

Question Classification using Support Vector Machines
Dell Zhang1,2

1Department of Computer Science
School of Computing

S15-05-24, 3 Science Drive 2
National University of Singapore

Singapore 117543
2Singapore-MIT Alliance

E4-04-10, 4 Engineering Drive 3
Singapore 117576

+65-68744251

dell.z@ieee.org

Wee Sun Lee1,2
1Department of Computer Science

School of Computing
SOC1-05-26, 3 Science Drive 2
National University of Singapore

Singapore 117543
2Singapore-MIT Alliance

E4-04-10, 4 Engineering Drive 3
Singapore 117576

+65-68744526

leews@comp.nus.edu.sg

ABSTRACT
Question classification is very important for question answering.
This paper presents our research work on automatic question
classification through machine learning approaches. We have
experimented with five machine learning algorithms: Nearest
Neighbors (NN), Naïve Bayes (NB), Decision Tree (DT), Sparse
Network of Winnows (SNoW), and Support Vector Machines
(SVM) using two kinds of features: bag-of-words and bag-of-
ngrams. The experiment results show that with only surface text
features the SVM outperforms the other four methods for this
task. Further, we propose to use a special kernel function called
the tree kernel to enable the SVM to take advantage of the
syntactic structures of questions. We describe how the tree kernel
can be computed efficiently by dynamic programming. The
performance of our approach is promising, when tested on the
questions from the TREC QA track.

Categories and Subject Descriptors
H.3.1. [Content Analysis and Indexing], H.3.3 [Information
Search and Retrieval].

General Terms
Algorithms, Experimentation.

Keywords
question answering, text classification, machine learning, support
vector machine, kernel method.

1. INTRODUCTION
What a current information retrieval system or search engine can
do is just “document retrieval”, i.e., given some keywords it only
returns the relevant documents that contain the keywords.

However, what a user really wants is often a precise answer to a
question. For instance, given the question “Who was the first
American in space?”, what a user really wants is the answer
“Alan Shepard”, but not to read through lots of documents that
contain the words “first”, “American” and “space” etc.

The Text Retrieval Conference, TREC (http://trec.nist.gov/), has
launched a QA track to support the competitive research on
question answering, from 1999 (TREC8). The focus of the TREC
QA track is to build a fully automatic open-domain question
answering system, which can answer factual questions based on
very large document sets. Today, the TREC QA track
[18][19][20] is the major large-scale evaluation environment for
open-domain question answering systems.

In order to correctly answer a question, usually one needs to
understand what the question asks for. Question Classification,
i.e., putting the questions into several semantic categories, can
not only impose some constraints on the plausible answers but
also suggest different processing strategies. For instance, if the
system understands that the question “Who was the first
American in space?” asks for a person name, the search space of
plausible answers will be significantly reduced. In fact, almost
all the open-domain question answering systems include a
question classification module. The accuracy of question
classification is very important to the overall performance of the
question answering system.

While document classification has been intensively studied [22],
question classification is still a rather new research issue. There
appears to be nontrivial differences between these two problems.
For example, the common words like ‘what’, ‘is’, etc. should be
neglected for document classification, but these “stop-words” are
actually very important for question classification.

Although it is possible to manually write some heuristic rules for
question classification, it usually requires tremendous amount of
tedious work. One has to correctly figure out various forms of
each specific type of questions in order to achieve reasonable
accuracy for a manually constructed classification program. In
contrast, a machine learning approach can automatically
construct a high performance question classification program
which leverages thousands or more features of questions. Given
more training data, the performance of a learned classification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR'03, July 28-August 1, 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-646-3/03/0007…$5.00.

program usually improves. Moreover, a learned classification
program is more flexible than a manual one since it can be easily
adapted to a new domain. However, there are only a few papers
describing machine learning approaches to question
classification, and some of them such as [17] are pessimistic.

This paper presents our research work on automatic question
classification through machine learning approaches, especially
the Support Vector Machines. It is organized as follows: Section
2 presents the question classification problem; Section 3
compares several machine learning approaches to question
classification with conventional surface text features; Section 4
describes a special kernel function called tree kernel to enable
the Support Vector Machines to take advantage of the syntactic
structures of questions; Section 5 is the related work; and Section
6 concludes the paper.

2. QUESTION CLASSIFICATION
Question Classification means putting the questions into several
semantic categories. Here only the TREC-style questions, i.e.,
open-domain factual questions, are considered.

We follow the two-layered question taxonomy proposed in [12],
which contains 6 coarse grained categories and 50 fine grained
categories, as shown in Table 1. Each coarse grained category
contains a non-overlapping set of fine grained categories.

Most question answering systems use a coarse grained category
definition. Usually the number of question categories is less than
20. However, it is obvious that a fine grained category definition
is more beneficial in locating and verifying the plausible
answers.

Table 1. The coarse and fine grained question categories.

Coarse Fine
ABBR abbreviation, expansion
DESC definition, description, manner, reason
ENTY animal, body, color, creation, currency,

disease/medical, event, food, instrument, language,
letter, other, plant, product, religion, sport, substance,
symbol, technique, term, vehicle, word

HUM description, group, individual, title
LOC city, country, mountain, other, state
NUM code, count, date, distance, money, order, other,

percent, period, speed, temperature, size, weight

To simplify the following experiments, we assume that one
question resides in only one category. That is to say, an
ambiguous question is labeled with its most probable category.

3. COMPARING SVM AND OTHER
MACHINE LEARNING ALGORITHMS
3.1 Datasets
We used the publicly available training and testing datasets
provided by USC [10], UIUC [12] and TREC [18][19][20]. All
these datasets have been manually labeled by UIUC [12]
according to the coarse and fine grained categories in Table 1.
There are about 5,500 labeled questions randomly divided into 5
training datasets of sizes 1,000, 2,000, 3,000, 4,000 and 5,500

respectively. The testing dataset contains 500 labeled questions
from the TREC10 QA track.

3.2 Features
In this section, we only consider the surface text features of
questions. For each question, we extract two kinds of features:
bag-of-words and bag-of-ngrams (all continuous word sequences
in the question). Every question is represented as binary feature
vectors, because the term frequency (tf) of each word or ngram in
a question usually is 0 or 1.

3.3 Support Vector Machines
Support Vector Machines (SVM) [2] are linear functions of the

form ()f x b= • +w x , where •w x is the inner product

between the weight vector w and the input vector x . The SVM

can be used as a classifier by setting the class to 1 if () 0f x >

and to -1 otherwise. The main idea of SVM is to select a hyper-
plane that separates the positive and negative examples while
maximizing the minimum margin, where the margin for example

i
x is ()

i i
y f x and { }1,1

i
y ∈ − is the target output. This

corresponds to minimizing •w w subject to

() 1
i i

y b• + ≥w x for all i . Large margin classifiers are

known to have good generalization properties (see e.g. [2]).

To deal with cases where there may be no separating hyper-
plane, the soft margin SVM has been proposed. The soft margin

SVM minimizes
i

i

C ξ• + ∑w w subject to

() 1
i i i

y b ξ• + ≥ −w x for all i , where C is a parameter

that controls the amount of training errors allowed.

For multi-class SVM, one-against-one strategy has been
demonstrated to work well [11]. An adaptation of the LIBSVM
implementation [5] is used in the following.

3.4 Some Other Learning Algorithms
Besides the Support Vector Machines (SVM), we have tried four
other machine learning algorithms: Nearest Neighbors (NN),
Naïve Bayes (NB), Decision Tree (DT), and Sparse Network of
Winnows (SNoW).

The Nearest Neighbors (NN) algorithm is a simplified version of
the well-known kNN algorithm which has been successfully
applied in document classification [22]. Given an unlabeled
instance, the NN algorithm finds its nearest (most similar)
neighbors among the training examples, and uses the dominant
class label of these nearest neighbors as its class label. Here the
similarity between two instances is simply defined as the number
of overlapping features between them. If the instances are
represented as binary feature vectors, the similarity function
turns out to be the dot product function. There are more
sophisticated versions of kNN algorithm, such as the one used in
[22] and it may be interesting to test them in the future.

The Naïve Bayes (NB) algorithm [13] is commonly studied in
machine learning. It is regarded as one of the top performing

methods for document classification [14][22]. Its basic idea is to
estimate the parameters of a multinomial generative model for
instances, then find the most probable class for a given instance
using the Bayes’ rule and the Naïve Bayes assumption that the
features occur independently of each other inside a class.

The Decision Tree (DT) algorithm [13] is a method for
approximating discrete valued target function, in which the
learned function is represented by a tree of arbitrary degree that
classifies instances. The C4.5 [15] software, a widely used
implementation of the DT algorithm, is used in the following.

The Sparse Network of Winnows (SNoW) algorithm [16] is
specifically tailored for learning in the presence of a very large
number of features and can be used as a general purpose multi-
class classifier. The learned classifier is a sparse network of
linear functions. The SNoW software developed by the Cognitive
Computation Group at UIUC [3] is used in the following.

3.5 Experiment Results
We have trained the above learning algorithms on 5 different size
training datasets respectively and tested them on the TREC10
questions. The parameters for each of the learning algorithms
(e.g., the C in the SVM) are all with their default values
untouched. The question classification performance is measured
by accuracy, i.e., the proportion of the correctly classified
questions among all test questions.

Table 2. The question classification accuracy using different
machine learning algorithms, with the bag-of-words features,

under the coarse grained category definition.

algorithm 1000 2000 3000 4000 5500
NN 70.0% 73.6% 74.8% 74.8% 75.6%
NB 53.8% 60.4% 74.2% 76.0% 77.4%
DT 78.8% 79.8% 82.0% 83.4% 84.2%
SNoW 71.8% 73.4% 74.2% 78.2% 66.8%
SVM 76.8% 83.4% 87.2% 87.4% 85.8%

Table 3. The question classification accuracy using different

machine learning algorithms, with the bag-of-ngrams
features, under the coarse grained category definition.

algorithm 1000 2000 3000 4000 5500
NN 72.0% 81.0% 79.8% 80.8% 79.8%
NB 73.0% 79.2% 80.0% 81.8% 83.2%
DT 73.8% 82.6% 83.0% 84.6% 84.2%
SNoW 59.8% 85.2% 80.6% 87.0% 86.6%
SVM 77.6% 82.6% 84.0% 84.8% 87.4%

Table 4. The question classification accuracy using different

machine learning algorithms, with the bag-of-words features,
under the fine grained category definition.

algorithm 1000 2000 3000 4000 5500
NN 57.4% 62.8% 65.2% 67.2% 68.4%
NB 48.8% 52.8% 56.6% 56.2% 58.4%
DT 67.0% 70.0% 73.6% 75.4% 77.0%
SNoW 42.2% 66.2% 69.0% 66.6% 74.0%
SVM 68.0% 75.0% 77.2% 77.4% 80.2%

Table 5. The question classification accuracy using different

machine learning algorithms, with the bag-of-ngrams
features, under the fine grained category definition.

algorithm 1000 2000 3000 4000 5500
NN 59.4% 64.6% 67.2% 67.4% 68.6%
NB 54.4% 58.4% 63.0% 65.0% 67.8%
DT 62.8% 72.2% 72.6% 73.0% 77.0%
SNoW 44.0% 67.0% 75.0% 55.8% 75.8%
SVM 65.0% 74.0% 74.8% 77.4% 79.2%

Not surprisingly, classifiers trained on larger training dataset
usually get better performance.

For the SVM algorithm, we observed that the bag-of-ngrams
features are not much better than the bag-of-words features.
Also, the SVM based on linear kernel turns out to be as good as
the SVM based on polynomial kernel, RBF kernel or sigmoid
kernel, so we choose to include only the accuracy of the linear
SVM in the above tables.

We do not take into account the category hierarchy in the above
experiments. It has been reported that the hierarchical SNoW
classifier trained on 5,500 examples, with the bag-of-words
features and under the fine grained category definition, can
achieve an accuracy of 77.6% [12].

In summary, the experiment results show that with only surface
text features the SVM outperforms the other four methods for
this task.

4. A TREE KERNEL
We might be hitting a limit imposed by the representation of
questions which ignores syntax, so including syntactic
information might be helpful. For example, the two questions
“Which university did the president graduate from?” and “Which
president is a graduate of the Harvard University?” could be
discriminated by their different syntactic structures.

In this section, we propose to use a special kernel function called
tree kernel to enable the SVM to take advantage of the syntactic
structures of questions.

4.1 Concept
A key property of the Support Vector Machines [2] is that the
only operation it requires is the computation of dot products
between pairs of examples. One may therefore replace the dot
product with a Mercer kernel, implicitly mapping feature vectors

in
d

R into a new space
m

R , and applying the original
algorithm in this new feature space. The kernel methods provide
an efficient way to carry out such computation when m is large
or even infinite.

Given a question, we first parse it into a syntactic tree using a
parser like [4], and then we represent it as a vector in a high
dimensional space which is defined over tree fragments.

The tree fragments of a syntactic tree are all its sub-trees which
include at least one terminal symbol (word) or one production

rule, with the restriction that no production rules can be broken
into incomplete parts.

Implicitly we enumerate all the possible tree fragments
1, 2, ..., m . These tree fragments are the axis of this m
dimensional space. Note that this could be done only implicitly,
since the number m is extremely large.

Every syntactic tree T is represented by an m dimensional

vector ()
1 2

() (), (), ..., ()
m

T v T v T v T ′=v , where the i -th

element ()
i

v T is the weight of the tree fragment in the i -th

dimension if the tree fragment is in the tree T and zero

otherwise. The tree kernel of two syntactic trees
1

T and
2

T is

actually the inner product of
1

()Tv and
2

()Tv .

For each specific tree fragment i contained in the syntactic tree

T , i is weighted by
()s i

λ
()d i

µ , where ()s i is its size and

λ is the weighting factor for size, ()d i is its depth and µ is

the weighting factor for depth. The size of a tree fragment is
defined as the number of production rules it contains. The depth
of a tree fragment is defined as the depth of the tree fragment
root in the entire syntactic tree. We introduce the weighting
factors for size and depth to reflect the different importance for
different kinds of tree fragments.

A terminal node (a node labeled by word but not Part-of-Speech
tag) itself is a legal tree fragment of size 0. So if we set the
weighting factor for size 0λ = and the weighting factor for
depth 1µ = , the tree kernel backs off to the word linear kernel.

Our tree kernel definition is similar to the tree kernel proposed
in [1]. We propose a different definition because we found that
using their definition without modification does not work well
for question classification task. One advantage of our definition
is that the tree kernel can back off to the word linear kernel,
which guarantees that the tree kernel can work at least as well as
the word linear kernel. Another advantage of our definition is
that the tree kernel can weight the tree fragments according to
their depth so as to identify the question focus. For example, the
focus of the question “Which university did the president
graduate from?” is “university” but not “president”, since the
depth of “university” is less than the depth of “president”. Such
information is helpful to correctly classify the question.

4.2 Sample
We use the question “What is an atom?” (TREC10 question No.
897) to illustrate the above concepts.

Figure 1(a) depicts the syntactic tree of the question, Figure 1(b)
is one of its sub-trees, and Figure 1(c) contains all tree fragments
of a within the extent of b.

Table 6 displays the size and depth of each tree fragment in
Figure 1(c).

Figure 1. (a) The syntactic tree of the sample question. (b)
One of the sub-trees of a. (c) All tree fragments of a within

the extent of b.

Table 6. The size & depth of each tree fragment in Fig. 1(c).

tree fragment size depth
c1 3 4
c2 2 4
c3 2 4
c4 2 4
c5 1 5
c6 1 5
c7 0 6
c8 0 6

4.3 Computation
Note that the space of tree fragments is extremely large, i.e., the
number of dimensions m is extremely large, which makes it
intractable to explicitly represent the tree vectors in order to
compute their inner products. So developing an efficient tree
kernel computation algorithm whose complexity is independent
of m is necessary. Here we describe how the tree kernel can be
computed in polynomial time complexity by dynamic
programming. This idea was proposed in [1] and we extend it to
work with our definition of the tree kernel.

Consider a syntactic tree T . Let N represent the set of nodes in

T . Define the binary indicator function ()
i

I n to be 1 if the tree

fragment i is seen rooted at a node n and 0 otherwise. And

represent the depth of the node n by ()d n . Then we can derive

that
() () () ()

() () ()
s i d i s i d n

i i i

n N n N

v T I n I nλ µ λ µ
∈ ∈

= =∑ ∑ .

Given two syntactic trees
1

T and
2

T , the tree kernel
1 2

(,)k T T

can be computed as follows.

1 2 1 2 1 2
(,) () () () ()

i i

i

k T T T T v T v T= • =∑v v

()()()1 2

1 1 2 2

() () () ()

1 2
() ()

s i d n s i d n

i i

n N n N i

I n I nλ µ λ µ
∈ ∈

= ∑ ∑∑

()
1 2

1 1 2 2

() () 2 ()

1 2
() ()d n d n s i

i i

n N n N i

I n I nµ λ+

∈ ∈

= ∑ ∑ ∑

()
1 2

1 1 2 2

() () 2

1 2
(,)d n d n

n N n N

C n nµ +

∈ ∈

= ∑ ∑ .

Here
()

1 2 1 2
(,) () ()s i

i i

i

C n n I n I nλ=∑ .

The value of
1 2

(,)C n n can be computed recursively as follows.

•
1 2

(,) 0C n n = , if
1 2

n n≠ ;

•
1 2

(,) 1C n n = , if
1 2

n n= and
1 2
,n n are terminal nodes;

•
1 2

(,)C n n λ= , if
1 2

n n= and
1 2
,n n are pre-terminal

nodes;

• ()()
(1)

1 2 1 2

1

(,) 1 (,), (,)
nc n

j

C n n C ch n j ch n jλ
=

= +∏ , if

1 2
n n= and

1 2
,n n are neither terminal nor pre-terminal

nodes.

Here
1 2

n n= if and only if the labels of
1

n and
2

n are same

and the labels of
1

n ’s children and
2

n ’s children are also same.

That is to say, while
1

n and
2

n are terminal nodes,
1 2

n n= if

the word at
1

n and the word at
2

n are same, while
1

n and
2

n

are not terminal nodes,
1 2

n n= if the production rule at
1

n and

the production rule at
2

n are same. The number of the node n ’s

children is ()nc n , so if
1 2

n n= then
1 2

() ()nc n nc n= . The

j -th child of the node n is (,)ch n j .

According to the dynamic programming idea, we can traverse
1

T

and
2

T in post-order, fill in a
1 2

N N× matrix of
1 2

(,)C n n ,

then sum up the matrix entries weighted by
()

1 2
() () 2d n d nµ +

. The

time complexity of this algorithm turns out to be at most

()1 2
O N N .

4.4 Evaluation
The MEI parser [4] is used to get the syntactic tree for each
question. Then the SVM based on tree kernel is applied. There
are two parameters for the tree kernel: λ and µ . The default

value of λ is set to 0, and the default value of µ is set to 1, so

that the tree kernel with default parameter values is identical to
the word linear kernel. To find appropriate parameter values, we
run 4-fold cross validation on 1,000 training examples.

Table 7. Tuning λ for the tree kernel (1µ =) by 4-fold

cross validation on 1,000 training examples, under the coarse
grained category definition.

λ 0.0 0.1 0.2 0.3 0.4

accuracy 73.7% 74.9% 74.7% 74.7% 74.0%

Table 8. Tuning µ for the tree kernel (0.1λ =) by 4-fold

cross validation on 1,000 training examples, under the coarse
grained category definition.

µ 1.0 0.9 0.8 0.7 0.6

accuracy 74.9% 76.6% 76.4% 73.4% 69.7%

Table 9. The question classification accuracy using SVM
based on word linear kernel, ngram linear kernel, and tree

kernel (0.1λ = , 0.9µ =), under the coarse grained

category definition.

kernel 1000 2000 3000 4000 5500
word 76.8% 83.4% 87.2% 87.4% 85.8%
ngram 77.6% 82.6% 84.0% 84.8% 87.4%
tree 80.2% 86.2% 87.6% 88.6% 90.0%

Table 10. The confusion matrix of the tree kernel (0.1λ = ,

0.9µ =) SVM trained on 5,500 examples, under the coarse

grained category definition.

 ABBR DESC ENTY HUM LOC NUM
ABBR 7 2 0 0 0 0
DESC 0 137 1 0 0 0
ENTY 0 12 73 3 6 0
HUM 0 1 3 61 0 0
LOC 0 4 5 1 70 1
NUM 0 9 1 0 1 102

Under the coarse grained category definition, the SVM based on
tree kernel can bring about 20% errors reduction, as shown in
Table 9. Table 10 presents the confusion matrix of the best
classifier, i.e., the tree kernel (0.1λ = , 0.9µ =) SVM trained

on 5,500 examples. For example, the 1st row of the confusion
matrix indicates that on the 9 test questions in the ABBR
category, 7 have been correctly classified and 2 have been
misclassified into DESC category. The most common confusions

happen between ENTY and DESC, which is not surprising
because the classifier are forced to do disjoint classification.

The statistical sign test can be applied for comparing two
methods A and B [22]. Table 11 shows the significance test
results, where method A is the SVM based on tree kernel
(0.1λ = , 0.9µ =) and method B is the SVM based on word

or ngram linear kernel, both are trained on 5,500 examples and
tested on 500 examples, under the coarse grained category
definition. The small P-value means that method A is
significantly better than method B.

Table 11. The significance test results for comparing the
SVM based on tree kernel and the SVM based on

word/ngram linear kernel.

A B train test n k Z P-value

tree word 5,500 500 35 28 3.55 < 0.005
tree ngram 5,500 500 41 27 2.03 < 0.025

Under the fine grained category definition, the SVM based on
tree kernel brings slight improvements. The experiment results
are omitted to save space. After carefully checking the
misclassifications, we believe that the syntactic tree does not
normally contain the information required to distinguish between
the various fine categories within a course category. The
inconsistent labeling of the questions under the fine grained
category definition also makes learning and evaluation for the
fine category difficult. Nevertheless, if we classify the questions
into coarse grained categories first and then classify the questions
inside each coarse grained category into its fine grained sub-
categories, we may still expect better results using the SVM
based on tree kernel. It would be interesting to extend the work
using hierarchical SVM classifiers [6] in the future.

5. RELATED WORK
Most question answering systems [18][19][20] do question
classification using handcrafted rules. Consequently there are
only a few papers describing machine learning approaches to
question classification. In [17], the machine learning tool Ripper
has been utilized for question classification. They defined 17
question categories, trained their question classification system
on labeled TREC8 and TREC9 dataset, and tested it on TREC10
dataset. The reported accuracy of their system is 70%, which is
discouraging. In [12], the SNoW method has been utilized for
question classification. However, the good performance of their
system depends heavily on the features called “RelWords”
(related words) which are constructed semi-automatically but not
automatically. In contrast, our approach only uses automatically
constructed features. Since syntactic structure and related words
carry different information, it is possible that including related
words will further improve the result of our tree kernel SVM
approach.

The convolution kernels (string kernels, sequence kernels, tree
kernels, etc.) recently emerged in bioinformatics area [8][21].
Such kernels have been successfully applied to some natural
language processing tasks like parsing [1]. Today there are more
research works on kernels for structured data, for example in [7].

The tree kernel SVM approach to question classification relies
on a parser to get the syntactic trees. However, most off-the-
shelf parsers, including the one we used in above experiments,
are not targeted to parse questions. Those parsers are usually
trained on the Penn Treebank corpus, which is composed of
manually labeled newswire text. Therefore it’s not surprising
that those parsers can not achieve a high accuracy in parsing
questions, because there are only very few questions in the
training corpus. In [9], the accuracy of question parsing
dramatically improves when complementing the Penn Treebank
corpus with additional 1153 labeled questions for training. We
believe that a better parser is beneficial to our approach.

6. CONCLUSION
This paper presents our research work on automatic question
classification through machine learning approaches.

The main contributions of this paper are as follows.

(1) We show that with only surface text features SVM
outperforms four other machine learning methods (NN, NB,
DT, SNoW) for question classification.

(2) We found that the syntactic structures of questions are really
helpful to question classification.

(3) We propose to use a special kernel function called tree
kernel to enable the SVM to take advantage of the syntactic
structures of questions. And we describe how the tree kernel
can be computed efficiently by dynamic programming.

The main future direction of our research is to exploit semantic
knowledge (such as WordNet) for question classification. It is
also worth investigating other types of machine learning
algorithms.

7. ACKNOWLEDGEMENTS
Many thanks to Dr. Thorsten Joachims for kindly being our
SIGIR’03 mentor. Thanks also to the Cognitive Computation
Group at UIUC for opening their datasets.

8. REFERENCES
[1] M. Collins and N. Duffy. Convolution Kernels for Natural

Language. In Proceedings of Neural Information Processing
Systems (NIPS14), 2001.

[2] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines. Cambridge University Press,
Cambridge, UK, 2000.

[3] A. Carlson, C. Cumby, J. Rosen, and D. Roth. SNoW User
Guide. Technical Report UIUCDCS-R-99-2101. UIUC
Computer Science Department, Aug 1999. Software
available at http://l2r.cs.uiuc.edu/~danr/snow.html.

[4] E. Charniak. A Maximum-Entropy-Inspired Parser.
Technical Report CS-99-12, Brown University, Computer
Science Department, Aug 1999.

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library
for support vector machines. 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] S. Dumais and H. Chen. Hierarchical Classification of Web
Content. In Proceedings of the 23rd ACM Int. Conference on
Research and Development in Information Retrieval
(SIGIR’00), pp 256-263, Athens, GR, 2000.

[7] T. Gaertner, J. Lloyd, and P. Flach. Kernels for Structured
Data. In Proceedings of the 12th International Conference
on Inductive Logic Programming (ILP), July 2002.

[8] D. Haussler. Convolution Kernels on Discrete Structures.
Technical Report, University of Santa Cruz. 1999.

[9] U. Hermjakob. Parsing and Question Classification for
Question Answering. In Proceedings of the ACL Workshop
on Open-Domain Question Answering, Toulouse, France,
2001.

[10] E. Hovy, L. Gerber, U. Hermjakob, C. Lin, and D.
Ravichandran. Towards Semantics-based Answer
Pinpointing. In Proceedings of the DARPA Human
Language Technology conference (HLT), San Diego, CA,
1999.

[11] C. W. Hsu and C. J. Lin. A Comparison of Methods for
Multi-class Support Vector Machines, IEEE Transactions
on Neural Networks, 13, pp. 415--425, 2002.

[12] X. Li and D. Roth. Learning Question Classifiers. In
Proceedings of the 19th International Conference on
Computational Linguistics (COLING'02), 2002.

[13] T. Mitchell. Machine Learning. McGraw Hill, New York,
1997.

[14] A. McCallum and K. Nigam. A Comparison of Event
Models for Naïve Bayes Text Classification. In AAAI-98
Workshop on Learning for Text Categorization, 1998.

[15] J. R. Quinlan. C4.5: Programs fro Machine Learning.
Morgan Kaufmann, San Francisco, CA, 1993.

[16] D. Roth. Learning to Resolve Natural Language
Ambiguities: A Unified Approach. In Proceedings of
AAAI'98. pp. 806-813, Madison, WI, USA, Jul 1998.

[17] D. R. Radev, W. Fan, H. Qi, H. Wu and A. Grewal.
Probabilistic Question Answering from the Web. In
Proceedings of the 11th World Wide Web Conference
(WWW2002), Hawaii, 2002.

[18] E. Voorhees. The TREC-8 Question Answering Track
Report. In Proceedings of the 8th Text Retrieval Conference
(TREC8), pp. 77-82, NIST, Gaithersburg, MD, 1999.

[19] E. Voorhees. Overview of the TREC-9 Question Answering
Track. In Proceedings of the 9th Text Retrieval Conference
(TREC9), pp. 71-80, NIST, Gaithersburg, MD, 2000.

[20] E. Voorhees. Overview of the TREC 2001 Question
Answering Track. In Proceedings of the 10th Text Retrieval
Conference (TREC10), pp. 157-165, NIST, Gaithersburg,
MD, 2001.

[21] C. Watkins. Dynamic Alignment Kernels. In A. J. Smola, P.
L. Bartlett, B. Schlkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pp. 39-50, MIT
Press, 2000.

[22] Y. Yang and X. Liu. A Re-examination of Text
Categorization Methods. In Proceedings of ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR’99), pp. 42-49, 1999.

