0.150 0.590 0.153

Table 2. The F scores when there is no errors for svmLight with default parameters and naive bayes with additive smoothing of 0.1. Also
performance of S-EM and for one class support vector machine with different number of positive examples.

and negative error frequencies (Criteria II) for different val-
ues ofα. The results show that selecting the regularization
parameter usingpr/Pr[Y = 1] gives only a slight degra-
dation in performance compared to the best regularization
parameter on the test set. In comparison, the sum of false
positive and false negative frequencies does not perform
very well for selecting the regularization parameter when
performance is measured in terms of the F score. Asα in-
creases, degradation in performance is slight when most of
the positive examples are labeled as positive. Even when
70% of the positive examples are unlabeled, the classifier
still achieves reasonable performance.

5.2. Experiment 2

For comparison (see Table 2) , we tried other methods on
the same data and feature sets. As we do not use validation
sets for these methods, we combine the training and valida-
tion sets of the previous experiments to form new training
sets for this set of experiments.
We ran the S-EM algorithm from (Liu et al., 2002) which
tries to find a good initialization for the generative model
of the negative examples and then uses EM with naive
bayes in order to label the unlabeled examples. The im-
plementation used is the same as that described in (Liu
et al., 2002) except that an additive smoothing parameter
of 0.1 (Agrawal et al., 2000) is used instead of 1 (Laplacian

smoothing) in the naive bayes model as it performs better.
The other method used is the one-class support vector ma-
chines (Scholkopf et al., 1999) which does not use the un-
labeled examples but instead tries to learn the support of
the distribution of positive examples. One-class SVM was
used in (Manevitz & Yousef, 2001) to solve a text classifi-
cation problem when only positive examples are available.
The one-class support vector machines software libSVM
(Chang & Lin, 2001) is used in the experiment. We use
the combined positive sets of our training and validation
sets as the positive set. The default parameters of libSVM
were used as there does not appear to be a simple method
for tuning parameters using only positive examples. Only
the performance for the linear kernel is shown. (Results for
Gaussian kernels are poorer.)
To compare performance of the weighted logistic regres-
sion on noiseless data, we ran the SVM algorithm (svm-
Light (Joachims, 1998) with the default parameters) and
naive bayes with an additive smoothing parameter of 0.1
on the noiseless dataset using the same feature set. The
average F score for the SVM is 0.650 while the average
F score for naive bayes is 0.731. The average F score for
weighted logistic regression in this case is 0.763. As the
parameters and features used by the SVM and naive bayes
are not tuned with a validation set, this does not give a fair
comparison but merely gives an indication that weighted



Positive Set α = 0 α = 0 α = 0 α = 0.3 α = 0.3 α = 0.3
Best Crit.I NB Best Crit. I S-EM

atheism 0.646 0.642 0.658 0.637 0.628 0.588
autos 0.773 0.773 0.757 0.763 0.761 0.596
space 0.796 0.796 0.878 0.786 0.783 0.697

graphics 0.575 0.575 0.607 0.567 0.567 0.504
motorcycles 0.849 0.849 0.812 0.826 0.826 0.747

christian 0.678 0.678 0.772 0.660 0.656 0.667
ms-windows 0.669 0.669 0.609 0.660 0.658 0.494

baseball 0.789 0.789 0.826 0.768 0.768 0.733
guns 0.685 0.685 0.782 0.677 0.667 0.640
pc 0.619 0.619 0.575 0.608 0.608 0.505

hockey 0.871 0.871 0.909 0.862 0.862 0.844
mideast 0.865 0.865 0.895 0.857 0.852 0.853

mac 0.721 0.721 0.633 0.713 0.713 0.503
crypt 0.858 0.858 0.906 0.854 0.854 0.756

politics 0.596 0.591 0.683 0.585 0.585 0.532
xwindows 0.757 0.757 0.716 0.729 0.726 0.633
electronics 0.604 0.604 0.619 0.574 0.574 0.401

religion 0.513 0.509 0.525 0.507 0.503 0.434
forsale 0.710 0.710 0.702 0.694 0.685 0.581
med 0.830 0.830 0.878 0.819 0.816 0.764

Average 0.720 0.720 0.737 0.707 0.705 0.624

Table 3. The F scores forα = 0 andα = 0.3 when the positive set remains constant but the number of positive in the unlabeled is
varied.

logistic regression does not perform poorly relative to other
methods in the noiseless case.
The S-EM algorithm performs reasonably but not as well
as weighted logistic regression. This is probably because
of a mismatch between the generative model which uses a
single model for the negative examples with the data which
is composed of many news groups for the negative exam-
ples. The one-class SVM performs poorly on this feature
set. Experiments in (Manevitz & Yousef, 2001) indicate
that one-class SVM is highly sensitive to the features used.
Better performance was obtained with one-class SVM in
(Manevitz & Yousef, 2001) for the Reuters data set. How-
ever, the number of features is between 10 to 20 in those
experiments. We did not try feature selection for improv-
ing the performance of one-class support vector machines.
In general, we think that utilizing the unlabeled examples
as noisy information is better than throwing them away.

5.3. Experiment 3

In the experiments above, the number of positive exam-
ples decreases as the noise level increases. In practice, the
number of positive examples is often constant as the learner
already has the positive examples and may be using a dif-
ferent source of unlabeled examples which may contain a
different fraction of positive examples in the unlabeled set.
We perform another set of experiments where the number

of positive examples are held constant but the number of
positive in the unlabeled set is varied. We started with the
number of positive examples used in theα = 0.7 case in
the first set of experiments. The number of positive exam-
ples in the unlabeled set is varied to create the situations
whereα = 0.3 andα = 0. The caseα = 0.7 in this ex-
periment is identical to theα = 0.7 case in the first set of
experiments. The same test set is used as in the previous
experiments, so the algorithm is further disadvantaged by
having a different test distribution compared to the training
distribution (because some of the positive examples have
been removed from the unlabeled set).
The result in Table 3 shows that the regularization param-
eter selection criteria performs well even in this situation.
Comparison with the previous experiment also shows that
performance improves with a larger positive set. Interest-
ingly, naive bayes performs well in the noiseless case when
the number of positive examples is small (Table 3) but its
performance does not improve when the number of positive
examples is increased (Table 2).

5.4. Discussion

Overall, the method seems to be effective when linear func-
tion is a good classifier and the F score is an appropriate
performance measure. By adding the regularization param-
eter which is selected using a validation set, it is also fairly



tolerant to very high dimensional data such as text. It is able
to perform better than methods based on the naive bayes as-
sumption such as S-EM on datasets where the naive bayes
assumption is not well satisfied. It uses more information
than methods such as one-class SVM and hence may be
preferable when the unlabeled data is available.
More experiments need to be done on other text data sets
such as the Reuters data set and on non-text data such as
direct marketing data to confirm the effectiveness of the
method.

6. Conclusion
We studied the problem of using linear functions to learn
from positive and unlabeled examples. We propose us-
ing logistic regression on weighted examples together with
a performance measure that can be estimated from posi-
tive and unlabeled examples to select the regularization pa-
rameter from a validation set. Experiments show that the
method performs well.
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