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ABSTRACT  
Question classification is very important for question answering. 
This paper presents our research work on automatic question 
classification through machine learning approaches. We have 
experimented with five machine learning algorithms: Nearest 
Neighbors (NN), Naïve Bayes (NB), Decision Tree (DT), Sparse 
Network of Winnows (SNoW), and Support Vector Machines 
(SVM) using two kinds of features: bag-of-words and bag-of-
ngrams. The experiment results show that with only surface text 
features the SVM outperforms the other four methods for this 
task. Further, we propose to use a special kernel function called 
the tree kernel to enable the SVM to take advantage of the 
syntactic structures of questions. We describe how the tree kernel 
can be computed efficiently by dynamic programming. The 
performance of our approach is promising, when tested on the 
questions from the TREC QA track. 

Categories and Subject Descriptors 
H.3.1. [Content Analysis and Indexing], H.3.3 [Information 
Search and Retrieval]. 

General Terms 
Algorithms, Experimentation.  

Keywords 
question answering, text classification, machine learning, support 
vector machine, kernel method. 

1. INTRODUCTION 
What a current information retrieval system or search engine can 
do is just “document retrieval”, i.e., given some keywords it only 
returns the relevant documents that contain the keywords. 

However, what a user really wants is often a precise answer to a 
question. For instance, given the question “Who was the first 
American in space?”, what a user really wants is the answer 
“Alan Shepard”, but not to read through lots of documents that 
contain the words “first”, “American” and “space” etc.  

The Text Retrieval Conference, TREC (http://trec.nist.gov/), has 
launched a QA track to support the competitive research on 
question answering, from 1999 (TREC8). The focus of the TREC 
QA track is to build a fully automatic open-domain question 
answering system, which can answer factual questions based on 
very large document sets. Today, the TREC QA track 
[18][19][20] is the major large-scale evaluation environment for 
open-domain question answering systems. 

In order to correctly answer a question, usually one needs to 
understand what the question asks for. Question Classification, 
i.e., putting the questions into several semantic categories, can 
not only impose some constraints on the plausible answers but 
also suggest different processing strategies. For instance, if the 
system understands that the question “Who was the first 
American in space?” asks for a person name, the search space of 
plausible answers will be significantly reduced. In fact, almost 
all the open-domain question answering systems include a 
question classification module. The accuracy of question 
classification is very important to the overall performance of the 
question answering system. 

While document classification has been intensively studied [22], 
question classification is still a rather new research issue. There 
appears to be nontrivial differences between these two problems. 
For example, the common words like ‘what’, ‘is’, etc. should be 
neglected for document classification, but these “stop-words” are 
actually very important for question classification. 

Although it is possible to manually write some heuristic rules for 
question classification, it usually requires tremendous amount of 
tedious work. One has to correctly figure out various forms of 
each specific type of questions in order to achieve reasonable 
accuracy for a manually constructed classification program. In 
contrast, a machine learning approach can automatically 
construct a high performance question classification program 
which leverages thousands or more features of questions. Given 
more training data, the performance of a learned classification 
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program usually improves. Moreover, a learned classification 
program is more flexible than a manual one since it can be easily 
adapted to a new domain. However, there are only a few papers 
describing machine learning approaches to question 
classification, and some of them such as [17] are pessimistic. 

This paper presents our research work on automatic question 
classification through machine learning approaches, especially 
the Support Vector Machines. It is organized as follows: Section 
2 presents the question classification problem; Section 3 
compares several machine learning approaches to question 
classification with conventional surface text features; Section 4 
describes a special kernel function called tree kernel to enable 
the Support Vector Machines to take advantage of the syntactic 
structures of questions; Section 5 is the related work; and Section 
6 concludes the paper. 

2. QUESTION CLASSIFICATION 
Question Classification means putting the questions into several 
semantic categories. Here only the TREC-style questions, i.e., 
open-domain factual questions, are considered.  

We follow the two-layered question taxonomy proposed in [12], 
which contains 6 coarse grained categories and 50 fine grained 
categories, as shown in Table 1. Each coarse grained category 
contains a non-overlapping set of fine grained categories.  

Most question answering systems use a coarse grained category 
definition. Usually the number of question categories is less than 
20. However, it is obvious that a fine grained category definition 
is more beneficial in locating and verifying the plausible 
answers.  

Table 1. The coarse and fine grained question categories. 

Coarse Fine  
ABBR abbreviation, expansion 
DESC definition, description, manner, reason 
ENTY animal, body, color, creation, currency, 

disease/medical, event, food, instrument, language, 
letter, other, plant, product, religion, sport, substance, 
symbol, technique, term, vehicle, word 

HUM description, group, individual, title 
LOC city, country, mountain, other, state 
NUM code, count, date, distance, money, order, other, 

percent, period, speed, temperature, size, weight 
 
To simplify the following experiments, we assume that one 
question resides in only one category. That is to say, an 
ambiguous question is labeled with its most probable category. 

3. COMPARING SVM AND OTHER 
MACHINE LEARNING ALGORITHMS 
3.1 Datasets 
We used the publicly available training and testing datasets 
provided by USC [10], UIUC [12] and TREC [18][19][20]. All 
these datasets have been manually labeled by UIUC [12] 
according to the coarse and fine grained categories in Table 1. 
There are about 5,500 labeled questions randomly divided into 5 
training datasets of sizes 1,000, 2,000, 3,000, 4,000 and 5,500 

respectively. The testing dataset contains 500 labeled questions 
from the TREC10 QA track.  

3.2 Features 
In this section, we only consider the surface text features of 
questions. For each question, we extract two kinds of features: 
bag-of-words and bag-of-ngrams (all continuous word sequences 
in the question). Every question is represented as binary feature 
vectors, because the term frequency (tf) of each word or ngram in 
a question usually is 0 or 1. 

3.3 Support Vector Machines 
Support Vector Machines (SVM) [2] are linear functions of the 

form ( )f x b= • +w x , where •w x  is the inner product 

between the weight vector w  and the input vector x . The SVM 

can be used as a classifier by setting the class to 1 if ( ) 0f x >  

and to -1 otherwise. The main idea of SVM is to select a hyper-
plane that separates the positive and negative examples while 
maximizing the minimum margin, where the margin for example 

i
x  is ( )

i i
y f x  and { }1,1

i
y ∈ −  is the target output. This 

corresponds to minimizing •w w  subject to 

( ) 1
i i

y b• + ≥w x  for all i . Large margin classifiers are 

known to have good generalization properties (see e.g. [2]). 

To deal with cases where there may be no separating hyper-
plane, the soft margin SVM has been proposed. The soft margin 

SVM minimizes 
i

i

C ξ• + ∑w w  subject to 

( ) 1
i i i

y b ξ• + ≥ −w x  for all i , where C  is a parameter 

that controls the amount of training errors allowed. 

For multi-class SVM, one-against-one strategy has been 
demonstrated to work well [11]. An adaptation of the LIBSVM 
implementation [5] is used in the following. 

3.4 Some Other Learning Algorithms 
Besides the Support Vector Machines (SVM), we have tried four 
other machine learning algorithms: Nearest Neighbors (NN), 
Naïve Bayes (NB), Decision Tree (DT), and Sparse Network of 
Winnows (SNoW). 

The Nearest Neighbors (NN) algorithm is a simplified version of 
the well-known kNN algorithm which has been successfully 
applied in document classification [22]. Given an unlabeled 
instance, the NN algorithm finds its nearest (most similar) 
neighbors among the training examples, and uses the dominant 
class label of these nearest neighbors as its class label. Here the 
similarity between two instances is simply defined as the number 
of overlapping features between them. If the instances are 
represented as binary feature vectors, the similarity function 
turns out to be the dot product function. There are more 
sophisticated versions of kNN algorithm, such as the one used in 
[22] and it may be interesting to test them in the future. 

The Naïve Bayes (NB) algorithm [13] is commonly studied in 
machine learning. It is regarded as one of the top performing 



 

methods for document classification [14][22]. Its basic idea is to 
estimate the parameters of a multinomial generative model for 
instances, then find the most probable class for a given instance 
using the Bayes’ rule and the Naïve Bayes assumption that the 
features occur independently of each other inside a class. 

The Decision Tree (DT) algorithm [13] is a method for 
approximating discrete valued target function, in which the 
learned function is represented by a tree of arbitrary degree that 
classifies instances. The C4.5 [15] software, a widely used 
implementation of the DT algorithm, is used in the following. 

The Sparse Network of Winnows (SNoW) algorithm [16] is 
specifically tailored for learning in the presence of a very large 
number of features and can be used as a general purpose multi-
class classifier. The learned classifier is a sparse network of 
linear functions. The SNoW software developed by the Cognitive 
Computation Group at UIUC [3] is used in the following. 

3.5 Experiment Results 
We have trained the above learning algorithms on 5 different size 
training datasets respectively and tested them on the TREC10 
questions. The parameters for each of the learning algorithms 
(e.g., the C  in the SVM) are all with their default values 
untouched. The question classification performance is measured 
by accuracy, i.e., the proportion of the correctly classified 
questions among all test questions. 

Table 2. The question classification accuracy using different 
machine learning algorithms, with the bag-of-words features, 

under the coarse grained category definition. 

algorithm 1000 2000 3000 4000 5500 
NN 70.0% 73.6% 74.8% 74.8% 75.6% 
NB 53.8% 60.4% 74.2% 76.0% 77.4% 
DT 78.8% 79.8% 82.0% 83.4% 84.2% 
SNoW 71.8% 73.4% 74.2% 78.2% 66.8% 
SVM 76.8% 83.4% 87.2% 87.4% 85.8% 
 
Table 3. The question classification accuracy using different 

machine learning algorithms, with the bag-of-ngrams 
features, under the coarse grained category definition. 

algorithm 1000 2000 3000 4000 5500 
NN 72.0% 81.0% 79.8% 80.8% 79.8% 
NB 73.0% 79.2% 80.0% 81.8% 83.2% 
DT 73.8% 82.6% 83.0% 84.6% 84.2% 
SNoW 59.8% 85.2% 80.6% 87.0% 86.6% 
SVM 77.6% 82.6% 84.0% 84.8% 87.4% 
 
Table 4. The question classification accuracy using different 

machine learning algorithms, with the bag-of-words features, 
under the fine grained category definition. 

algorithm 1000 2000 3000 4000 5500 
NN 57.4% 62.8% 65.2% 67.2% 68.4% 
NB 48.8% 52.8% 56.6% 56.2% 58.4% 
DT 67.0% 70.0% 73.6% 75.4% 77.0% 
SNoW 42.2% 66.2% 69.0% 66.6% 74.0% 
SVM 68.0% 75.0% 77.2% 77.4% 80.2% 

 
Table 5. The question classification accuracy using different 

machine learning algorithms, with the bag-of-ngrams 
features, under the fine grained category definition. 

algorithm 1000 2000 3000 4000 5500 
NN 59.4% 64.6% 67.2% 67.4% 68.6% 
NB 54.4% 58.4% 63.0% 65.0% 67.8% 
DT 62.8% 72.2% 72.6% 73.0% 77.0% 
SNoW 44.0% 67.0% 75.0% 55.8% 75.8% 
SVM 65.0% 74.0% 74.8% 77.4% 79.2% 
 
Not surprisingly, classifiers trained on larger training dataset 
usually get better performance.  

For the SVM algorithm, we observed that the bag-of-ngrams 
features are not much better than the bag-of-words features. 
Also, the SVM based on linear kernel turns out to be as good as 
the SVM based on polynomial kernel, RBF kernel or sigmoid 
kernel, so we choose to include only the accuracy of the linear 
SVM in the above tables.  

We do not take into account the category hierarchy in the above 
experiments. It has been reported that the hierarchical SNoW 
classifier trained on 5,500 examples, with the bag-of-words 
features and under the fine grained category definition, can 
achieve an accuracy of 77.6% [12]. 

In summary, the experiment results show that with only surface 
text features the SVM outperforms the other four methods for 
this task. 

4. A TREE KERNEL 
We might be hitting a limit imposed by the representation of 
questions which ignores syntax, so including syntactic 
information might be helpful. For example, the two questions 
“Which university did the president graduate from?” and “Which 
president is a graduate of the Harvard University?” could be 
discriminated by their different syntactic structures. 

In this section, we propose to use a special kernel function called 
tree kernel to enable the SVM to take advantage of the syntactic 
structures of questions. 

4.1 Concept 
A key property of the Support Vector Machines [2] is that the 
only operation it requires is the computation of dot products 
between pairs of examples. One may therefore replace the dot 
product with a Mercer kernel, implicitly mapping feature vectors 

in 
d

R  into a new space 
m

R , and applying the original 
algorithm in this new feature space. The kernel methods provide 
an efficient way to carry out such computation when m  is large 
or even infinite.  

Given a question, we first parse it into a syntactic tree using a 
parser like [4], and then we represent it as a vector in a high 
dimensional space which is defined over tree fragments.  

The tree fragments of a syntactic tree are all its sub-trees which 
include at least one terminal symbol (word) or one production 



 

rule, with the restriction that no production rules can be broken 
into incomplete parts.  

Implicitly we enumerate all the possible tree fragments 
1, 2, ..., m . These tree fragments are the axis of this m  
dimensional space. Note that this could be done only implicitly, 
since the number m  is extremely large.  

Every syntactic tree T  is represented by an m  dimensional 

vector ( )
1 2

( ) ( ), ( ), ..., ( )
m

T v T v T v T ′=v , where the i -th 

element ( )
i

v T  is the weight of the tree fragment in the i -th 

dimension if the tree fragment is in the tree T  and zero 

otherwise. The tree kernel of two syntactic trees 
1

T  and 
2

T  is 

actually the inner product of 
1

( )Tv  and 
2

( )Tv . 

For each specific tree fragment i  contained in the syntactic tree 

T , i  is weighted by 
( )s i

λ
( )d i

µ , where ( )s i  is its size and 

λ  is the weighting factor for size,  ( )d i  is its depth and µ  is 

the weighting factor for depth. The size of a tree fragment is 
defined as the number of production rules it contains. The depth 
of a tree fragment is defined as the depth of the tree fragment 
root in the entire syntactic tree. We introduce the weighting 
factors for size and depth to reflect the different importance for 
different kinds of tree fragments. 

A terminal node (a node labeled by word but not Part-of-Speech 
tag) itself is a legal tree fragment of size 0. So if we set the 
weighting factor for size 0λ =  and the weighting factor for 
depth 1µ = , the tree kernel backs off to the word linear kernel.  

Our tree kernel definition is similar to the tree kernel proposed 
in [1]. We propose a different definition because we found that 
using their definition without modification does not work well 
for question classification task. One advantage of our definition 
is that the tree kernel can back off to the word linear kernel, 
which guarantees that the tree kernel can work at least as well as 
the word linear kernel. Another advantage of our definition is 
that the tree kernel can weight the tree fragments according to 
their depth so as to identify the question focus. For example, the 
focus of the question “Which university did the president 
graduate from?” is “university” but not “president”, since the 
depth of “university” is less than the depth of “president”.  Such 
information is helpful to correctly classify the question.  

4.2 Sample 
We use the question “What is an atom?” (TREC10 question No. 
897) to illustrate the above concepts.  

Figure 1(a) depicts the syntactic tree of the question, Figure 1(b) 
is one of its sub-trees, and Figure 1(c) contains all tree fragments 
of a within the extent of b.  

Table 6 displays the size and depth of each tree fragment in 
Figure 1(c).  

 

Figure 1. (a) The syntactic tree of the sample question. (b) 
One of the sub-trees of a. (c) All tree fragments of a within 

the extent of b. 

 
Table 6. The size & depth of each tree fragment in Fig. 1(c). 

tree fragment size depth 
c1 3 4 
c2 2 4 
c3 2 4 
c4 2 4 
c5 1 5 
c6 1 5 
c7 0 6 
c8 0 6 

 

4.3 Computation 
Note that the space of tree fragments is extremely large, i.e., the 
number of dimensions m  is extremely large, which makes it 
intractable to explicitly represent the tree vectors in order to 
compute their inner products. So developing an efficient tree 
kernel computation algorithm whose complexity is independent 
of m  is necessary. Here we describe how the tree kernel can be 
computed in polynomial time complexity by dynamic 
programming. This idea was proposed in [1] and we extend it to 
work with our definition of the tree kernel. 



 

Consider a syntactic tree T . Let N  represent the set of nodes in 

T . Define the binary indicator function ( )
i

I n  to be 1 if the tree 

fragment i  is seen rooted at a node n  and 0 otherwise. And 

represent the depth of the node n  by ( )d n . Then we can derive 

that 
( ) ( ) ( ) ( )

( ) ( ) ( )
s i d i s i d n

i i i

n N n N

v T I n I nλ µ λ µ
∈ ∈

= =∑ ∑ . 

Given two syntactic trees  
1

T  and 
2

T , the tree kernel 
1 2

( , )k T T  

can be computed as follows. 

1 2 1 2 1 2
( , ) ( ) ( ) ( ) ( )

i i

i

k T T T T v T v T= • =∑v v  

( )( )( )1 2

1 1 2 2

( ) ( ) ( ) ( )

1 2
( ) ( )

s i d n s i d n

i i

n N n N i

I n I nλ µ λ µ
∈ ∈

= ∑ ∑∑

( )
1 2

1 1 2 2

( ) ( ) 2 ( )

1 2
( ) ( )d n d n s i

i i

n N n N i

I n I nµ λ+

∈ ∈

= ∑ ∑ ∑  

( )
1 2

1 1 2 2

( ) ( ) 2

1 2
( , )d n d n

n N n N

C n nµ +

∈ ∈

= ∑ ∑ . 

Here 
( )

1 2 1 2
( , ) ( ) ( )s i

i i

i

C n n I n I nλ=∑ . 

The value of 
1 2

( , )C n n  can be computed recursively as follows.  

• 
1 2

( , ) 0C n n = , if 
1 2

n n≠ ; 

• 
1 2

( , ) 1C n n = , if 
1 2

n n=  and 
1 2
,n n  are terminal nodes; 

• 
1 2

( , )C n n λ= , if 
1 2

n n=  and 
1 2
,n n  are pre-terminal 

nodes; 

• ( )( )
( 1)

1 2 1 2

1

( , ) 1 ( , ), ( , )
nc n

j

C n n C ch n j ch n jλ
=

= +∏ , if 

1 2
n n=  and 

1 2
,n n  are neither terminal nor pre-terminal 

nodes. 

Here 
1 2

n n=  if and only if the labels of 
1

n  and 
2

n  are same 

and the labels of  
1

n ’s children and 
2

n ’s children are also same. 

That is to say, while 
1

n  and 
2

n  are terminal nodes, 
1 2

n n=  if 

the word at 
1

n  and the word at 
2

n  are same, while 
1

n  and 
2

n  

are not terminal nodes, 
1 2

n n=  if the production rule  at 
1

n  and 

the production rule at 
2

n  are same. The number of the node n ’s 

children is ( )nc n , so if 
1 2

n n=  then 
1 2

( ) ( )nc n nc n= . The 

j -th child of the node n  is ( , )ch n j . 

According to the dynamic programming idea, we can traverse 
1

T  

and 
2

T  in post-order, fill in a 
1 2

N N×  matrix of  
1 2

( , )C n n , 

then sum up the matrix entries weighted by 
( )

1 2
( ) ( ) 2d n d nµ +

. The 

time complexity of this algorithm turns out to be at most 

( )1 2
O N N . 

4.4 Evaluation 
The MEI parser [4] is used to get the syntactic tree for each 
question. Then the SVM based on tree kernel is applied. There 
are two parameters for the tree kernel: λ  and µ . The default 

value of λ  is set to 0, and the default value of µ  is set to 1, so 

that the tree kernel with default parameter values is identical to 
the word linear kernel. To find appropriate parameter values, we 
run 4-fold cross validation on 1,000 training examples. 

Table 7. Tuning λ  for the tree kernel ( 1µ = ) by 4-fold 

cross validation on 1,000 training examples, under the coarse 
grained category definition. 

λ  0.0 0.1 0.2 0.3 0.4 

accuracy 73.7% 74.9% 74.7% 74.7% 74.0% 
 

Table 8. Tuning µ  for the tree kernel ( 0.1λ = ) by 4-fold 

cross validation on 1,000 training examples, under the coarse 
grained category definition. 

µ  1.0 0.9 0.8 0.7 0.6 

accuracy 74.9% 76.6% 76.4% 73.4% 69.7% 
 

Table 9. The question classification accuracy using SVM 
based on word linear kernel, ngram linear kernel, and tree 

kernel ( 0.1λ = , 0.9µ = ), under the coarse grained 

category definition. 

kernel 1000 2000 3000 4000 5500 
word  76.8% 83.4% 87.2% 87.4% 85.8% 
ngram 77.6% 82.6% 84.0% 84.8% 87.4% 
tree  80.2% 86.2% 87.6% 88.6% 90.0% 
 
Table 10. The confusion matrix of the tree kernel ( 0.1λ = , 

0.9µ = ) SVM trained on 5,500 examples, under the coarse 

grained category definition.  

 ABBR DESC ENTY HUM LOC NUM 
ABBR 7 2 0 0 0 0 
DESC 0 137 1 0 0 0 
ENTY 0 12 73 3 6 0 
HUM 0 1 3 61 0 0 
LOC 0 4 5 1 70 1 
NUM 0 9 1 0 1 102 
 
Under the coarse grained category definition, the SVM based on 
tree kernel can bring about 20% errors reduction, as shown in 
Table 9. Table 10 presents the confusion matrix of the best 
classifier, i.e., the tree kernel ( 0.1λ = , 0.9µ = ) SVM trained 

on 5,500 examples.  For example, the 1st row of the confusion 
matrix indicates that on the 9 test questions in the ABBR 
category, 7 have been correctly classified and 2 have been 
misclassified into DESC category. The most common confusions 



 

happen between ENTY and DESC, which is not surprising 
because the classifier are forced to do disjoint classification.  

The statistical sign test can be applied for comparing two 
methods A and B [22]. Table 11 shows the significance test 
results, where method A is the SVM based on tree kernel 
( 0.1λ = , 0.9µ = ) and method B is the SVM based on word 

or ngram linear kernel, both are trained on 5,500 examples and 
tested on 500 examples, under the coarse grained category 
definition. The small P-value means that method A is 
significantly better than method B. 

Table 11. The significance test results for comparing the 
SVM based on tree kernel and the SVM based on 

word/ngram linear kernel. 

A B train test n  k  Z  P-value 

tree word 5,500 500 35 28 3.55 < 0.005 
tree ngram 5,500 500 41 27 2.03 < 0.025 
 
Under the fine grained category definition, the SVM based on 
tree kernel brings slight improvements. The experiment results 
are omitted to save space. After carefully checking the 
misclassifications, we believe that the syntactic tree does not 
normally contain the information required to distinguish between 
the various fine categories within a course category. The 
inconsistent labeling of the questions under the fine grained 
category definition also makes learning and evaluation for the 
fine category difficult. Nevertheless, if we classify the questions 
into coarse grained categories first and then classify the questions 
inside each coarse grained category into its fine grained sub-
categories, we may still expect better results using the SVM 
based on tree kernel. It would be interesting to extend the work 
using hierarchical SVM classifiers [6] in the future.  

5. RELATED WORK 
Most question answering systems [18][19][20] do question 
classification using handcrafted rules. Consequently there are 
only a few papers describing machine learning approaches to 
question classification. In [17], the machine learning tool Ripper 
has been utilized for question classification. They defined 17 
question categories, trained their question classification system 
on labeled TREC8 and TREC9 dataset, and tested it on TREC10 
dataset. The reported accuracy of their system is 70%, which is 
discouraging. In [12], the SNoW method has been utilized for 
question classification. However, the good performance of their 
system depends heavily on the features called “RelWords” 
(related words) which are constructed semi-automatically but not 
automatically. In contrast, our approach only uses automatically 
constructed features. Since syntactic structure and related words 
carry different information, it is possible that including related 
words will further improve the result of our tree kernel SVM 
approach. 

The convolution kernels (string kernels, sequence kernels, tree 
kernels, etc.) recently emerged in bioinformatics area [8][21].  
Such kernels have been successfully applied to some natural 
language processing tasks like parsing [1]. Today there are more 
research works on kernels for structured data, for example in [7].  

The tree kernel SVM approach to question classification relies 
on a parser to get the syntactic trees.  However, most off-the-
shelf parsers, including the one we used in above experiments, 
are not targeted to parse questions. Those parsers are usually 
trained on the Penn Treebank corpus, which is composed of 
manually labeled newswire text. Therefore it’s not surprising 
that those parsers can not achieve a high accuracy in parsing 
questions, because there are only very few questions in the 
training corpus. In [9], the accuracy of question parsing 
dramatically improves when complementing the Penn Treebank 
corpus with additional 1153 labeled questions for training. We 
believe that a better parser is beneficial to our approach. 

6. CONCLUSION 
This paper presents our research work on automatic question 
classification through machine learning approaches.  

The main contributions of this paper are as follows. 

(1) We show that with only surface text features SVM 
outperforms four other machine learning methods (NN, NB, 
DT, SNoW) for question classification.  

(2) We found that the syntactic structures of questions are really 
helpful to question classification.  

(3) We propose to use a special kernel function called tree 
kernel to enable the SVM to take advantage of the syntactic 
structures of questions. And we describe how the tree kernel 
can be computed efficiently by dynamic programming.  

The main future direction of our research is to exploit semantic 
knowledge (such as WordNet) for question classification. It is 
also worth investigating other types of machine learning 
algorithms. 
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