Supplementary Material

0.1 Proofs for examples of adaptive stochastic optimization problem

Proposition 1. The version space function V satisfies MLRB with constants Q = 1 and K = 2

Proof. We need to show
Q- Jnin, V(dom(y)'), ¢') < 0.5 (Q — min (V(dom()), ¢))> ;

for any pair of history ¢’, ¢ such that ¢’ ~ ¢ and p(¢)’) < 0.5p(¢)). The relationship becomes
obvious when we observe that Equation (3) can be written as V(S5,¢) = 1 — 3", 45 P(¢) =

1 — p(v), for all ¢ ~ 9 and choosing @ = 1. Hence,
LHS =1— min (1-— !
min, (1= p(e))

=p(¢')
< 0.5p(v)
= RHS

O

Proposition 2. Adaptive monotonicity and submodularity does not imply the MLRB and vice versa.

Proof. We prove the proposition using two counter examples.

Example 1. Consider an adaptive stochastic optimization problem with two items X = {a,b}
and two observations O = {0, 1}. There are four possible scenarios where both observations are
possible at both locations and the prior over them is uniform. The function f is defined such that
f(S,¢) = |S N {a}| for all scenarios ¢. This example is trivially adaptive monotone submodular
as f does not depend on the scenario.

However, it is does not satisfy MLRB. Let history ¢ = {} and ¢/ = {(b,1)}. Hence, p(¢)') <
1

0.5p(¢). But f(dom(1)),1) = f(dom(y'),v') = 0. Hence, there is no constant fraction K >
that fulfil Equation (2).

Example 2. Consider an adaptive stochastic optimization problem with two items X = {a,b} and
two observations O = {0,1}, and maximum value Q = 1. The prior and function f is defined
in Table[ll

Table 1: p and f for Example[2]

p(9) ¢ {+ {ap {0} {ab}

06 (al)(®0) O 1 0 1
04 (a0 (0 0 05 1 1

This problem is pointwise monotone submodular. There are two pair of histories where p(¢’) <
0.5p(1%) and they are ' = {(a,0)}, 10 = {} and v = {(a,0), (b,0)}, 1) = {(5,0)}. For both
pair histories, we can verify that they satisfy eq. 2)) with upperbound Q = 1 and K = 2. Hence,
this problem satisfies MLRB. On the other hand, 0.4 = A(b|{}) < A(bl{(a,0)}) = 0.5, ir is not
adaptive submodular.

O

Proposition 3. The generalized version space reduction function f, satisfies MLB with constants
G = maxy, ¢ L(¢,¢).

Proof. The generalized version space reduction can be written as:

fu(8,0) = p(@)L(6,¢') = > p(&)L(¢,¢).
@’ @' ~d(S)

We also have

fr(X,0) =Y p(¢)L($,¢)
¢/
Let G = maxg 4 L(¢, ¢'). For any history v,

fu(X,¢) = fr(dom(sh),) = > p(¢))L(¢,¢)
¢’ ~p(dom(z)))

< > p¢)G

@'~ (dom(¥)))
<G-p(y)
and hence satisfies condition of MLB with constant G = maxg 4 L(¢, ¢'). O

Proposition 4. The Gibbs error function fgp is pointwise submodular and monotone. In addition,
it satisfies condition MLRB with constants Q = W(£) = 1 — > (p(H,))?, the total weight of
ambiguous pairs of hypotheses, and K = 2.

Proof. First, we show fg is pointwise submodular and monotone. For a fixed hypothesis h € H’,
the function fsp is monotone because it is the total weight of disambiguated pairs of hypotheses
and the weight of a pair of hypotheses is nonnegative.

For a fixed hypothesis h € H’, sets of location A, B, alocationy ¢ B, and A C B,

fae(AU{y} h) = fap(A h) = W(Uzealu(h) UEy(R)) — W(Uzeals(h))
= W(gy(h) \ Ua:eAgz(h>)
> W(&y(h) \ UzepEs(h))
= fee(BU{y},h) — far(B,h)
Hence fg g is submodular.

Now, we note that Q — feg(dom(¢), h) = p(¢)? =", p(¥, H;)?. Given p(v)), the largest value for
>~ p(¥, H;)? occurs when there are only two equal valued probabilities p(v, H1) = p(¢, Ha) =
p(1)/2 giving the value of 3°, p(t, H,)? = p(1)2/2 and Q — fas(dom(1p), h) > p(1¥)*/2. When
p() < p()/2, we have p(w/)? < p(6)?/4 and Q — fom(dom(u),h) < p(b)?/4. Hence
Q — far(dom(¢'), h) < p(¢)?/4 < (Q — fer(dom(y), h))/2 giving K = 2. O

We now give the proofs for performance guarantees of RAC. For clarity, we refer to adaptive stochas-
tic optimization problem on paths simply as adaptive stochastic optimization problem. Our proofs
hold for both adaptive stochastic optimization problem on paths and on subsets unless we specifi-
cally specialize it to subsets at the end.

0.2 Approximate Submodular Orienteering

RAC uses submodular orienteering to choose the sequence of locations to visit to cover a submod-
ular set function. Given a set of locations X, a metric d that gives the distance between any pair of
locations x, 2’ € X, a starting location 7, and a submodular function f of the set of locations, the
goal of submodular orienteering problem is to find a tour starting from r that covers the function f.
We use a three-steps SUBMODULARORIENTEER procedure that runs in polynomial time to approxi-
mate solution to a submodular orienteering problem. In the first step, we compute an approximation
for distance metric d with a tree [3]. Then we run a greedy approximation algorithm [[1]] for Poly-
matroid Steiner tree problem with the submodular function and approximation tree as input. Finally,
we apply Christofides’ metric TSP [2] to obtain an approximate solution.

Lemma 1. Assuming the submodular function f is integer-valued, the SUBMODULARORIENTEER

procedure in RAC computes a 2a-approximation to the Submodular orienteering tour with o €
O((log|X|)**¢logv) and v = f(X).

Proof. The greedy approximation in SUBMODULARORIENTEER computes an a-approximation 7'
to the optimal polymatroid Steiner tree 7%, with o € O((log| X |)?*log v/), where v is the required
value [1]. The total edge-weight of an optimal polymatroid Steiner tree, w(7™), must be less than
that of an optimal submodular orienteering tour, W*, as we can remove any edge from a tour and
turn it into a tree. Thus, w(T) < aw(T*) < aW*. Applying Christofides” metric TSP to the
vertices of T" produces a tour 7, which has weight w(7) < 2w(T'), using an argument similar to that
in [2]]. It then follows that w(7) < 2aW*. In other words, SUBMODULARORIENTEER obtains a
2a-approximation to the submodular orienteering tour. O

0.3 Adaptive Stochastic Optimization on Paths

Proposition 5. Let f be a pointwise monotone submodular function. Then g, is pointwise monotone
submodular and g7 is monotone submodular. In addition g%(Z') > v if and only if f is either
covered or have value at least v for all scenarios consistent with) U Z'.

Proof. First note that the operations of adding a constant to a monotone submodular function, adding
together one or more monotone submodular function and setting a ceiling to a monotone submodular
function (taking the minimum of a function and a constant) all result in monotone submodular
functions. Similarly, if f, (S, ¢) is monotone submodular for X, modifying it by setting f, (S, ¢) =
fu(X,) if S contains x € X preserves monotonicity and submodularity. To see this, note that
fu(X, ¢) is the maximum value of the function and setting the function to its maximum later has
less gain for a monotone function.

Note that min(v, g, (Z’, ¢)), g5(Z') > v if and only if g, (Z’, ¢) > v for all ¢. Finally, note that
9.(Z', ¢) > v exactly when Z’ is inconsistent with ¢, or when it is consistent and f(dom(pUZ"), ¢)
is covered, or when it is consistent and f(dom(¢) U Z’), ¢) > v as required.

O

Proposition 6. When [satisfies minimal dependency, g7 (Z') > v implies g (Z') > v.

Proof. By definition, ¢7*(Z") = ¢,(Z',Z). As f satisfies minimal dependency, g, also satisfies
minimal dependency. Hence, if ¢,(Z’,Z) > v, we also have g, (Z’,¢) > v for all ¢, implying
9.(Z") z v

O

We begin by analyzing a variant of adaptive stochastic optimization problem where the agent has to
return to the starting location r in the end. We assume that we can compute an optimal submodular
orienteering solution, and then relax this assumption to use polynomial time approximation later.
This subsection can be divided into three parts. First, we analyze RAC on problems satisfying the
MLB condition (Lemma [Z]to Lemma[7). Next, we complete the analysis for problems satisfying
condition the MLRB condition (Lemma [§]to Lemma[I0). Finally, we relax the assumptions of
computing optimal submodular orienteering solution and of going back to the starting location. We
derive the final approximation bounds for the non-rooted adaptive stochastic optimization problems
satisfying the MLB condition and for those satisfying the MLRB condition (Lemma [IT] to Theo-

rem|[I)).

The main strategy of this analysis is to establish the post conditions upon termination of the adaptive
plan in each recursive step. There are two components to prove in the post conditions; progress
made in covering the function and distance traveled by the agent.

In the following (Lemmas [2]and [3), we show that each adaptive plan reduce likelihood of history by
half except when it is the last recursive step where it completes the coverage.

Lemma 2. Let 7 be the solution to a submodular orienteering problem g;, in GENERATETOURI.
Let 1) be the history experienced by the agent after we call EXECUTEPLAN with tour 7. Either

p(¥) < 0.50r gl () = v.

Proof. During the execution of EXECUTEPLAN, if the agent receives an observation o €
Q, at some location z’ on 7, then the agent returns to r immediately with history =
((z1,01),...,(2',0')). The probability of this history is p(¢)) =][, ,)epPlolz) < p(ofz’).
From the definition of 2,, we have p(v) < p(o’|z") < 0.5.

Otherwise, the agent visits every location x on 7 and receives at every x an observation o}, & €,
and has history ¢ = ¢*(7), i.e. the agent always receive the most likely observation throughout the
tour and ¢ (¢)) = v. O

Lemma 3. Let v be the history after a recursive call of RAC. After each recursive call, either
likelihood of history is reduced by half, p(1) < 0.5 or we have completely covered the function f.

Proof. RAC calls EXECUTEPLAN with either 7¢ or 7., which solves the submodular orienteering
problem g¢, and Vj 5 respectively. If RAC uses 7, Lemma 2] tells us that EXECUTEPLAN either
reduces the likelihood of history by at least half or completely covers the function g7, which implies
that we have completely covered the function f.

Otherwise, RAC uses 7,5 and reduces the version space (and equivalently p(¢)) by at least a half.

Finally, we prove the lemma by combining the outcomes from using 7y or 7. O

We want to bound the distance traveled in each recursive call by comparing the length of the sub-
modular orienteering tour to a path in the optimal policy. This path always exist and is traversed
with probability more than half by the optimal policy. Hence, we can bound the length of our tour
by twice the expected cost of optimal policy.

Lemma 4. Let ©* be an optimal policy tree for a rooted adaptive stochastic optimization problem
Z. There is a subpath o’ of ™ such that ™ traverses o’ with probability at least 0.5. Furthermore,
one of the following conditions must hold: (1) the probability of most likely history on this path
p(¥*(a’)) > 0.5 and yY*(c’) covers f, or (2) p(v*(¢’)) < 0.5 and p(¢*(¢’ 1)) > 0.5, where

Y*(0’_,) is the most likely history without the final observation.

Proof. We give the construction for such a subpath ¢’. First, we extracts a path o from an op-
timal policy 7* tree by following the most likely observation edge from the root. Let 0 =
(r,x1,x2,...,%s,7) be a path in the optimal policy tree 7* such that every edge following a node
x; in the path is labeled with the most likely observation o} = argmax,co p(o|z) up to the last
node z; and then return to the root r. Thus, the history from traversing o is 1*(o).

Next, we need to ensure that 7* traverses its subpath ¢’ with probability at least 0.5. Let p(o;|7*)
be the probability of reaching the node x; on the path o under the optimal policy 7*. It is equal the
probability of traversing the path o and observing the most likely observation at every location in o
up to ;1 and go on to x; (without making an observation at ;) i.e.

p(ailﬂ-*) = p((T, (1‘1, 0;1)’) (J?i—hOL,l)v%))

:p(¢*(0¢—1))

If p(os|7*) < 0.5, we truncate the path o from the end at a location x, such that p(g,|7*) > 0.5.
In other words, oy is the longest subpath of o where p(o,|7*) > 0.5. We set o’ = (og,7). That
is, we return to the root r after traversing o,. Otherwise p(o,|7*) > 0.5, and we simply set o’ =
(0s,7) = 0.

m* traverses ¢’ with probability at least 0.5 by construction. If ¢/ = o, it is a complete path
along the most likely outcome branch from the root to the leaf of the optimal policy 7*. Thus,

flo',¢) = f(X, ¢) for all scenarios ¢ ~ ¥*(o”).

Otherwise, it is the truncated path ¢’ = (o,). After receiving the most likely observation 0y, At Zq,
we get p((r, (z1,05,), .., (2q,0;,))) < 0.5 because oy is the longest subpath that is p(oy|7™) >
0.5. Thus, p(¢*(o4)) < 0.5. O

Lemma 5. Assuming we compute the optimal solution to the submodular orienteering problems,
the agent travels at most 2C (1*) for each recursive step of RAC.

Proof. Using Lemma 4} we show that there is a subpath ¢’ from the optimal policy 7* that is a
feasible solution to either the submodular orienteering problem g, or Vg 5.

Let ¢’ a subpath from Lemma E} If the first case of Lemma 4| is true , then ¢’ is a feasible so-
lution to the submodular orienteering problem gg,. Otherwise the second case p(¥*(o’)) < 0.5

and p(¢*(o’;)) > 0.5, is true. Then o’ is feasible solution to the problem of V5 because
Vos(0’,¢) = min(0.5,1 — p(¢p* (o)) < 0.5 for all scenario ¢ € @, .

Let W7 and W7, be the total edge-weight of optimal submodular orienteering tour 75 and 7,5 respec-
tively. Let the total edge-weight of the tour used in each recursive step be W* = min(W}, W) If
it is the first case, then W* < W7 < W(¢”). Otherwise, W* < Wy < W(o'). As ¢’ is traversed
with probability at least 0.5,

Cr) > > plo)w(d)
Pprrp* (o)

> 0.5w(o’) > 0.5W*
W* <20(7*),

where w(c’) is the total edge-weight of tour o’.

In EXECUTEPLAN, the agent travels on a path bounded by W*. Hence, the agent travels at most
2C (7*). O

Lemma 6. Suppose that 7 is an optimal policy for a rooted adaptive stochastic optimization prob-
lem T with prior probability distribution p. Let {®1,®o, ..., P, } be a partition of the scenarios
O™, and let T} be an optimal policy for the subproblem T; with prior probability distribution p;:

(&) { 8(@/17((1):‘) ifp € Py

p = otherwise

where p(®;) = >_ 5, P(¢) Then we have

Zp(@)C(WZ‘) < C(m").

Proof. For each subproblem Z;, we can construct a feasible policy m; for Z; from the optimal policy
7* for Z. Consider the policy tree 7*. Every scenario ¢ must has a path ¢ from root to the leaf in
the optimal tree 7m* that covers the scenario because the optimal policy covers all scenarios. So we
choose the policy tree 7; as the subtree of 7* that consists of all the paths that cover scenarios in ®;.
Clearly 7; is feasible, as every scenario in ®; has a path in 7; that covers it. Then,

n

> p(@)C(n) < ZP(‘I%‘)C(M)

i=1

< Zp(q’i) Z p((b)) -C(m, 9)
i=1 ¢

o p(@

O

For functions satisfying the MLB, the remaining objective value to cover is bounded by marginal
likelihood of history multiplied by G. Every recursive call either reduces marginal likelihood of
history by half or completely covers the function f and thus bounding the remaining function to
cover at the same time. The algorithms is repeated at most a logarithmic number of times and we
can obtain an approximation bound.

Lemma 7. Let w denote the policy that RAC computes for a rooted adaptive stochastic optimization
problem on paths. Let 1) be any value such that f(S,¢) > f(X,®) — nimplies (S,) = f(X, ¢).
Assume RAC computes an optimal submodular coverage tour in each step. If f satisfies MLB, then
for an instance of adaptive stochastic optimization optimizing f

C(m) < 2(log(G/n) +1) C(m™),
where C(m) is the expected cost of RAC.

Proof. Let 1 be the entire history experienced by the agent from the start of RAC. If a recursive call
picks tour 7y, traverses the entire tour, and receive most likely observation throughout the tour, then
f(dom(w), ¢) = f(X, ¢) for all scenario ¢ ~ 1) and we have fully covered f. Otherwise, we repeat
the recursive call until f(X, ¢) — f(dom(¢)), ¢) < m, for all ¢ ~). The MLB condition gives us
f(X,9) — f(dom(v),v) < G - p(¢) for all ¢ ~ 1. Hence, we derive from Lemmathe number

of recursive steps required for any scenario is at most log (%) + 1.

We now complete the proof by induction on the number of recursive calls to RAId. For the base
case of k = 1 call, C(w) < 2C(n*) by Lemma[5] Assume that C'(r) < 2(k — 1)C/(7*) when there
are at most k — 1 recursive calls. Now consider the induction step of k calls. The first recursive call
partitions the scearios into a collection of mutually exclusive subsets, ®1, @5, ..., ®,. Let Z; be the
subproblem with scenario set ®; and optimal policy 7, for i = 1,2, ..., n. After the first recursive
call, it takes at most k — 1 additional calls for each Z;. In the first call, the agent incurs a cost at most
2C(m*) by Lemmal5] For each Z;, the agent incurs a cost at most 2(k — 1)C/(w}) in the remaining
k — 1 calls, by the induction hypothesis. Putting together this with Lemma6] we conclude that the
agent incurs a total cost of at most 2kC(7*) when there are k calls. O

The MLRB condition (Equation (2)) tells us that we reduce the remaining function to cover by a
fraction whenever the remaining version space is halved. Next, we show that the remaining function
to cover is reduced by a fraction upon termination of each adaptive plan.

Lemma 8. Let 7 be the tour generated in a recursive and i) be the history after a recursive call of
RAC. By the end of each recursive call, for each scenario ¢ ~ 1), f(dom(v),¢) > (1 — 1/K)Q

unless f(X,¢) < (1 —1/K)Q. In that case, f(dom(v),) = f(X, @).

Proof. The procedure EXECUTEPLAN is called with tour 7 that is a solution to submodular orien-
teering problem 9?171 /K)o~ From Lemma , if EXECUTEPLAN terminates with p(¢) < 0.5, we

know from MLRB (Equation (2)) that f(dom(¢)),¢) > (1 — 1/K)Q for all ¢ ~ 1. Otherwise,
EXECUTEPLAN terminates with g(*lil/K)Q(T7) = (1 —1/K)Q. In that case, from Proposition

f(dom(v),¢) > (1 —1/K)Qor f(X,¢) < (1 —1/K)Q and f is already covered for ¢.
O

Lemma 9. Assuming we compute the optimal solution to the submodular orienteering problems,
the agent travels at most 2C(7*) for each recursive step of RAC.

Proof. From Lemma[4]and MLRB, the subpath o is feasible solution to the submodular orienteering
problem of 9(*171 /K)Q Let W* be the total edge-weight of the tour used in a recursive call of RAC.

Then, W* < W (') because W* is the value of an optimal solution. Since ¢’ is traversed with
probability at least 0.5,

cE)z Y o)
p~p* (o)

> 0.5w(o’) > 0.5W*
W* < 2C(r™),

where w(c”’) is the total edge-weight of tour ¢”’.

In EXECUTEPLAN, the agent travels on a path bounded by W*. Hence, the agent travels at most
20 (™). O

Lemma 10. Let 7 denote the policy that RAC computes for a rooted adaptive stochastic optimization
problem on paths. Let 1) be any value such that f(S,¢) > f(X,¢) — nimplies (S,) = f(X, ¢).
Assume RAC computes an optimal submodular coverage tour in each step. If f satisfies MLRB, then
for an instance of adaptive stochastic optimization optimizing f

C(m) < 2(logg (Q/n) + 1) C(m"),

where C() is the expected cost of RAC, and K > 1 and QQ > max, f(X, ¢) are the constants that
satisfy Equation ().

Proof. We need to repeat the recursive call until f(X,¢) — f(dom(),¢) < n for all ¢ ~ .
From MLRB and Lemma [the number of recursive steps required for any scenario is at most

log (%) + L

We now complete the proof by induction on the number of recursive calls to RAC. For the base case
of k = 1 call, C(r) < 2C(7*) by Lemma[9] Assume that C(w) < 2(k — 1)C(7*) when there
are at most k£ — 1 recursive calls. Now consider the induction step of k calls. The first recursive
call partitions the scenarios into a collection of mutually exclusive subsets, ®1, @5, ..., P,. Let Z;
be the subproblem with scenario set ®; and optimal policy 7, for i = 1,2,...,n. After the first
recursive call, it takes at most £ — 1 additional calls for each Z;. In the first call, the agent incurs
a cost at most 2C(7*) by Lemma[9] For each Z;, the agent incurs a cost at most 2(k — 1)C ()
in the remaining k& — 1 calls, by the induction hypothesis. Putting together this with Lemma [6] we
conclude that the agent incurs a total cost of at most 2kC(7*) when there are k calls. Hence, we
obtain our approximation bounds. O

Now, we relax the optimal submodular orienteering assumption and replace it with our polynomial
time approximation procedure.

Lemma 11. An a-approximation algorithm for rooted adaptive stochastic optimization problem on
paths is a 2a-approximation algorithm for adaptive stochastic optimization.

Proof. Let C* and C} be the expected cost of an optimal policy for an adaptive stochastic optimiza-
tion problem and for a corresponding rooted adaptive stochastic optimization problem, respectively.
As any policy for non-rooted problem can be turned into a policy for the root version by retracing
the solution path back to the start location, we have C < 2C*. An a-approximation algorithm for
rooted adaptive stochastic optimization computes a policy 7 for Z, with expected cost Cy(7) < aCy.
It then follows that C;(7) < aCy < 2aC* and this algorithm provides a 2a-approximation to the
optimal solution of the non-rooted problem. O

Theorem 1. Assume that f is an integer-valued pointwise submodular monotone function. If f
satisfies MLRB condition, then for any constant € > 0 and an instance of adaptive stochastic opti-
mization problem on path optimizing f, RAC computes a policy w in polynomial time such that

C(m) = O((log| X|)**“ log Qlog Q)C(x™)),
where QQ and K > 1 are constants that satisfies Equation ().

Proof. The distance traveled in each recursive step is at most aWW* < O(«a)C(7*). From
Lemma [I|, the agproximation factor for the submodular orienteering problem solved in RAC is
a = O((log| X|)*T¢log Q). Putting this together with Lemmawith n = 1 since f is integer-
valued and Lemma [T} we get the desired approximation bound. The algorithm clearly runs in
polynomial time. O

Theorem 2. Assume that prior probability distribution p is represented as non-negative integers
with > & p(¢) = P and [is an integer-valued pointwise submodular monotone function. If f

satisfies MLB, then for any constant ¢ > 0 and an instance of adaptive stochastic optimization
problem on path optimizing f, RAC computes a policy 7 for in polynomial time such that

C(m) = O((log| X |)**¢(log P + log Q) log G)C(1*),
where) = maxy f(X, ¢).

Proof. Let a1 and as be the approximation factors when we compute the submodular orienteering
tours 7; and Ty g respectively in one recursive call of RAC. Let the length of the tour chosen be W,
Let the length of the tour chosen be W,
W = min(a1 Wy, aaWyg)

< (a1 + az) W™

< 2(Ozf + Oévs)C(Tr*)
The last inequality is due to Lemma [5] Hence, the distance traveled in each recursive step is
at most 2(ay + ayg)C(7*). Lemma [1| tells us that a1 € O((log|X|)*™“log Q) and as €

O((log|X|)?*¢log P). Putting this together with Lemma [7| with n = 1 and Lemma |11} we get
the desired approximation bound. The algorithm clearly runs in polynomial time. [

0.4 Adaptive Stochastic Optimization on Sets

Adaptive stochastic minimum cost cover on sets (without path constraints) is a special case where
the metric is a star graph where all elements are connected to a root node. In the special case of sets,
the submodular orienteering problems that RAC solves become submodular set coverage problems.
At the same time, the submodular orienteering procedure in RAC becomes a greedy selection policy

where we always choose the element with highest value to cost ratio, i.e.max;¢ x\dom(y) Aé(zx‘;/’) .

Lemma 12. Given a submodular set function g : X — R, let 7€ be the greedy selection policy. We

have,
(X)) *
FX) - f(STl)) o)

where the subset ST~ is the set of elements selected before the last step of the greedy policy [6]].

O(r%) < (1 +1In

Using Lemma [I2] we can get tighter approximation bounds for stochastic sets functions and drop
the integer representation assumption on the prior p.

Theorem 3. Assume f is an integer-valued pointwise submodular and monotone function. If f sat-
isfies MLRB condition, then for an instance of adaptive stochastic optimization problem on subsets
optimizing f, RAC computes a policy w in polynomial time such that

C(r) =4(InQ + 1)(logg Q + 1)C(7),

where QQ and K > 1 are constants that satisfies Equation ().

Proof. The distance traveled in each recursive step is at most aW* < 4aC(7*). From Lemma
the approximation factor for the submodular set cover problem solved in RAC is a = log). Putting
this together with Lemma [I0] with 7 = 1 and Lemma|[T1] we get the desired approximation bound.
The algorithm clearly runs in polynomial time. O

Theorem 4. Assume f is an integer-valued pointwise submodular and monotone function and § =
ming p(¢). If f satisfies MLB condition, then for an instance of adaptive stochastic optimization
problem on subsets optimizing f, RAC computes a policy w in polynomial time such that

Cr)=4(In1/6 +In @+ 2)(log G + 1)C(7")),
where () = max, f(X, ¢).

Proof. Let a1, oo be the approximation factors when we compute the submodular set cover 7y and
Ty s respectively. Let the cost of the set of elements chosen be W,

W = min(a; Wy, aaWyg)
< (041 + CYQ)W*
<2(ay + ayg)C(r")

The last inequality is due to Lemma[5] Hence, the distance traveled in each recursive step is at
most 4(af + ayg)C(m*). From Lemma|12] the approximation factors for the submodular set cover
problems are a; =1In1/6+1 and ap = In Q) /n+ 1. Putting this together with Lemmal[7|with = 1
and Lemma |l 1] we get the desired approximation bound. The algorithm clearly runs in polynomial
time.

1 Experiment Tasks

1.1 UAYV Search and Rescue

In the UAV search and rescue task, an agent search for a victim in an area modeled as an 8 x 8
grid. Each grid cell has equal chance of containing the victim. The UAV can operate at two different
altitudes. At the high altitude, it uses a noisy long-range sensor that determines whether the 3 x 3
grid around its current location contains the victim. The sensor has a 0.03 chance of reporting the
opposite reading. At the low altitude, the UAV uses an accurate short-range sensor that determines
whether the current grid cell contains the victim.

The movement cost between two grid cells on the same altitude is the Manhattan distance between
them multiplied by 4 at the high altitude and multiplied by 1 at the low altitude. The cost to move
between high and low altitudes is 10. The victim is deemed to be safe if we know that he is in the
safe zone (marked grey in Figure [T), otherwise we need to know the exact location of the victim.
The equivalence classes task are the safe zone and every location outside of it.

1.2 Grasping a Cup

In a noisy variant of the grasping task, a robot arm needs to identify the cup with a handle among two
cups on the table and lift it up by grasping the handle (Figure [2). The cups’ positions are detected
using an external camera on the left side of the table but it is uncertain which cup has the handle
and where the handle is due to occlusion. Each hypothesis is a tuple of two parameters: « indicates
which cup has a handle, and 6 determines the handle location. The hypotheses where the handle
faces away from the external camera have higher prior probabilities.

The robot arm has a single-beam laser range finder mounted at its the wrist to detect distance to the
nearest object in the direction it is facing. It has a 0.85 chance of detecting the correct discretized
value x, 0.05 chance of +1 or —1 error each, and 0.025 chance of +2 or —2 errors each. We sample
seven wrist positions x1, 2, . .., 7 around the cups (Figure[J). At each position, the robot can pan
the range finder in the plane parallel to the tabletop incurring a fixed cost of 4. Moving the wrist from
one position to another incurs a higher cost of the distance between the two positions multiplied by
15. The robot arm starts at wrist position x; on the left side of the table.

The robot gripper is fairly robust to estimation error of the cup handle’s orientation. For each cup,
we partition the cup handle orientation into regions of 20 degrees each. We only need to know the
region that contains cup handle. The equivalence classes here are the regions. However, it is not
always possible to identify the true region due to observation noise. We can still reduce to ECD
problem by associating each observation vector to its most likely equivalence class.

References

[1] Gruia Calinescu and Alexander Zelikovsky. The polymatroid steiner problems. Journal of
Combinatorial Optimization, 9(3):281-294, 2005.

[2] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon Univer-
sity, 1976.

[3] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A Tight Bound on Approximating Arbi-
trary Metrics by Tree Metrics. In Proceedings of the Thirty-fifth Annual ACM Symposium on
Theory of Computing, STOC 03, pages 448—455, New York, NY, USA, 2003. ACM.

[4] Ronald L Graham, Donald E Knuth, and Oren Patashnik. Concrete Mathematics. Mas-
sachusetts: Addison-Wesley, 1989.

[5] Andrew Guillory and Jeff Bilmes. Interactive submodular set cover. In International Conference
on Machine Learning (ICML), Haifa, Israel, 2010.

[6] Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering prob-
lem. Combinatorica, 2(4):385-393, 1982.

	Proofs for examples of adaptive stochastic optimization problem
	Approximate Submodular Orienteering
	Adaptive Stochastic Optimization on Paths
	Adaptive Stochastic Optimization on Sets
	Experiment Tasks
	UAV Search and Rescue
	Grasping a Cup

