
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Supplementary Material

0.1 Proofs for examples of adaptive stochastic optimization problem

Proposition 1. The version space function V satisfies MLRB with constants Q = 1 and K = 2

Proof. We need to show

Q− min
φ′∼ψ′

V(dom(ψ′), φ′) ≤ 0.5

(
Q−min

φ∼ψ
(V(dom(ψ), φ))

)
,

for any pair of history ψ′, ψ such that ψ′ ∼ ψ and p(ψ′) ≤ 0.5p(ψ). The relationship becomes
obvious when we observe that Equation (3) can be written as V(S, φ) = 1 −

∑
φ′∼φ(S) p(φ

′) =

1− p(ψ), for all φ ∼ ψ and choosing Q = 1. Hence,

LHS = 1− min
φ′∼ψ′

(1− p(ψ′))

= p(ψ′)

≤ 0.5p(ψ)

= RHS

Proposition 2. Adaptive monotonicity and submodularity does not imply the MLRB and vice versa.

Proof. We prove the proposition using two counter examples.

Example 1. Consider an adaptive stochastic optimization problem with two items X = {a, b}
and two observations O = {0, 1}. There are four possible scenarios where both observations are
possible at both locations and the prior over them is uniform. The function f is defined such that
f(S, φ) = |S ∩ {a}| for all scenarios φ. This example is trivially adaptive monotone submodular
as f does not depend on the scenario.

However, it is does not satisfy MLRB. Let history ψ = {} and ψ′ = {(b, 1)}. Hence, p(ψ′) ≤
0.5p(ψ). But f̂(dom(ψ), ψ) = f̂(dom(ψ′), ψ′) = 0. Hence, there is no constant fraction K > 1
that fulfil Equation (2).

Example 2. Consider an adaptive stochastic optimization problem with two items X = {a, b} and
two observations O = {0, 1}, and maximum value Q = 1. The prior and function f is defined
in Table 1

Table 1: p and f for Example 2
p (φ) φ {} {a} {b} {a, b}
0.6 (a,1) (b,0) 0 1 0 1
0.4 (a,0) (b,0) 0 0.5 1 1

This problem is pointwise monotone submodular. There are two pair of histories where p(ψ′) ≤
0.5p(ψ) and they are ψ′ = {(a, 0)}, ψ = {} and ψ′ = {(a, 0), (b, 0)}, ψ = {(b, 0)}. For both
pair histories, we can verify that they satisfy eq. (2) with upperbound Q = 1 and K = 2. Hence,
this problem satisfies MLRB. On the other hand, 0.4 = 4(b|{}) < 4(b|{(a, 0)}) = 0.5, it is not
adaptive submodular.

Proposition 3. The generalized version space reduction function fL satisfies MLB with constants
G = maxφ,φ′ L(φ, φ′).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Proof. The generalized version space reduction can be written as:

fL(S, φ) =
∑
φ′

p(φ′)L(φ, φ′)−
∑

φ′∼φ(S)

p(φ′)L(φ, φ′).

We also have
fL(X,φ) =

∑
φ′

p(φ′)L(φ, φ′)

Let G = maxφ,φ′ L(φ, φ′). For any history ψ,

fL(X,φ)− fL(dom(ψ), φ) =
∑

φ′∼φ(dom(ψ))

p(φ′)L(φ, φ′)

≤
∑

φ′∼φ(dom(ψ))

p(φ′) ·G

≤ G · p(ψ)

and hence satisfies condition of MLB with constant G = maxφ,φ′ L(φ, φ′).

Proposition 4. The Gibbs error function fGE is pointwise submodular and monotone. In addition,
it satisfies condition MLRB with constants Q = W (E) = 1 −

∑m
i=1(p(Hi))2, the total weight of

ambiguous pairs of hypotheses, and K = 2.

Proof. First, we show fGE is pointwise submodular and monotone. For a fixed hypothesis h ∈ H ′,
the function fGE is monotone because it is the total weight of disambiguated pairs of hypotheses
and the weight of a pair of hypotheses is nonnegative.

For a fixed hypothesis h ∈ H ′, sets of location A,B, a location y /∈ B, and A ⊆ B,

fGE(A ∪ {y}, h)− fGE(A, h) = W (∪x∈AEx(h) ∪ Ey(h))−W (∪x∈AEx(h))

= W (Ey(h) \ ∪x∈AEx(h))

≥W (Ey(h) \ ∪x∈BEx(h))

= fGE(B ∪ {y}, h)− fGE(B, h)

Hence fGE is submodular.

Now, we note thatQ−fGE(dom(ψ), h) = p(ψ)2−
∑
i p(ψ,Hi)2. Given p(ψ), the largest value for∑

i p(ψ,Hi)2 occurs when there are only two equal valued probabilities p(ψ,H1) = p(ψ,H2) =
p(ψ)/2 giving the value of

∑
i p(ψ,Hi)2 = p(ψ)2/2 and Q− fGE(dom(ψ), h) ≥ p(ψ)2/2. When

p(ψ′) ≤ p(ψ)/2, we have p(ψ′)2 ≤ p(ψ)2/4 and Q − fGE(dom(ψ′), h) ≤ p(ψ)2/4. Hence
Q− fGE(dom(ψ′), h) ≤ p(ψ)2/4 ≤ (Q− fGE(dom(ψ), h))/2 giving K = 2.

We now give the proofs for performance guarantees of RAC. For clarity, we refer to adaptive stochas-
tic optimization problem on paths simply as adaptive stochastic optimization problem. Our proofs
hold for both adaptive stochastic optimization problem on paths and on subsets unless we specifi-
cally specialize it to subsets at the end.

0.2 Approximate Submodular Orienteering

RAC uses submodular orienteering to choose the sequence of locations to visit to cover a submod-
ular set function. Given a set of locations X , a metric d that gives the distance between any pair of
locations x, x′ ∈ X , a starting location r, and a submodular function f of the set of locations, the
goal of submodular orienteering problem is to find a tour starting from r that covers the function f .
We use a three-steps SUBMODULARORIENTEER procedure that runs in polynomial time to approxi-
mate solution to a submodular orienteering problem. In the first step, we compute an approximation
for distance metric d with a tree [3]. Then we run a greedy approximation algorithm [1] for Poly-
matroid Steiner tree problem with the submodular function and approximation tree as input. Finally,
we apply Christofides’ metric TSP [2] to obtain an approximate solution.
Lemma 1. Assuming the submodular function f is integer-valued, the SUBMODULARORIENTEER
procedure in RAC computes a 2α-approximation to the Submodular orienteering tour with α ∈
O((log|X|)2+ε log ν) and ν = f(X).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Proof. The greedy approximation in SUBMODULARORIENTEER computes an α-approximation T
to the optimal polymatroid Steiner tree T ∗, with α ∈ O((log|X|)2+ε log ν), where ν is the required
value [1]. The total edge-weight of an optimal polymatroid Steiner tree, w(T ∗), must be less than
that of an optimal submodular orienteering tour, W ∗, as we can remove any edge from a tour and
turn it into a tree. Thus, w(T) ≤ αw(T ∗) ≤ αW ∗. Applying Christofides’ metric TSP to the
vertices of T produces a tour τ , which has weight w(τ) ≤ 2w(T), using an argument similar to that
in [2]. It then follows that w(τ) ≤ 2αW ∗. In other words, SUBMODULARORIENTEER obtains a
2α-approximation to the submodular orienteering tour.

0.3 Adaptive Stochastic Optimization on Paths

Proposition 5. Let f be a pointwise monotone submodular function. Then gν is pointwise monotone
submodular and g∗ν is monotone submodular. In addition g∗ν(Z ′) ≥ ν if and only if f is either
covered or have value at least ν for all scenarios consistent with ψ ∪ Z ′.

Proof. First note that the operations of adding a constant to a monotone submodular function, adding
together one or more monotone submodular function and setting a ceiling to a monotone submodular
function (taking the minimum of a function and a constant) all result in monotone submodular
functions. Similarly, if fν(S, φ) is monotone submodular for X , modifying it by setting fν(S, φ) =
fν(X,φ) if S contains x ∈ X preserves monotonicity and submodularity. To see this, note that
fν(X,φ) is the maximum value of the function and setting the function to its maximum later has
less gain for a monotone function.

Note that min(ν, gν(Z ′, φ)), g∗ν(Z ′) ≥ ν if and only if gν(Z ′, φ) ≥ ν for all φ. Finally, note that
gν(Z ′, φ) ≥ ν exactly whenZ ′ is inconsistent with φ, or when it is consistent and f(dom(ψ∪Z ′), φ)
is covered, or when it is consistent and f(dom(ψ ∪ Z ′), φ) ≥ ν as required.

Proposition 6. When f satisfies minimal dependency, gmν (Z ′) ≥ ν implies g∗ν(Z ′) ≥ ν.

Proof. By definition, gmν (Z ′) = gν(Z ′, Z). As f satisfies minimal dependency, gν also satisfies
minimal dependency. Hence, if gν(Z ′, Z) ≥ ν, we also have gν(Z ′, φ) ≥ ν for all φ, implying
g∗ν(Z ′) ≥ ν

We begin by analyzing a variant of adaptive stochastic optimization problem where the agent has to
return to the starting location r in the end. We assume that we can compute an optimal submodular
orienteering solution, and then relax this assumption to use polynomial time approximation later.
This subsection can be divided into three parts. First, we analyze RAC on problems satisfying the
MLB condition (Lemma 2 to Lemma 7). Next, we complete the analysis for problems satisfying
condition the MLRB condition (Lemma 8 to Lemma 10). Finally, we relax the assumptions of
computing optimal submodular orienteering solution and of going back to the starting location. We
derive the final approximation bounds for the non-rooted adaptive stochastic optimization problems
satisfying the MLB condition and for those satisfying the MLRB condition (Lemma 11 to Theo-
rem 1).

The main strategy of this analysis is to establish the post conditions upon termination of the adaptive
plan in each recursive step. There are two components to prove in the post conditions; progress
made in covering the function and distance traveled by the agent.

In the following (Lemmas 2 and 3), we show that each adaptive plan reduce likelihood of history by
half except when it is the last recursive step where it completes the coverage.
Lemma 2. Let τ be the solution to a submodular orienteering problem g∗ν in GENERATETOUR1.
Let ψ be the history experienced by the agent after we call EXECUTEPLAN with tour τ . Either
p(ψ) < 0.5 or g∗ν(ψ) = ν.

Proof. During the execution of EXECUTEPLAN, if the agent receives an observation o′ ∈
Ωx at some location x′ on τ , then the agent returns to r immediately with history ψ =
((x1, o1), . . . , (x′, o′)). The probability of this history is p(ψ) =

∏
(x,o)∈ψ p(o|x) ≤ p(o′|x′).

From the definition of Ωx′ , we have p(ψ) ≤ p(o′|x′) < 0.5.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Otherwise, the agent visits every location x on τ and receives at every x an observation o∗x 6∈ Ωx
and has history ψ = ψ∗(τ), i.e. the agent always receive the most likely observation throughout the
tour and g∗ν(ψ) = ν.

Lemma 3. Let ψ be the history after a recursive call of RAC. After each recursive call, either
likelihood of history is reduced by half, p(ψ) < 0.5 or we have completely covered the function f .

Proof. RAC calls EXECUTEPLAN with either τf or τvs, which solves the submodular orienteering
problem g∗Q and V∗0.5 respectively. If RAC uses τf , Lemma 2 tells us that EXECUTEPLAN either
reduces the likelihood of history by at least half or completely covers the function g∗Q, which implies
that we have completely covered the function f .

Otherwise, RAC uses τvs and reduces the version space (and equivalently p(ψ)) by at least a half.

Finally, we prove the lemma by combining the outcomes from using τf or τvs.

We want to bound the distance traveled in each recursive call by comparing the length of the sub-
modular orienteering tour to a path in the optimal policy. This path always exist and is traversed
with probability more than half by the optimal policy. Hence, we can bound the length of our tour
by twice the expected cost of optimal policy.
Lemma 4. Let π∗ be an optimal policy tree for a rooted adaptive stochastic optimization problem
I. There is a subpath σ′ of π∗ such that π∗ traverses σ′ with probability at least 0.5. Furthermore,
one of the following conditions must hold: (1) the probability of most likely history on this path
p(ψ∗(σ′)) ≥ 0.5 and ψ∗(σ′) covers f , or (2) p(ψ∗(σ′)) < 0.5 and p(ψ∗(σ′−1)) ≥ 0.5, where
ψ∗(σ′−1) is the most likely history without the final observation.

Proof. We give the construction for such a subpath σ′. First, we extracts a path σ from an op-
timal policy π∗ tree by following the most likely observation edge from the root. Let σ =
(r, x1, x2, . . . , xs, r) be a path in the optimal policy tree π∗ such that every edge following a node
xi in the path is labeled with the most likely observation o∗xi

= arg maxo∈O p(o|x) up to the last
node xs and then return to the root r. Thus, the history from traversing σ is ψ∗(σ).

Next, we need to ensure that π∗ traverses its subpath σ′ with probability at least 0.5. Let p(σi|π∗)
be the probability of reaching the node xi on the path σ under the optimal policy π∗. It is equal the
probability of traversing the path σ and observing the most likely observation at every location in σ
up to xi−1 and go on to xi (without making an observation at xi) i.e.

p(σi|π∗) = p((r, (x1, o
∗
x1

), . . . , (xi−1, o
∗
xi−1

), xi))

= p(ψ∗(σi−1))

If p(σs|π∗) < 0.5, we truncate the path σs from the end at a location xq such that p(σq|π∗) > 0.5.
In other words, σq is the longest subpath of σ where p(σq|π∗) > 0.5. We set σ′ = (σq, r). That
is, we return to the root r after traversing σq . Otherwise p(σs|π∗) ≥ 0.5, and we simply set σ′ =
(σs, r) = σ.

π∗ traverses σ′ with probability at least 0.5 by construction. If σ′ = σ, it is a complete path
along the most likely outcome branch from the root to the leaf of the optimal policy π∗. Thus,
f(σ′, φ) = f(X,φ) for all scenarios φ ∼ ψ∗(σ′).

Otherwise, it is the truncated path σ′ = (σq, r). After receiving the most likely observation o∗xq
at xq ,

we get p((r, (x1, o
∗
x1

), . . . , (xq, o
∗
xq

))) ≤ 0.5 because σq is the longest subpath that is p(σq|π∗) ≥
0.5. Thus, p(ψ∗(σq)) ≤ 0.5.

Lemma 5. Assuming we compute the optimal solution to the submodular orienteering problems,
the agent travels at most 2C(π∗) for each recursive step of RAC.

Proof. Using Lemma 4, we show that there is a subpath σ′ from the optimal policy π∗ that is a
feasible solution to either the submodular orienteering problem g∗Q or V∗0.5.

Let σ′ a subpath from Lemma 4. If the first case of Lemma 4 is true , then σ′ is a feasible so-
lution to the submodular orienteering problem g∗Q. Otherwise the second case p(ψ∗(σ′)) < 0.5

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

and p(ψ∗(σ′−1)) ≥ 0.5, is true. Then σ′ is feasible solution to the problem of V∗0.5 because
V0.5(σ′, φ) = min(0.5, 1− p(ψ∗(σ′)) < 0.5 for all scenario φ ∈ Φσ′ .

LetW ∗f andW ∗vs be the total edge-weight of optimal submodular orienteering tour τf and τvs respec-
tively. Let the total edge-weight of the tour used in each recursive step be W ∗ = min(W ∗f ,W

∗
vs). If

it is the first case, then W ∗ ≤ W ∗f ≤ W (σ′). Otherwise, W ∗ ≤ W ∗vs ≤ W (σ′). As σ′ is traversed
with probability at least 0.5,

C(π∗) ≥
∑

φ∼ψ∗(σ)

p(φ)w(σ′)

≥ 0.5w(σ′) ≥ 0.5W ∗

W ∗ ≤ 2C(π∗),

where w(σ′) is the total edge-weight of tour σ′.

In EXECUTEPLAN, the agent travels on a path bounded by W ∗. Hence, the agent travels at most
2C(π∗).

Lemma 6. Suppose that π∗ is an optimal policy for a rooted adaptive stochastic optimization prob-
lem I with prior probability distribution p. Let {Φ1,Φ2, . . . ,Φn} be a partition of the scenarios
OX , and let π∗i be an optimal policy for the subproblem Ii with prior probability distribution pi:

pi(φ) =

{
p(φ)/p(Φi) if φ ∈ Φi
0 otherwise

where p(Φi) =
∑
φ∈Φi

p(φ) Then we have

n∑
i=1

p(Φi)C(π∗i) ≤ C(π∗).

Proof. For each subproblem Ii, we can construct a feasible policy πi for Ii from the optimal policy
π∗ for I. Consider the policy tree π∗. Every scenario φ must has a path σ from root to the leaf in
the optimal tree π∗ that covers the scenario because the optimal policy covers all scenarios. So we
choose the policy tree πi as the subtree of π∗ that consists of all the paths that cover scenarios in Φi.
Clearly πi is feasible, as every scenario in Φi has a path in πi that covers it. Then,

n∑
i=1

p(Φi)C(π∗i) ≤
n∑
i=1

p(Φi)C(πi)

≤
n∑
i=1

p(Φi)
∑
φ∈Φi

p(φ)

p(Φi)
· C(πi, φ)

=
∑
φ∈Φi

p(φ)C(π∗, φ) = C(π∗).

For functions satisfying the MLB, the remaining objective value to cover is bounded by marginal
likelihood of history multiplied by G. Every recursive call either reduces marginal likelihood of
history by half or completely covers the function f and thus bounding the remaining function to
cover at the same time. The algorithms is repeated at most a logarithmic number of times and we
can obtain an approximation bound.
Lemma 7. Let π denote the policy that RAC computes for a rooted adaptive stochastic optimization
problem on paths. Let η be any value such that f(S, φ) > f(X,φ)− η implies f(S, φ) = f(X,φ).
Assume RAC computes an optimal submodular coverage tour in each step. If f satisfies MLB, then
for an instance of adaptive stochastic optimization optimizing f

C(π) ≤ 2 (log(G/η) + 1)C(π∗),

where C(π) is the expected cost of RAC.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Proof. Let ψ be the entire history experienced by the agent from the start of RAC. If a recursive call
picks tour τf , traverses the entire tour, and receive most likely observation throughout the tour, then
f(dom(ψ), φ) = f(X,φ) for all scenario φ ∼ ψ and we have fully covered f . Otherwise, we repeat
the recursive call until f(X,φ) − f(dom(ψ), φ) < η, for all φ ∼ ψ. The MLB condition gives us
f(X,φ) − f(dom(ψ), ψ) ≤ G · p(ψ) for all φ ∼ ψ. Hence, we derive from Lemma 3 the number
of recursive steps required for any scenario is at most log

(
G
η

)
+ 1.

We now complete the proof by induction on the number of recursive calls to RAId. For the base
case of k = 1 call, C(π) ≤ 2C(π∗) by Lemma 5. Assume that C(π) ≤ 2(k − 1)C(π∗) when there
are at most k − 1 recursive calls. Now consider the induction step of k calls. The first recursive call
partitions the scearios into a collection of mutually exclusive subsets, Φ1,Φ2, . . . ,Φn. Let Ii be the
subproblem with scenario set Φi and optimal policy π∗i , for i = 1, 2, . . . , n. After the first recursive
call, it takes at most k−1 additional calls for each Ii. In the first call, the agent incurs a cost at most
2C(π∗) by Lemma 5. For each Ii, the agent incurs a cost at most 2(k − 1)C(π∗i) in the remaining
k − 1 calls, by the induction hypothesis. Putting together this with Lemma 6, we conclude that the
agent incurs a total cost of at most 2kC(π∗) when there are k calls.

The MLRB condition (Equation (2)) tells us that we reduce the remaining function to cover by a
fraction whenever the remaining version space is halved. Next, we show that the remaining function
to cover is reduced by a fraction upon termination of each adaptive plan.

Lemma 8. Let τ be the tour generated in a recursive and ψ be the history after a recursive call of
RAC. By the end of each recursive call, for each scenario φ ∼ ψ, f(dom(ψ), φ) ≥ (1 − 1/K)Q
unless f(X,φ) < (1− 1/K)Q. In that case, f(dom(ψ), φ) = f(X,φ).

Proof. The procedure EXECUTEPLAN is called with tour τ that is a solution to submodular orien-
teering problem g∗(1−1/K)Q. From Lemma 2, if EXECUTEPLAN terminates with p(ψ) ≤ 0.5, we
know from MLRB (Equation (2)) that f(dom(ψ), φ) ≥ (1 − 1/K)Q for all φ ∼ ψ. Otherwise,
EXECUTEPLAN terminates with g∗(1−1/K)Q(τ, ψ) = (1− 1/K)Q. In that case, from Proposition 4,
f(dom(ψ), φ) ≥ (1− 1/K)Q or f(X,φ) < (1− 1/K)Q and f is already covered for φ.

Lemma 9. Assuming we compute the optimal solution to the submodular orienteering problems,
the agent travels at most 2C(π∗) for each recursive step of RAC.

Proof. From Lemma 4 and MLRB, the subpath σ′ is feasible solution to the submodular orienteering
problem of g∗(1−1/K)Q. Let W ∗ be the total edge-weight of the tour used in a recursive call of RAC.
Then, W ∗ ≤ W (σ′) because W ∗ is the value of an optimal solution. Since σ′ is traversed with
probability at least 0.5,

C(π∗) ≥
∑

φ∼ψ∗(σ)

p(φ)w(σ′)

≥ 0.5w(σ′) ≥ 0.5W ∗

W ∗ ≤ 2C(π∗),

where w(σ′) is the total edge-weight of tour σ′.

In EXECUTEPLAN, the agent travels on a path bounded by W ∗. Hence, the agent travels at most
2C(π∗).

Lemma 10. Let π denote the policy that RAC computes for a rooted adaptive stochastic optimization
problem on paths. Let η be any value such that f(S, φ) > f(X,φ)− η implies f(S, φ) = f(X,φ).
Assume RAC computes an optimal submodular coverage tour in each step. If f satisfies MLRB, then
for an instance of adaptive stochastic optimization optimizing f

C(π) ≤ 2 (logK(Q/η) + 1)C(π∗),

where C(π) is the expected cost of RAC, and K > 1 and Q ≥ maxφ f(X,φ) are the constants that
satisfy Equation (2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Proof. We need to repeat the recursive call until f(X,φ) − f(dom(ψ), φ) ≤ η for all φ ∼ ψ.
From MLRB and Lemma 8, the number of recursive steps required for any scenario is at most
logK

(
Q
η

)
+ 1.

We now complete the proof by induction on the number of recursive calls to RAC. For the base case
of k = 1 call, C(π) ≤ 2C(π∗) by Lemma 9. Assume that C(π) ≤ 2(k − 1)C(π∗) when there
are at most k − 1 recursive calls. Now consider the induction step of k calls. The first recursive
call partitions the scenarios into a collection of mutually exclusive subsets, Φ1,Φ2, . . . ,Φn. Let Ii
be the subproblem with scenario set Φi and optimal policy π∗i , for i = 1, 2, . . . , n. After the first
recursive call, it takes at most k − 1 additional calls for each Ii. In the first call, the agent incurs
a cost at most 2C(π∗) by Lemma 9. For each Ii, the agent incurs a cost at most 2(k − 1)C(π∗i)
in the remaining k − 1 calls, by the induction hypothesis. Putting together this with Lemma 6, we
conclude that the agent incurs a total cost of at most 2kC(π∗) when there are k calls. Hence, we
obtain our approximation bounds.

Now, we relax the optimal submodular orienteering assumption and replace it with our polynomial
time approximation procedure.
Lemma 11. An α-approximation algorithm for rooted adaptive stochastic optimization problem on
paths is a 2α-approximation algorithm for adaptive stochastic optimization.

Proof. Let C∗ and C∗r be the expected cost of an optimal policy for an adaptive stochastic optimiza-
tion problem and for a corresponding rooted adaptive stochastic optimization problem, respectively.
As any policy for non-rooted problem can be turned into a policy for the root version by retracing
the solution path back to the start location, we have C∗r ≤ 2C∗. An α-approximation algorithm for
rooted adaptive stochastic optimization computes a policy π for Ir with expected costCr(π) ≤ αC∗r .
It then follows that Cr(π) ≤ αC∗r ≤ 2αC∗ and this algorithm provides a 2α-approximation to the
optimal solution of the non-rooted problem.

Theorem 1. Assume that f is an integer-valued pointwise submodular monotone function. If f
satisfies MLRB condition, then for any constant ε > 0 and an instance of adaptive stochastic opti-
mization problem on path optimizing f , RAC computes a policy π in polynomial time such that

C(π) = O((log|X|)2+ε logQ logK Q)C(π∗)),

where Q and K > 1 are constants that satisfies Equation (2).

Proof. The distance traveled in each recursive step is at most αW ∗ ≤ O(α)C(π∗). From
Lemma 1 , the approximation factor for the submodular orienteering problem solved in RAC is
α = O((log|X|)2+ε logQ). Putting this together with Lemma 10 with η = 1 since f is integer-
valued and Lemma 11, we get the desired approximation bound. The algorithm clearly runs in
polynomial time.

Theorem 2. Assume that prior probability distribution p is represented as non-negative integers
with

∑
φ p(φ) = P and f is an integer-valued pointwise submodular monotone function. If f

satisfies MLB, then for any constant ε > 0 and an instance of adaptive stochastic optimization
problem on path optimizing f , RAC computes a policy π for in polynomial time such that

C(π) = O((log|X|)2+ε(logP + logQ) logG)C(π∗),

where Q = maxφ f(X,φ).

Proof. Let α1 and α2 be the approximation factors when we compute the submodular orienteering
tours τf and τV S respectively in one recursive call of RAC. Let the length of the tour chosen be W ,
Let the length of the tour chosen be W ,

W = min(α1W
∗
f , α2W

∗
V S)

≤ (α1 + α2)W ∗

≤ 2(αf + αV S)C(π∗)

The last inequality is due to Lemma 5. Hence, the distance traveled in each recursive step is
at most 2(αf + αV S)C(π∗). Lemma 1 tells us that α1 ∈ O((log|X|)2+ε logQ) and α2 ∈
O((log|X|)2+ε logP). Putting this together with Lemma 7 with η = 1 and Lemma 11, we get
the desired approximation bound. The algorithm clearly runs in polynomial time.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0.4 Adaptive Stochastic Optimization on Sets

Adaptive stochastic minimum cost cover on sets (without path constraints) is a special case where
the metric is a star graph where all elements are connected to a root node. In the special case of sets,
the submodular orienteering problems that RAC solves become submodular set coverage problems.
At the same time, the submodular orienteering procedure in RAC becomes a greedy selection policy
where we always choose the element with highest value to cost ratio, i.e.maxx∈X\dom(ψ)

4(x|ψ)
c(x) .

Lemma 12. Given a submodular set function g : X → R, let πG be the greedy selection policy. We
have,

C(πG) ≤
(

1 + ln
f(X)− f(∅)

f(X)− f(ST−1)

)
C(π∗)

where the subset ST−1 is the set of elements selected before the last step of the greedy policy [6].

Using Lemma 12, we can get tighter approximation bounds for stochastic sets functions and drop
the integer representation assumption on the prior p.
Theorem 3. Assume f is an integer-valued pointwise submodular and monotone function. If f sat-
isfies MLRB condition, then for an instance of adaptive stochastic optimization problem on subsets
optimizing f , RAC computes a policy π in polynomial time such that

C(π) = 4(lnQ+ 1)(logK Q+ 1)C(π∗),

where Q and K > 1 are constants that satisfies Equation (2).

Proof. The distance traveled in each recursive step is at most αW ∗ ≤ 4αC(π∗). From Lemma 12,
the approximation factor for the submodular set cover problem solved in RAC is α = logQ. Putting
this together with Lemma 10 with η = 1 and Lemma 11, we get the desired approximation bound.
The algorithm clearly runs in polynomial time.

Theorem 4. Assume f is an integer-valued pointwise submodular and monotone function and δ =
minφ p(φ). If f satisfies MLB condition, then for an instance of adaptive stochastic optimization
problem on subsets optimizing f , RAC computes a policy π in polynomial time such that

C(π) = 4(ln 1/δ + lnQ+ 2)(logG+ 1)C(π∗)),

where Q = maxφ f(X,φ).

Proof. Let α1, α2 be the approximation factors when we compute the submodular set cover τf and
τV S respectively. Let the cost of the set of elements chosen be W ,

W = min(α1W
∗
f , α2W

∗
V S)

≤ (α1 + α2)W ∗

≤ 2(αf + αV S)C(π∗)

The last inequality is due to Lemma 5. Hence, the distance traveled in each recursive step is at
most 4(αf +αV S)C(π∗). From Lemma 12, the approximation factors for the submodular set cover
problems are α1 = ln 1/δ+1 and α2 = lnQ/η+1. Putting this together with Lemma 7 with η = 1
and Lemma 11, we get the desired approximation bound. The algorithm clearly runs in polynomial
time.

1 Experiment Tasks

1.1 UAV Search and Rescue

In the UAV search and rescue task, an agent search for a victim in an area modeled as an 8 × 8
grid. Each grid cell has equal chance of containing the victim. The UAV can operate at two different
altitudes. At the high altitude, it uses a noisy long-range sensor that determines whether the 3 × 3
grid around its current location contains the victim. The sensor has a 0.03 chance of reporting the
opposite reading. At the low altitude, the UAV uses an accurate short-range sensor that determines
whether the current grid cell contains the victim.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

The movement cost between two grid cells on the same altitude is the Manhattan distance between
them multiplied by 4 at the high altitude and multiplied by 1 at the low altitude. The cost to move
between high and low altitudes is 10. The victim is deemed to be safe if we know that he is in the
safe zone (marked grey in Figure 1), otherwise we need to know the exact location of the victim.
The equivalence classes task are the safe zone and every location outside of it.

1.2 Grasping a Cup

In a noisy variant of the grasping task, a robot arm needs to identify the cup with a handle among two
cups on the table and lift it up by grasping the handle (Figure 2). The cups’ positions are detected
using an external camera on the left side of the table but it is uncertain which cup has the handle
and where the handle is due to occlusion. Each hypothesis is a tuple of two parameters: κ indicates
which cup has a handle, and θ determines the handle location. The hypotheses where the handle
faces away from the external camera have higher prior probabilities.

The robot arm has a single-beam laser range finder mounted at its the wrist to detect distance to the
nearest object in the direction it is facing. It has a 0.85 chance of detecting the correct discretized
value x, 0.05 chance of +1 or−1 error each, and 0.025 chance of +2 or−2 errors each. We sample
seven wrist positions x1, x2, . . . , x7 around the cups (Figure 2). At each position, the robot can pan
the range finder in the plane parallel to the tabletop incurring a fixed cost of 4. Moving the wrist from
one position to another incurs a higher cost of the distance between the two positions multiplied by
15. The robot arm starts at wrist position x1 on the left side of the table.

The robot gripper is fairly robust to estimation error of the cup handle’s orientation. For each cup,
we partition the cup handle orientation into regions of 20 degrees each. We only need to know the
region that contains cup handle. The equivalence classes here are the regions. However, it is not
always possible to identify the true region due to observation noise. We can still reduce to ECD
problem by associating each observation vector to its most likely equivalence class.

References
[1] Gruia Calinescu and Alexander Zelikovsky. The polymatroid steiner problems. Journal of

Combinatorial Optimization, 9(3):281–294, 2005.
[2] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.

Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon Univer-
sity, 1976.

[3] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A Tight Bound on Approximating Arbi-
trary Metrics by Tree Metrics. In Proceedings of the Thirty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’03, pages 448–455, New York, NY, USA, 2003. ACM.

[4] Ronald L Graham, Donald E Knuth, and Oren Patashnik. Concrete Mathematics. Mas-
sachusetts: Addison-Wesley, 1989.

[5] Andrew Guillory and Jeff Bilmes. Interactive submodular set cover. In International Conference
on Machine Learning (ICML), Haifa, Israel, 2010.

[6] Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering prob-
lem. Combinatorica, 2(4):385–393, 1982.

9

	Proofs for examples of adaptive stochastic optimization problem
	Approximate Submodular Orienteering
	Adaptive Stochastic Optimization on Paths
	Adaptive Stochastic Optimization on Sets
	Experiment Tasks
	UAV Search and Rescue
	Grasping a Cup

