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1 Proof of Theorem 1

We will need two lemmas for proving Theorem 1. The first one is Haussler’s bound given in [,
p. 103] (Lemma 9, part (2)).

Lemma 1 (Haussler’s bound) Let Z1, . .., Z, be i.i.d random variables with range 0 < Z; < M,
E(Z;) = p, and i = %Z?:1 Ziy 1 <i<n. Assumev > 0and 0 < « < 1. Then
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where d,(r,s) = As a consequence,
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Let II; be the class of policy trees in Il p x and having size i. The next lemma bounds the size of
11;.

Lemma 2 [TT;| <i(~2)(|A||Z|)".

Proof. Let IT; be the class of rooted ordered trees of size i. |IT}| is not more than the number of
all trees with 7 labeled nodes, because the in-order labeling of a tree in II/ corresponds to a labeled
tree. By Cayley’s formula [3]], the number of trees with i labeled nodes is i(*~2), thus |TT}| < i(=2),
Recall the definition of a policy derivable from a DESPOT in Section 4 in the main text. A policy
tree in II; is obtained from a tree in IT} by assigning the default policy to each leaf node, one of the
|A| possible action labels to all other nodes, and one of at most |Z| possible labels to each edge.
Therefore
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In the following, we often abbreviate V. (bg) and Vﬁ(bo) as V, and V,r respectively, since we will
only consider the true and empirical values for a fixed but arbitrary by. Our proof follows a line of
reasoning similar to [2].

Theorem 1 For any 7, € (0,1) and any set ®y, of K randomly sampled scenarios for belief by,
every policy tree m € 1y, p K satisfies

1l—an Ruax . In(4/7) + |v| In(KD|AJ| Z])
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with probability at least 1 — T, where Vw(bo) denotes the estimated value of T under ®y,,.



Proof. Consider an arbitrary policy tree 7 € 11, p. x. We know that for a random scenario ¢ for the
belief by, executing the policy ™ w.r.t. ¢ gives us a sequence of states and observations distributed
according to the distributions P(s’|s,a) and P(z|s,a). Therefore, for r, its true value V. equals
E (er,dw)’ where the expectation is over the distribution of scenarios. On the other hand, since

Ve = % Zle V. ¢, and the scenarios ¢g, @1, ..., ¢k are independently sampled, Lemmam
gives
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where M = Rpax/(1 — ), and ¢; is chosen such that
e~ Im KM — 1 /(27|TL,)). )

By the union bound, we have

1—a- « e 1—a- «
Pr <E|7T€H507D7K |:V7r< 1+avﬁ— 1+a€|ﬂ:|> SZ Z Pr (VW< 1—|—aVW_ 1+a€|ﬂ).

1=1 well;

By the choice of ¢;’s and Inequality (IJ), the right hand side of the above inequality is bounded by
Yoo L] - [7/(2¢%]1L;])] = m27/12 < 7, where the well-known identity Y ;-, 1/i* = 7%/6 is
used. Hence,
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Equivalently, with probability 1 — 7, every 7 € II,, p i satisfies
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To complete the proof, we now give an upper bound on €|,|. From Equation E], we can solve for
€|x| to get € = Oﬁ’f;) . ln(4/7)21;(i2m"|). For any 7 in II,, p k. its size is at most KD, and
i?|IL;| < (i|A]|Z])! < (KDJA||Z])! by Lemma Thus we have

Riax In(4/7) + |7 In(K D|A||Z|)
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Combining this with Inequality (@), we get
Vo> l—avﬂ_ Roax _ 1n(4/7)+|7r|1n(KD|AHZ|).
1+a 14+a)(1—7) aK

This completes the proof. [

2 Proof of Theorem 2

We need the following lemma for proving Theorem 2.

Lemma 3 For a fixed policy © and any T € (0, 1), with probability at least 1 — 7.
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Proof. Let 7 be a policy and V; and V, as mentioned. Hoeffding’s inequality [4]] gives us
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Lett =e and solve for €, then we get
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Theorem 2 Let ©* be an optimal policy at a belief byg. Let 7 be a policy derived from a DESPOT
that has height D and are constructed from K randomly sampled scenarios for belief by. For any
7, € (0,1), if T maximizes
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among all policies derived from the DESPOT, then
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Proof. By Theorem 1, with probability at least 1 — 7/2,
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Suppose the above inequality holds on a random set of K scenarios. Note that there is a #’ €

ITy,, p,x which is a subtree of 7* and has the same trajectories on these scenarios up to depth D. By
the choice of 7 in Inequality , it follows that with probability at least 1 — 7/2,
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Note that |7*| > ||, and Vi > Vs — 4P Rpnae/(1 — 7) since «/ and 7* only differ from depth D
onwards, under the chosen scenarios. It follows that with probability at least 1 — 7/2,
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By Lemma with probability at least 1 — 7/2, we have

~ Rmax [21n(2/7)
x> Vo — .
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By the union bound, with probability at least 1 — 7, both Inequality and Inequality (8) hold,
which imply Inequality (6 holds. This completes the proof. [J
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