
A Theoretical Analysis of Query Selection for Collaborative

Filtering

Sanjoy Dasgupta
Computer Science Department, University of California at San Diego
(dasgupta@cs.ucsd.edu)

Wee Sun Lee
Computer Science Department and Singapore-MIT Alliance, National University
of Singapore (leews@comp.nus.edu.sg)

Philip M. Long
Genome Institute of Singapore (gislongp@nus.edu.sg)

November 22, 2002

Abstract. We consider the problem of determining which of a set of experts
has tastes most similar to a given user by asking the user questions about his
likes and dislikes. We describe a simple algorithm for generating queries for a
theoretical model of this problem. We show that the algorithm requires at most
opt(F)(ln(|F |/opt(F)) + 1) + 1 queries to find the correct expert, where opt(F)
is the optimal worst-case bound on the number of queries for learning arbitrary
elements of the set of experts F . The algorithm runs in time polynomial in |F | and
|X| (where X is the domain) and we prove that no polynomial-time algorithm can
have a significantly better bound on the number of queries unless all problems in NP
have nO(log logn) time algorithms. We also study a more general case where the user
ratings come from a finite set Y and there is an integer-valued loss function ` on Y
that is used to measure the distance between the ratings. Assuming that the loss
function is a metric and that there is an expert within a distance η from the user,
we give a polynomial-time algorithm that is guaranteed to find such an expert after
at most 2opt(F, η) ln |F |

1+deg(F,η)
+ 2(η + 1)(1 + deg(F, η)) queries, where deg(F, η) is

the largest number of experts in F that are within a distance 2η of any f ∈ F .

Keywords: collaborative filtering, recommender systems, membership queries, ap-
proximation algorithms,inapproximability

1. Introduction

Recommender systems (also known as collaborative filtering systems)
use the opinions of past users to make recommendations to new users.
The design of many such systems is based on the assumption that
people with similar opinions about some things are likely to have similar
opinions about others (see Resnick and Varian, Breese et al., 1997,
1998). The user is typically asked to rate a few items before any new
item is recommended. Once a sufficient number of items have been
rated, the system can use those ratings to estimate which previous users

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 22/11/2002; 13:08; p.1

2 Dasgupta, Lee and Long

of the system are most similar to the current user overall. The opinions
of these previous users can then be used to generate recommendations;
methods based on weighted majority prediction (Nakamura and Abe,
1998) and correlation coefficients (Resnick et al., 1994) usually work
quite well for this.

In this paper, we investigate a different aspect of the problem: how
to select the initial items for the user to rate. These items are not
presented as recommendations, but are asked only for the purpose of
learning about the user. Since these are troublesome to the user, a high
priority must be placed on asking few of these questions. (This is in
contrast to the work on “approximate nearest neighbor searching” in
Arya et al., Kushilevitz et al., Indyk and Motwani, 1994, 1998, 1998,
where all the components of the point being searched are assumed
to be given.) If later questions are decided based on the answers to
earlier questions, the questions must also be generated in real time. To
our knowledge, this problem has not been studied in the collaborative
filtering literature before.

We allow the ratings to come from any finite set Y , and assume that
the algorithm is given an integer-valued loss function ` on Y to measure
the distance between different ratings. We require that the loss function
` be a metric, that is, it satisfies the properties: `(x, y) ≥ 0, `(x, y) = 0
if and only if x = y, `(x, y) = `(y, x) and `(x, y) ≤ `(x, z) + `(z, y) for
any z ∈ Y . Common loss functions that satisfy these properties include
the 0 − 1 loss and the absolute loss. The distance between users will
then be measured by the sum, over all items, of the loss between their
ratings on a given item.

To emphasize the role that they play, we refer to the previous users
as experts; our approximation bounds will be in terms of the number
of such experts. Our analyses assume that each of these experts have
rated all items in the system. In practice, some users can be paid to
rate all the items. Alternatively, the system may be able to generate
such experts by clustering previous users, each of whom may have rated
only some of the items, and using the cluster centers as the experts.

Our algorithm and its analysis in the general case are easiest to
understand as extensions of a simple algorithm and analysis for an
artificial, highly idealized setting. In this setting, we assume that there
are only two possible ratings, that the distance between ratings is 1
if they are different and 0 if they are the same, and that some expert
agrees with the user on all items. In this case, the problem can be
described in terms of the membership query model (Angluin, 1988).

In the membership query model (Angluin, 1988), the learning algo-
rithm is trying to learn an unknown {0, 1}-valued function f (called
the “target”) chosen from a known concept class F . The algorithm is

paper.tex; 22/11/2002; 13:08; p.2

Collaborative Filtering 3

allowed to ask the value of f(x) for domain elements x of its choosing,
and must eventually halt and output the identity of f . In the idealized
case described above, the problem of finding the perfect expert can
be viewed as the problem of learning using membership queries. The
different items would be the domain X, the likes and dislikes of the user
is the function f to be learned, and asking the user its opinion about an
item can be interpreted as a membership query. The experts are then
the concept class F . Viewed this way, the problem we are faced with
is that of, given a concept class F as input, designing a membership
query algorithm for F .

The number of queries required for learning in the membership
query model has been studied in (Bshouty et al., 1996; Hellerstein
et al., 1996; Hegedus, 1995; Gortler and Servedio, 2001). These studies
typically try to identify parameters of function classes that characterize
the number of queries required. They also give bounds on the number
of queries required for various function classes, typically boolean cir-
cuits. In this work, our function classes are meant to model a set of
experts. Hence we assume only that we have a finite class F and try
to derive algorithms that perform well relative to opt(F), the optimal
worst-case bound on the number of membership queries for learning
arbitrary elements of F . This particular problem was studied in (Arkin
et al., 1998) (see Angluin, 2001). They showed that the very simple
and fast “query-by-committee” (Seung et al., 1992) algorithm, which
maintains a list of possible targets, and chooses the query for which the
remaining possibilities are most evenly divided, learns any class F with
an approximately optimal number of membership queries in the worst
case. Specifically, they proved that the query-by-committee algorithm
learns arbitrary elements of F while making at most opt(F) log2 |F |
queries.

In this paper, we provide a simpler proof of an improved bound
of opt(F)(ln(|F |/opt(F)) + 1) + 1 queries. While this is a modest im-
provement for the basic problem, (the leading constant is improved by
a factor of 1/(ln 2) ≈ 1.44), the structure of the proof forms the basis
for our analysis of the general case.

A result in (Hyafil and Rivest, 1976) (see Angluin, 2001) directly im-
plies that, if P 6= NP , there is no polynomial-time algorithm that learns
arbitrary elements of F with an exactly optimal number of membership
queries in the worst case. We show that, if not all problems in NP have
nO(log logn) time algorithms, it is impossible to design a polynomial-
time algorithm that, given F as input and a membership oracle for an
element f of F , is guaranteed to learn f using opt(F)((1/2−o(1)) ln |F |)
queries.

paper.tex; 22/11/2002; 13:08; p.3

4 Dasgupta, Lee and Long

Next, we look at the more general case. To study this case, we use
a variant of the membership query model similar to that proposed in
(Angluin et al., 1997). Here, the range of the target f (our model of the
user) and the functions in F (the experts) is an arbitrary finite set Y .
As mentioned above, the algorithm is given an integer-valued metric `
on Y × Y , and the distance between functions f and g is measured by∑
x∈X `(f(x), g(x)). The target function f is not necessarily in F , but

the algorithm is given a parameter η such that there is a function g in
F at a distance at most η from f . The algorithm must output some
element of F within distance η (there may be more than one). Let us
refer to the optimal worst-case bound on the number of queries for this
model by opt(F, η).

The algorithm we analyze for this problem also maintains a list
of elements of F that are “alive”; here, these are elements that might
possibly be within distance η of the target function f . Loosely speaking,
it repeatedly chooses a domain element for which any response will
discredit the remaining possibilities in total by a large amount.

To analyze this algorithm, we make use of a quantity that we call
the η-degree of F . In the recommender system application, this can be
interpreted as a measure of the diversity of opinion among the experts;
for example, if any possible target f is at a distance at most η from
a unique element of F , then the η-degree of F is 0. The motivation
for this measure is strongest if we imagine that F is the result of a
clustering preprocessing step. Note that, informally, if F consists of the
centers of tight clusters, and users typically belong to one such cluster,
being much closer to one element of F than to any other should often
be expected in practice. Tight clustering is the implicit assumption
underlying the design of many collaborative filtering systems.

One can view the definition of η-degree as follows: imagine centering
balls of radius η at the elements of F , and constructing a graph where
the vertices are these balls, and there are edges between pairs of vertices
that overlap. The η-degree of F , denoted deg(F, η), is the edge degree
of that graph.

Our generalization of the query-by-committee algorithm is guaran-
teed to find an element of F within distance η after at most

2opt(F, η) ln
|F |

1 + deg(F, η)
+ 2(η + 1)(1 + deg(F, η))

queries. Thus, if each possible target is within distance η of a unique
element of F ,

2opt(F, η) ln |F |+ 2(η + 1)

queries suffice. The algorithm runs in time polynomial in |X|, |Y | and
|F |. Since the idealized case is a special case with η = 0 and Y = {0, 1},

paper.tex; 22/11/2002; 13:08; p.4

Collaborative Filtering 5

finding a polynomial-time algorithm with significantly better bound on
the number of queries does not appear to be possible when deg(F, η) is
small.

2. Membership Queries

Fix some finite domain X. For some function f from X to {0, 1},
a membership oracle for f , when queried about an element x of X,
returns f(x). For an algorithm A with access to a membership oracle
for f , let Q(A, f) be the number of queries asked by A before it outputs
the identity of f . For a class F of functions from X to {0, 1}, let Q(A,F)
be the maximum of Q(A, f) over all f ∈ F . Let opt(F) be the minimum
of Q(A,F) over all algorithms A (note that there is no limitation on
the time taken by A).

In this section, we show that there is an algorithm that takes F as
input, and, given access to an oracle for an arbitrary element f of F ,
learns f with a nearly optimal number of queries in time polynomial
in |F | and |X|.

2.1. Analysis

The algorithm analyzed in this section is the “query-by-committee”
(Seung et al., 1992) algorithm. (Our analysis of it builds on Johnson’s
analysis of his approximation algorithm for Set Cover in Johnson,
1974.) It maintains a list of the elements of F consistent with the
answers received so far, and asks the query x that divides the elements
the most evenly, i.e. for which the number of “alive” functions g for
which g(x) = 1 and the number for which g(x) = 0 are as close as
possible. After receiving f(x), those possibilities that are inconsistent
with this value are deleted, and the algorithm continues. When only
one possibility remains, the algorithm halts and outputs it.

The key lemma in our analysis is the following.

LEMMA 1. For any domain X, and any finite set F of at least two
functions from X to {0, 1}, there is an x for which miny∈{0,1} |{f ∈ F :
f(x) = y}| ≥ (|F | − 1)/opt(F).

Proof: Let A be an optimal membership query algorithm for F . As-
sume for the sake of contradiction that for all x ∈ X, either |{f ∈
F : f(x) = 1}| < (|F | − 1)/opt(F), or |{f ∈ F : f(x) = 0}| <
(|F | − 1)/opt(F).

Our strategy will be to use the fact that any possible query that A
could ask has an answer that eliminates few possibilities to argue that

paper.tex; 22/11/2002; 13:08; p.5

6 Dasgupta, Lee and Long

after asking a certain number of queries, A cannot know the function
to be learned. We will design an adversary that repeatedly gives the
answer to A that eliminates the fewest possibilities.

Let F0 = F (in general, Ft will be the possibilities remaining after t
queries have been asked). Let x1 be the first query asked by A. Choose
y1 to maximize |{f ∈ F : f(x1) = y1}|. Let F1 = {f ∈ F : f(x1) = y1}.
Then, by assumption, |F1| − 1 > |F | − 1− (|F | − 1)/opt(F).

Continuing, let each xt be the tth query asked, and choose yt to
maximize |{f ∈ F : f(xt) = yt}|, and let Ft = {f ∈ F : f(x1) =
y1, ..., f(xt) = yt}. For each such t, |Ft| − 1 > |Ft−1| − 1 − (|F | −
1)/opt(F). Telescoping,

|Fopt(F)| − 1 > (1− opt(F)/opt(F))(|F | − 1) = 0. (1)

Thus, after opt(F) queries, there is more than one element of F con-
sistent with the information received by A, a contradiction. 2

THEOREM 2. For any finite set X, and any finite set F of at least two
functions from X to {0, 1}, the query-by-committee algorithm, given F
and a membership oracle for any arbitrary f ∈ F , outputs f after asking
at most

opt(F)
(

1 + ln
|F | − 1
opt(F)

)
+ 1

queries.

Proof: Choose F , and a target f ∈ F . Suppose the query-by-committee
algorithm asks T queries before learning f , and for each 0 ≤ t ≤ T , let
Ft be the set of functions in F consistent with the information received
after the first t queries. Lemma 1 implies that for all t ≤ T ,

|Ft| − 1 ≤ (1− 1/opt(Ft−1))(|Ft−1| − 1)
≤ (1− 1/opt(F))(|Ft−1| − 1). (2)

We also have
|Ft| ≤ |Ft−1| − 1. (3)

Let S be the largest index for which |FS | − 1 ≥ opt(F). Then (2)
implies (

1− 1
opt(F)

)S
(|F | − 1) ≥ opt(F)

and, applying the fact that ∀x, 1− x ≤ e−x and solving for S, we get

S ≤ opt(F) ln
|F | − 1
opt(F)

.

paper.tex; 22/11/2002; 13:08; p.6

Collaborative Filtering 7

Also, (3), together with the fact that |FT−1| > 1, implies that

T − S < opt(F) + 1,

completing the proof. 2

2.2. Hardness of approximation

An approximation algorithm for a minimization problem achieves an
approximation ratio of α > 1 if for every instance of the problem, it
computes a solution that costs no more than α·OPT, where OPT is the
optimum (minimum) cost for the problem instance. We will show that
there is no polynomial-time algorithm with an approximation ratio of
(1

2 − o(1)) ln |F | for finding the minimum number of queries unless all
problems in NP have nO(log logn) time algorithms.

The result will be proven by using an approximation-preserving
reduction from the Set Cover problem.

Set Cover

Input: Base set B with |B| = n; subsets S = {S1, . . . , Sm} of B.

Output: T ⊂ S which covers B, i.e. for which B ⊆
⋃
T∈T T .

Goal: Minimize |T |.

LEMMA 3 (Feige, 1998). If, for some ε > 0, there is a polynomial-
time algorithm which approximates Set Cover within (1−ε) lnn, then
NP ⊂ TIME(nO(log logn)).

THEOREM 4. Unless NP ⊂ TIME(nO(log logn)), there is no polynomial-
time algorithm which guarantees a (1

2−o(1)) ln |F |-approximation to the
problem of learning arbitrary elements of F with a minimal number of
queries.

Proof: Given an instance of Set Cover, let n = |B| and let
x1, . . . , xn denote the elements of B. Assume without loss of generality
that no two elements of B are present in exactly the same subsets Sj
(redundant elements can be discarded). Create an n × m matrix A
whose (i, j)th entry is

Aij =
{

1 if xi ∈ Sj
0 otherwise

Now consider the large (n2 +n+1)× (mn+n) matrix in Figure 1. The
unshaded portions are all zero.

We will construct an instance of our query problem in which each
column of the matrix represents a possible query, each row represents

paper.tex; 22/11/2002; 13:08; p.7

8 Dasgupta, Lee and Long

��

��

��

��������������������������

	�	�	�	�	
�
�
�
�

n

m

n

n

nI

A

A

A

Figure 1. Reduction from Set Cover to our problem. There are n copies of matrix
A. All unshaded portions of this large (n2 + n+ 1)× (nm+ n) matrix are zero. In
denotes the n× n identity matrix.

a function f ∈ F , and the entries of the matrix actually specify all the
functions.

Suppose the original instance has a minimum set cover of size s.
Now suppose some f ∈ F is chosen and the goal is to identify it.

1. Consider any of the first n blocks of n functions (each block corre-
sponds to a copy of matrix A in Figure 1). If f has a nonzero value
in one of the columns of this block, let us say that f lies in the
block. We can determine whether f lies in a given block by asking
queries corresponding to columns that form a cover of the rows in
the block – f lies in the block if and only if any of the answers to
those queries is 1. Furthermore, to eliminate all the functions in
a block, questions corresponding to columns that cover the rows
must be asked – otherwise, some function f in the block would be
consistent with all 0 answers. Thus, in order to determine whether
f lies in this block, at most s queries are needed, and in order to

paper.tex; 22/11/2002; 13:08; p.8

Collaborative Filtering 9

eliminate all the functions in a block from consideration, exactly s
queries are needed.

2. In order to eliminate the last block of n functions (corresponding
to matrix In in Figure 1), exactly n queries are needed.

3. Therefore, if the target function f is the last row, then ns + n
queries are needed.

4. If the target function is any other row, at most this many queries
are needed. Basically, ns queries are sufficient to identify the correct
block of functions, and a further n queries will pinpoint the correct
function.

Therefore, the optimal number of queries is exactly ns+n. Suppose
we have an α-approximation algorithm for our problem; give it this
instance, and ask it to identify the last function (the last row). At
least n of its queries must be from the last block (corresponding to In),
and so there must be at least one of the first n blocks which receives
≤ (α(ns+n)−n)/n = α(s+ 1)− 1 queries. These α(s+ 1)− 1 queries
yield a set cover of the original instance (otherwise that particular block
of functions cannot be completely eliminated). It follows from Lemma 3
that α > (1 − o(1)) lnn = (1/2 − o(1)) ln |F |, unless NP has slightly
superpolynomial-time algorithms. 2

3. The General Case

Choose a finite nonempty set Y , and a metric ` mapping Y × Y to the
nonnegative integers.

For functions f and g from X to Y define the distance d(f, g)
between f and g by

d(f, g) =
∑
x∈X

`(f(x), g(x)).

Let B(F, η) consist of all g : X → Y such that there is an f ∈ F for
which d(f, g) ≤ η.

In this model, the adversary picks a function g from B(F, η) (which
we will call the target), and provides an evaluation oracle for g to
the algorithm; this oracle responds to a query of x with g(x). The
algorithm then must output h ∈ F such that d(g, h) ≤ η (there may be
more than one such possibility). The worst case number of queries for
an algorithm A in this setting is Q(A,F, η), and the optimal number
of queries is opt(F, η).

paper.tex; 22/11/2002; 13:08; p.9

10 Dasgupta, Lee and Long

For a function f : X → Y , and U ⊆ X, denote the restriction of f
to U by f|U . For a set F of functions from X to Y , define the η-degree
of F , denoted by deg(F, η), to be the maximum, over all h ∈ F , of
|{f ∈ F : 0 < d(f, h) ≤ 2η}|.

For technical reasons, we will consider a related model. In this model,
instead of η, the learning algorithm is given a priori a function µ : F →
Z+ called a quota function, and access to an evaluation oracle for some
g : X → Y such that there is a h ∈ F with d(g, h) ≤ µ(h). The quota
function is used to indicate how much error the function is allowed to
make before being eliminated.

The algorithm must output an h ∈ F such that d(g, h) ≤ µ(h). Let
opt(F, µ) be the optimal worst-case number of queries for learning in
this model. For µ : F → Z+, define φ(F, µ) to be the maximum, over
all h ∈ F , of ∑

f∈F :d(f,h)≤µ(f)+µ(h)

(1 + µ(f)).

The value φ(F, µ) bounds the amount of quota of functions near the tar-
get. These functions are harder to eliminate and are treated separately
in the proofs.

3.1. Algorithm

Our algorithm works in time polynomial in |X|, |Y |, and |F |. (Note
that the latter is significantly less than |B(F, η)|.)

Let xi and yi, i < t, be the queries and responses before time t and
let

Ft =

{
f|X−{x1,...,xt−1}

: f ∈ F,
∑
s<t

`(f(xs), ys) ≤ µ(f)

}
.

Informally Ft consists of the restrictions of those elements of F that
are “still alive” to the unexplored portion of X. For each t, define
µt : Ft → Z+ by

µt(h) = max

{
µ(f)−

∑
s<t

`(f(xs), ys) : f ∈ F, f|X−{x1,...,xt−1}
= h

}
.

Informally, µt(h) is the amount of loss left before h is eliminated as a
possible target.

For f ∈ F , define `f,t : X × Y → Z+ by

`f,t(x, y) = min

{
`(f(x), y), (µ(f) + 1)−

∑
s<t

`f,s(xs, ys)

}
.

paper.tex; 22/11/2002; 13:08; p.10

Collaborative Filtering 11

We can think of `f,t as a “truncated” version of the loss function `, in
which if the loss at trial t is enough to put f over its “loss budget”, the
loss is reduced to the smallest amount that does this.

For f ∈ Ft, define `′f,t : X − {x1, . . . , xt−1} × Y → Z+ by

`′f,t(x, y) = min{`(f(x), y), µt(f) + 1}.

The function `′f,t is like `f,t, except that it concerns Ft and µt. Each
function f ∈ Ft has a corresponding function f̄ ∈ F (which is an exten-
sion of f to {x1, . . . , xt−1}) such that `′f,t = `f̄ ,t on X −{x1, . . . , xt−1}.

Our algorithm (let’s call it BF,µ, and, in the case that µ(f) = η for
all f , BF,η), is defined as follows. In round t, if |Ft| = 1, the algorithm
halts, and outputs an extension h of the single element of Ft to all
of X that minimizes

∑
s<t `(h(xs), ys). Otherwise, it chooses xt from

X − {x1, ..., xt−1} in order to maximize

min
y∈Y

∑
f∈Ft

`′f,t(xt, y).

The algorithm is similar to the algorithm in Section 2 in that it picks
the element that will maximize the smallest (over the labels) sum of
losses of the remaining functions. The main difference is that functions
are eliminated when they exceed their loss quota or when they are
identical to other functions in Ft−1 on X−{x1, ..., xt−1} but have larger
cumulative losses.

3.2. Analysis

The following is the main lemma in our analysis of this algorithm. As
in Lemma 1, it shows that it is always possible to select an element in
the set that will induce a large sum of losses (over the functions, hence
eliminating the functions quickly) regardless of the label associated
with the element.

LEMMA 5. Choose a finite X, a finite Y , a finite set F of at least 2
functions from X to Y , and µ : F → Z+. There is an x ∈ X for which

min
y∈Y

∑
f∈F

`′f,1(x, y) ≥ 1
opt(F, µ)

∑
f∈F

(1 + µ(f))

− φ(F, µ)


Proof: Let A be an optimal membership query algorithm for learning F
with a quota function µ in the model of this section. Let T = opt(F, µ).
Assume without loss of generality that A always asks exactly T queries
before halting and outputting a function in F . Assume for the sake of

paper.tex; 22/11/2002; 13:08; p.11

12 Dasgupta, Lee and Long

contradiction that

∀x,∃y,
∑
f∈F

`′f,1(x, y) <
1
T

∑
f∈F

(1 + µ(f))

− φ(F, µ)

 . (4)

Note that ∑
f∈F

`′f,1(x, y) =
∑
f∈F

`f,1(x, y)

and that, for all t ≥ 1,∑
f∈F

`f,t(x, y) ≤
∑
f∈F

`f,1(x, y). (5)

Generate (x1, y1), ..., (xT , yT) recursively as follows. For each t, let xt
be A’s query when its previous queries x1, ..., xt−1 were answered with
y1, ..., yt−1 respectively. Choose

yt = argminy
∑
f∈F

`f,t(xt, y). (6)

First, we claim that (x1, y1), ..., (xT , yT) are “legal”, in the sense
that there is at least one potential target function g such that g(x1) =
y1, ..., g(xT) = yT for which there is a h ∈ F with d(g, h) ≤ µ(h). To
see this, note that (4), (6), and (5) imply

∑
f∈F

T∑
t=1

`f,t(xt, yt) =
T∑
t=1

∑
f∈F

`f,t(xt, yt)

<

∑
f∈F

(1 + µ(f))

− φ(F, µ) (7)

≤

∑
f∈F

(1 + µ(f))

 .
Thus, there is a h ∈ F such that

∑T
t=1 `h,t(xt, yt) ≤ µ(h). So if g

is defined by g(x1) = y1, ..., g(xT) = yT and g(x) = h(x) for x 6∈
{x1, ..., xT }, g satisfies the requirements of a target function.

Suppose A outputs h. Loosely speaking, any f ∈ F that is too far
from h had better be eliminated as a possible candidate by

(x1, y1), ..., (xT , yT),

since otherwise an adversary could choose f to be close to the target.
Specifically, for any f ∈ F such that d(h, f) > µ(h) + µ(f), it must be

paper.tex; 22/11/2002; 13:08; p.12

Collaborative Filtering 13

the case that
∑T
t=1 `f,t(xt, yt) > µ(f); if

T∑
t=1

`f,t(xt, yt) ≤ µ(f)

then the definition of `f,t implies that

T∑
t=1

`(f(xt), yt) ≤ µ(f),

and an adversary could modify f to get a target function g with distance
at most µ(f) from f . Since µ(h) + µ(f) < d(f, h) ≤ d(f, g) + d(g, h) ≤
µ(f) + d(g, h), we get d(g, h) > µ(h) contradicting the fact that A
outputs h. Thus

∑
f∈F

T∑
t=1

`f,t(xt, yt) ≥
∑

f∈F :d(f,h)>µ(f)+µ(h)

(1 + µ(f))

≥

∑
f∈F

(1 + µ(f))

− ∑
f∈F :d(f,h)≤µ(f)+µ(h)

(1 + µ(f))

≥

∑
f∈F

(1 + µ(f))

− φ(F, µ),

contradicting (7) and completing the proof. 2
Now we’re ready for our theorem about BF,η.

THEOREM 6. Choose X, a set F of functions from X to Y , and an
integer η ≥ 1. Then

Q(BF,η, F, η) ≤ 2opt(F, η) ln(|F |/(1+deg(F, η)))+2(η+1)(1+deg(F, η)).

Proof: Consider a run of algorithm BF,η in which it asks queries
x1, ..., xT , which are answered with y1, ..., yT . For each t, let

Ft =

{
fX−{x1,...,xt−1} : f ∈ F,

∑
s<t

`(f(xs), ys) ≤ µ(f)

}
.

We divide our analysis of BF,η into two stages. Let

S = max

t :
∑
f∈Ft

(1 + µt(f)) ≥ 2(η + 1)(1 + deg(F, η))

 .
Note that for all t ≤ S,

∑
f∈Ft(1 + µt(f)) ≥ 2(η + 1)(1 + deg(F, η)) as

both µt(f) and |Ft| decrease with t.

paper.tex; 22/11/2002; 13:08; p.13

14 Dasgupta, Lee and Long

Let t ≤ S. Since Ft+1 is a set consisting of restrictions of elements of
Ft, each subset of functions in Ft that is mapped by the restriction to
the same function in Ft+1 contributes only one value of µt+1(f) (where
µt+1(f) = µt(f) − `′f,t(xt, yt)) to the sum

∑
f∈Ft+1

(1 + µt+1(f)). This
gives

∑
f∈Ft+1

(1 + µt+1(f)) ≤

∑
f∈Ft

(1 + µt(f))

− ∑
f∈Ft

`′f,t(xt, yt).

Lemma 5 implies that the choice of xt chosen by BF,η will then give∑
f∈Ft+1

(1 + µt+1(f))

≤

∑
f∈Ft

(1 + µt(f))

 (8)

− 1
opt(Ft, µt)

∑
f∈Ft

(1 + µt(f))

− φ(Ft, µt)

 .(9)

We will now prove that

φ(Ft, µt) ≤ (η + 1)(1 + deg(F, η)). (10)

For each f ∈ Ft, let fE ∈ F be obtained by extending f to X so as to
minimize

∑
s<t `(f

E(xs), ys). Recall that

φ(Ft, µt) = max
h∈Ft

∑
f∈Ft:d(f,h)≤µt(f)+µt(h)

(1 + µt(f)).

Choose h∗ ∈ Ft achieving this maximum. We have

(η + 1)(1 + deg(F, η)) = (η + 1) max
h∈F
|{f ∈ F : d(f, h) ≤ 2η}|

≥ (η + 1)|{f ∈ F : d(f, hE∗) ≤ 2η}|
=

∑
f∈F :d(f,hE∗)≤2η

(η + 1)

≥
∑

f∈Ft:d(fE ,hE∗)≤2η

(η + 1). (11)

For any f, h ∈ Ft,

d(fE , gE) =
∑
x∈X

`(fE(x), hE(x))

≤ d(f, h) +
∑
s<t

`(fE(xs), hE(xs))

paper.tex; 22/11/2002; 13:08; p.14

Collaborative Filtering 15

≤ d(f, h) +
∑
s<t

`(fE(xs), ys) + `(hE(xs), ys)

≤ d(f, h) + 2η − (µt(f) + µt(h))

since, by definition, for all f ∈ Ft,
∑
s<t `(f

E(xs), ys) ≤ η− µt(f). The
last inequality follows from the fact that µt(f) ≤ µ(f) for all t and Ft
is a subset of F that is restricted to X − {x1, . . . , xt−1}.

Thus (11) implies

(η + 1)(1 + deg(F, η)) ≥
∑

f∈Ft:d(f,h∗)≤µt(f)+µt(h∗)

(η + 1)

≥
∑

f∈Ft:d(f,h∗)≤µt(f)+µt(h∗)

(1 + µt(f)),

proving (10).
Putting (10) together with (9) and using (η + 1)(1 + deg(F, η)) ≤∑
f∈Ft(1 + µt(f))/2 from the definition of S, we have

∑
f∈Ft+1

(1 + µt+1(f)) ≤

∑
f∈Ft

(1 + µt(f))

− 1
2opt(Ft, µt)

∑
f∈Ft

(1 + µt(f))

=
(

1− 1
2opt(Ft, µt)

) ∑
f∈Ft

(1 + µt(f))

≤
(

1− 1
2opt(F, µ)

) ∑
f∈Ft

(1 + µt(f)). (12)

The second inequality holds because opt(Ft, µt) ≤ opt(F, µ), which can
be seen as follows. Choose an optimal algorithm Aopt,F,µ for learning F
with quota function µ. We will construct an algorithm A′ for learning
Ft with µt using Aopt,F,µ and {(x1, y1), . . . , (xt−1, yt−1)}. By definition,
opt(Ft, µt) is no more than the worst case number of queries required
by A′. We now describe A′ and show that it gives a correct solution
using at most opt(F, µ) queries, implying that opt(Ft, µt) ≤ opt(F, µ).

AlgorithmA′ simulatesAopt,F,µ, answering some ofAopt,F,µ’s queries,
and passing others on to its oracle. If Aopt,F,µ asks xs for s < t, then A′

answers ys. Any other of Aopt,F,µ’s queries are asked by A′, which then
passes the answers back to Aopt,F,µ. When Aopt,F,µ halts and returns
its target, A′ returns its restriction to X − {x1, ..., xt−1}. Consider the
run of A′ in which the target function is g′ : X − {x1, ..., xt−1} → Y .
Define g : X → Y by setting g(xi) = yi for each of x1, ..., xt−1, and
g(x) = g′(x) for all other x ∈ X. Since g′ is a target function, there
must be a function f ′ ∈ Ft such that d(g′, f ′) ≤ µt(f ′); choose such an

paper.tex; 22/11/2002; 13:08; p.15

16 Dasgupta, Lee and Long

f ′. The definition of µt implies that there is an f ∈ F such that

µt(f ′) = µ(f)−
(
t−1∑
s=1

`(f(xs), ys)

)
∀x ∈ X − {x1, ..., xt−1}, f(x) = f ′(x);

(13)

choose such an f . We have

d(g, f) =
∑
x∈X

`(g(x), f(x))

=

 ∑
x∈X−{x1,...,xt−1}

`(g(x), f(x))

+
t−1∑
s=1

`(g(xs), f(xs))

= d(g′, f ′) +
t−1∑
s=1

`(g(xs), f(xs))

≤ µt(f ′) +
t−1∑
s=1

`(g(xs), f(xs))

= µ(f),

by (13). Since there is an f ∈ F such that d(g, f) ≤ µ(f), and A′ sim-
ulates answers to queries consistent with g, algorithm Aopt,F,µ returns
a function h satisfying d(g, h) ≤ µ(h) after asking at most opt(F, µ)
queries. Let h′ be the function returned by A′; i.e., h′ is the restriction
of h to X −{x1, ..., xt−1}. Then the following hold, where the last step
is due to the definition of µt:

d(g′, h′) = d(g, h)−
t−1∑
s=1

`(h(xs), g(xs))

≤ µ(h)−
t−1∑
s=1

`(h(xs), g(xs))

≤ µt(h′).

Thus A′ outputs a function h′ with d(g′, h′) ≤ µt(h′) after asking at
most opt(F, µ) queries. Since g′ was an arbitrarily chosen target for
learning Ft with quota function µt, we have opt(Ft, µt) ≤ opt(F, µ),
which implies (12).

Inequality (12) in turn implies

∑
f∈FS

(1 + µS(f)) ≤
(

1− 1
2opt(F, η)

)S
|F |(η + 1).

paper.tex; 22/11/2002; 13:08; p.16

Collaborative Filtering 17

But, by definition,
∑
f∈FS (1 +µS(f)) ≥ 2(η+ 1)(1 + deg(F, η)), and so

2(η + 1)(1 + deg(F, η)) ≤
(

1− 1
2opt(F, η)

)S
|F |(η + 1)

2(η + 1)(1 + deg(F, η)) ≤ exp
(
− S

2opt(F, η)

)
|F |(η + 1)

S ≤ 2opt(F, η) ln(|F |/(1 + deg(F, η))).

For all t ≤ T , since |Ft| > 1, and `(u, v) ≥ 1 for u 6= v,

∑
f∈Ft+1

(1 + µt+1(f)) ≤

∑
f∈Ft

(1 + µt(f))

− 1. (14)

Since
∑
f∈FS+1

(1 + µS+1(f)) < 2(η+ 1)(1 + deg(F, η)) and
∑
f∈FT (1 +

µT (f)) ≥ 1, (14) implies that T − S ≤ 2(η + 1)(1 + deg(F, η)). This
completes the proof. 2

4. Conclusion

We have described a theoretical treatment of the problem of how to
choose questions to ask users in a collaborative filtering system. The
shortcomings of our initial effort present a number of questions for
future research.

Our analysis referred to the “η-degree” of a collection of experts.
Is there a polynomial-time algorithm with a similar bound, depending
logarithmically on |F |, for classes F of unbounded η-degree? What if
the requirement that the output of the algorithm be at a distance η
from the target is relaxed to allow O(η)?1

Can an algorithms that handle missing values be analyzed similarly?
One step in this direction would involve relaxing the requirement that
` is a metric.

Do any ideas from the design of the algorithms of this paper have
practical utility?

Can any of the ideas of this paper be profitably applied to the related
problem of decision tree induction?

1 Avrim Blum posed this question.

paper.tex; 22/11/2002; 13:08; p.17

18 Dasgupta, Lee and Long

5. Acknowledgements

Wee Sun Lee and Phil Long gratefully acknowledge the support of
National University of Singapore Academic Research Fund grant R252–
000–070–107. We would like to thank the anonymous referees for point-
ing out several errors in earlier versions of the paper.

References

Angluin, D. (1988), ‘Queries and Concept Learning’. Machine Learning 2, 319–342.
Angluin, D. (2001), ‘Queries revisited’. Proceedings of the Twelfth International

Conference on Algorithmic Learning Theory pp. 12–31.
Angluin, D., M. Krikis, R. H. Sloan, and G. Turán (1997), ‘Malicious omissions and

errors in answers to membership queries’. Machine Learning 28, 211–255.
Arkin, E. M., H. Meijer, J. S. B. Mitchell, D. Rappaport, and S. Skiena (1998),

‘Decision trees for geometric models’. International Journal of Computational
Geometry and Applications 8(3), 343–364.

Arya, S., D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu (1994), ‘An
optimal algorithm for approximate nearest neighbor searching’. Proc. 5th ACM-
SIAM Sympos. Discrete Algorithms pp. 573–582.

Breese, J., D. Heckerman, and C. Kadie (1998), ‘Empirical analysis of predictive
algorithms for collaborative filtering’. Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence pp. 43–52.

Bshouty, N. H., R. Cleve, R. Gavalda, S. Kannan, and C. Tamon (1996), ‘Oracles
and Queries That Are Sufficient for Exact Learning’. Journal of Computer and
System Sciences 52(3).

Feige, U. (1998), ‘A Threshold of lnn for Approximating Set Cover’. Journal of the
ACM 45(4), 634–652.

Gortler, S. and R. Servedio (2001), ‘Quantum versus Classical Learnability’. In:
Sixteenth Conference on Computational Complexity (CCC). pp. 138–148.

Hegedus, T. (1995), ‘Generalized teaching dimensions and the query complexity of
learning’. In: Proceedings of the 1995 Conference on Computational Learning
Theory. pp. 108–117.

Hellerstein, L., V. Raghavan, K. Pillaipakkamnatt, and D. Wilkins (1996), ‘How
many queries are needed to learn?’. Journal of the ACM 43(5), 840–862.

Hyafil, L. and R. L. Rivest (1976), ‘Constructing Optimal Binary Decision Trees is
NP-Complete’. Information Processing Letters 5(1), 15–17.

Indyk, P. and R. Motwani (1998), ‘Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality’. Proceedings of the 30th ACM Symposium on
the Theory of Computing pp. 604–613.

Johnson, D. S. (1974), ‘Approximation algorithms for combinatorial problems’.
Journal of Computer and System Sciences 9, 256–278.

Kushilevitz, E., R. Ostrovsky, and Y. Rabani (1998), ‘Efficient search for approxi-
mate nearest neighbor in high dimensional spaces’. Proceedings of the 30th ACM
Symposium on the Theory of Computing pp. 614–623.

Nakamura, A. and N. Abe (1998), ‘Collaborative Filtering using Weighted Majority
Prediction Algorithms’. In: Proceedings of the Fifteenth International Conference
on Machine Learning.

paper.tex; 22/11/2002; 13:08; p.18

Collaborative Filtering 19

Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl (1994), ‘Grouplens:
An open architecture for collaborative filtering of netnews’. In: Proceedings of
the ACM 1994 Conference on Computer Supported Cooperative Work.

Resnick, P. and H. R. Varian (1997), ‘Recommender systems’. Communications of
the ACM 40, 56–58.

Seung, H. S., M. Opper, and H. Sompolinsky (1992), ‘Query by committee’.
Proceedings of the 1992 Workshop on Computational Learning Theory pp.
287–294.

paper.tex; 22/11/2002; 13:08; p.19

paper.tex; 22/11/2002; 13:08; p.20

