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Abstract

We investigate the task of compressing an image by using different probability models for com-

pressing different regions of the image. In this task, using a larger number of regions would result in

better compression, but would also require more bits for describing the regions and the probability

models used in the regions. We discuss using quadtree methods for performing the compression.

We introduce a class of probability models for images, thek-rectangular tilingsof an image, that

is formed by partitioning the image intok rectangular regions and generating the coefficients within

each region by using a probability model selected from a finite class ofN probability models. For

an image of sizen� n, we give a sequential probability assignment algorithm that codes the image

with a code length which is withinO(k log Nn

k
) of the code length produced by thebestprobabil-

ity model in the class. The algorithm has a computational complexity ofO(Nn3). An interesting

subclass of the class ofk-rectangular tilings is the class of tilings using rectangles whose widths are

powers of two. This class is far more flexible than quadtrees and yet has a sequential probability

assignment algorithm that produces a code length that is withinO(k log Nn

k
) of the best model in the

class with a computational complexity ofO(Nn2 logn) (similar to the computational complexity of

sequential probability assignment using quadtrees). We also consider progressive transmission of the

coefficients of the image.
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1 Introduction

Consider the task of compressing a wavelet subband comprisingn � n wavelet coefficients that have

been quantized using a scalar quantizer. For natural images, it is well known that the wavelet coefficients

are small in smooth areas and large in the neighbourhood of edges. Because of that, we would like

to use different probability models for coding different parts of the subband in order to obtain good

compression. We will restrict ourselves to a finite numberN of different probability models to choose

from. For example, theN models may come from the class of Generalized Gaussian Distributions;

distributions in this class have been shown to be good models for compressing wavelet coefficients [10].

Under these conditions, the central question is how to partition the wavelet subband into different

regions, where the coefficients in each region are coded with one of theN probability models, in order to

achieve good compression performance. A trade-off is immediately obvious here. Increasing the number

of different regions will allow more flexibility to fit the probability models to the coefficients. However,

more regions also require a larger overhead in describing the regions and the probability model ineach

region.

For practical compression schemes, an important additional requirement is that the computational

complexity of the method also be reasonably low. In this paper, we will discuss using quadtree methods

for performing this task. Then we will examine a new method that aims to compress as well the best

model in the class of probability models formed by partitioning the image intok rectangular regions and

generating the coefficients within each region by using a probability model from the finite class ofN

probability models. We call the class of probability models that is generated in this way the class of

k-rectangular tilingsof the image.

The class ofk-rectangular tilings can be considered as a natural extension to two dimensions of the

class of piecewise-identically-distributed source for sequences studied in information theory [19, 11].

The coding methods for the class of piecewise-identically-distributed source have been applied to text

compression to obtain some of the best text compression results currently available [16]. Similar methods

have also been studied in computational learning theory [7, 17, 4]. In fact, the method described in this

paper is an extension of the specialist method in [4] to two dimensions.

In this paper, we provide a sequential probability assignment algorithm that codes the image with a

code length that is withinO(k log Nn
k
) bits of the code length produced by the best model in the class of

k-rectangular tilings of the image, wherek does not need to be known in advance. We call the algorithm
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the best tilingalgorithm. The computational complexity of the algorithm isO(Nn3). If we restrict

the class of probability models to those generated using rectangular partitions ofD discrete widths, the

computational complexity can be improved toO(Nn2D). This means that we can have a fast algorithm

of computational complexityO(Nn2W ) for a probability assignment that is competitive with the best

assignment provided by the class ofk-rectangular tilings using rectangles of widths less thanW . Another

interesting class of models under the restriction toD discrete widths is the class ofk-rectangular tilings

with rectangles whose widths are powers of two. Restriction of the probability models to this class allows

us to have an algorithm with a computational complexity ofO(Nn2 logn). This class is similar to the

class of quadtrees but is more powerful since only one dimension is restricted to thelog2 n discrete sizes

and arbitrary shifts are allowed.

The best tiling algorithm can also be used to provide progressive transmission of an image with the

same bound on the code length and a computational complexity ofO(LNn3) whereL�1 is the number

of refinement layers transmitted. Progressive transmission of an image is a property that is currently

deemed to be practically important in applications such as browsing the world wide web and providing

unequal error protection to the compressed image bitstream [13].

Many practical wavelet image compression algorithms are currently either based on trees [14, 15]

or contexts [10, 2, 20]. In tree based methods, regions in an image are associated with nodes in a tree

such that the regions associated with the children of a node partition the region associated with the parent

node. A good pruning of the tree will provide a partition of the image with a small number of regions,

where each region can be well compressed using a simple model. Some of the current wavelet image

compression methods [14, 15] use trees with regions that span more than one wavelet subband. These

trees, called zerotrees, are used in conjunction with progressive bit-plane by bit-plane transmission to

indicate whether a coefficient is larger than a certain threshold. If all the coefficients in a node are

smaller than the threshold, the children of the node can be pruned away, hence reducing the number of

regions that need to be described. Transmitting the image one bit-plane at a time allows the quality of the

image to progressively improve as more bits are received. Another advantage in progressive bit-plane

by bit-plane transmission lies in the fact that the variance of the wavelet coefficients at the same spatial

location tends to decrease as we go from a coarse subband to a fine subband along the same orientation.

By using a tree that has coarse subband coefficients located only in nodes that are near the root of the

tree, most of the nodes will be pruned away when the threshold used with the zerotree is large. The

ordering in the variance of the coefficients can thus be exploited to improve compression.
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In this paper, we will only consider the simple quadtree structure, where each rectangular region is

recursively partitioned into four predefined rectangular regions. Such a simple structure is already quite

effective in practice [9]. (In fact, the results in [9] using simple quadtrees are better than the results in

Shapiro's original work [15].) We note also that the restriction of Shapiro's zerotree [15] to coefficients

from a single subband is a quadtree. The pruning of the quadtree that minimizes the total description

length can be obtained with a computational complexity ofO(n2) using dynamic programming tech-

niques. In this paper, we show how tree weighting methods [18, 6] can be used to provide sequential

probability assignment using the quadtree. The weighting method has a higher computational complex-

ity of O(n2 logn). However, it can be shown to compress at least as well as (and usually better than) the

optimal pruning method if a single scalar quantizer and the same prior are used in both methods. Another

advantage of the tree weighting method, when used with a single scalar quantizer, comes from the fact

that progressive transmission obtains the same code length as that obtained by non-progressive transmis-

sion. The tree weighting method can be readily generalized from quadtrees to other tree structures.

In context based methods [10, 2, 20], the coefficients that have been already been transmitted are used

to select the current state of the encoder. A probability model associated with the state is then used to

code the coefficient. As described, the context based method is very general and covers the tiling and tree

weighting methods. One method to capture the intuition that similar coefficients tend to occur together in

an image is to use only transmitted coefficients in a small window around the coefficient currently being

coded to select the state of the encoder. This is done in [10], where the maximum likelihood distribution

found by using only the coefficients inside the window is used to code the coefficient. The context based

method can also exploit information from transmitted coefficients in other subbands by using them in

the mapping to the state of the encoder [2, 20]. By using clever mappings that exploit properties of the

image, coding gains can be achieved [20].

Different context based algorithms may perform well in different regions of the image. We note that

the finite set ofN probability models used by the quadtree and tiling methods can contain sequential

probability assignment algorithms instead of static probability models. Hence, context based methods

can be used in conjunction with the quadtree weighting method or the best tiling method by being in-

cluded in the set ofN probability models. This is analogous to the coding methods used in [16] which

switch between two coding algorithms with different properties.

The main contribution of the paper is the introduction of the class ofk-rectangular tilings of an

image as a useful comparison class for image compression and showing that a computationally efficient
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compression method that performs almost as well as the best model in the class exists. In Section 2, we

give some definitions and describe some of the basic concepts used in this paper. The quadtree coding

methods are described in Section 3. In Section 4, we develop the probability assignment method that is

competitive with the class of k-rectangular tilings of an image and consider more restricted variants that

are computationally simpler. Progressive transmission using the method is also discussed.

2 Preliminaries

An image is a matrix of coefficients with a finite number rows and columns. For convenience, we will

often refer to an image as a sequence of coefficients when the two dimensional characteristics of the

image is not important.

2.1 Quantization.

In vector quantization, an m-dimensional vector of coefficients at timet, xt =

(xtm; xtm+1; : : : ; x(t+1)m�1) 2 <m, is mapped to a reproduction vectorut =

(utm; utm+1; : : : ; u(t+1)m�1) 2 U , whereU is a finite set of reproduction vectors. The mapping

from xt to ut is called avector quantizer. A vector quantizer withm = 1 is called ascalar quantizer.

One way to define a scalar quantizer is to use a sequence of thresholds�1 � b0 � b1 � � � � � bM <1

and a sequence of reproduction values�1 � r0 � r1 � � � � � rM < 1. When the thresholds

b0; : : : ; bM are equally spaced, we call the quantizer auniform quantizer. In a uniform quantizer with a

deadband, the size of the quantization intervalsbi � bi�1 are the same except for the interval containing

zero which is twice as large as the other intervals.

To obtain the optimal code length at a fixed distortion, it is necessary to use vector quantization.

However, the computational complexity of using vector quantization can be considerable. One method

for handling the complexity while achieving good performance is to use simple scalar quantization to-

gether with good entropy coding of the quantized coefficients. This can be shown to be within 0.255 bits

per coefficient of optimal for high rates and within 0.754 bits per coefficient of optimal at low rates (see

[5] for details). In practice, linear transforms that compact energy provide coding gain. This coding gain

can be easily exploited in the transform domain using scalar quantization. State of the art coders such

as those in [10, 2] use different scalar quantizers for different regions of the wavelet subband while the

coders in [15, 14, 20] use a single scalar quantizer with a deadband for all the coefficients.
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In this paper, we will use a single scalar quantizer for all the coefficients. The range of the scalar

quantizer is a finite set of values. For simplicity, we will assume that the range isf0; : : : ; b � 1g

when the alphabet size isb. Let the probability assigned to a scalar quantized imagefx0; : : : ; xt�1g

bep(x0; : : : ; xt�1). Using an arithmetic coder, theidealcode lengthlog2 1=p(x0; : : : ; xt�1) can be ap-

proached very closely. Throughout this paper, ideal code lengths which can be closely approximated

using arithmetic coding will be used.

2.2 Models for Images

Let C be a finite class of probability distributions for coefficients quantized using a scalar quantizer.

Partition the image into a number of subsets calledregions. Each regionR is assigned a probability

distribution fromC, which is then used for generating all the coefficients inR. In this way,models for

imagesare generated from models for coefficients and image partitions.

2.3 Adaptation

LetF be a finite class of models for images. We put a prior probability distributionp(f) onF . The class

F will serve as abenchmarkfor judging how well we perform in our task of coding the image. Our aim

is to code the image in such a way that the resulting code length is close to the best that can be achieved

by using the best model inF .

Let xt = fx0; : : : ; xt�1g represent the image to be coded after scalar quantization with a single

quantizer. Letfopt be a model that produces the shortest code length when used to codext. The ideal

code length produced byfopt is log2 1=p(x
tjfopt). Let cA be the code length produced by the algorithm

A when it is used to codext. Theredundancyof algorithmA for codingxt with respect to the classF is

cA � log2 1=p(x
tjfopt).

2.3.1 Forward Adaptation

Conceptually, the simplest method for adaptive coding is the forward adaptation method. In the for-

ward adaptation method, the modelf 2 F that minimizes thetotal description lengthlog2 1=p(x
tjf) +

log2 1=p(f) is first found. Let the model bef 0opt. The description off 0opt is then transmitted using

log2 1=p(f
0
opt) bits. This is followed by the description of the coefficients of lengthlog2 1=p(x

tjf 0opt).

Note that the modelf 0opt is not necessarily the same asfopt since it is the model that optimizes the total
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description length and not the model that optimizes the description length of the coefficients only. From

the definition off 0opt,

log2 1=p(x
tjf 0opt) + log2 1=p(f

0
opt) � log2 1=p(x

tjfopt) + log2 1=p(fopt):

Hence, the redundancy of the forward adaptation method is bounded bylog2 1=p(fopt). If the uniform

prior is put onF , the redundancy is bounded bylog2 jF j.

2.3.2 Backward Adaptation

From the chain rule of probability, we can write

p(x0; : : : ; xt�1) = p(x0)p(x1jx0) � � �p(xijx
i) � � �p(xt�1jx

t�1):

This means that by coding the image sequentially using the conditional probabilityp(xijx
i), we can

achieve the code lengthlog2 1=p(x0; : : : ; xt�1). With a model classF of sizeM and prior distribution

p(f), we have

p(x0; : : : ; xt�1) =
M�1X
i=0

p(fi)p(x0; : : : ; xt�1jfi) � p(f 0opt)p(x0; : : : ; xt�1jf
0
opt):

This means that backward adaptation with the conditional probability will perform at least as well as (and

most likely better than) the forward adaptation method using the same model class and prior distribution.

We call an algorithm that producesp(xijxi) for a class of modelsF and a prior distributionp(f) a

Bayesian sequential probability assignmentmethod. One interesting property of the Bayesian sequential

probability assignment method is that the code length produced is invariant to the ordering of the coef-

ficients, as can be seen from the form of the chain rule of probability. Sequential updating for Bayesian

sequential probability assignment is relatively simple. We have

p(xtjx
t) =

p(x0; : : : ; xt)

p(x0)p(x1jx0) � � �p(xt�1jxt�1)

=

PM�1
i=0 p(fi)p(x0; : : : ; xtjfi)

p(x0)p(x1jx0) � � �p(xt�1jxt�1)

=

PM�1
i=0 p(fi)p(x0; : : : ; xt�1jfi)p(xtjfi)

p(x0)p(x1jx0) � � �p(xt�1jxt�1)
: (1)

Assume that modeli is initialized to prior probabilitypi0. Let aix = p(X = xjfi) for x = 0; : : : ; b� 1,

whereb is the alphabet size. Letai = (ai0; : : : ; a
i
b�1) be the probability vector associated with modeli.

The Bayesian sequential probability assignment algorithm is can now be rewritten as follows:
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1. Predict with the weighted average of the predictions of the models:

at =
M�1X
i=0

pita
i:

2. Observe the outcomext.

3. Calculate the a posteriori probability:

pit+1 =
pita

i
xt

at;xt
:

Backward adaptation need not be restricted to using conditional distributions derived from a function

classF and a prior distribution onF . Any sequential probability assignment function that produces

a conditional probability distributiona(xijxi) can be used. If the sequential probability assignment

function assigns a high probability to the image, a short code length will be produced. A good survey of

sequential probability assignment can be found in [12].

2.4 Progressive Transmission

A scalar quantizerQ maps all the real-valued coefficients from an interval to one of a finite number of

values. We say that a scalar quantizerQi is a refinementof a scalar quantizerQi�1 if for every a in

the range ofQi, Q
�1
i (a) � Q�1

i�1(b) for someb in the range ofQi�1. In other words, each interval

corresponding toQi is a subset of some interval corresponding toQi�1.

Letxt�1 = fx0;�1; : : : ; xt�1;�1g be a the image produced by quantizerQ�1 andxt = fx0; : : : ; xt�1g

be the image produced by quantizerQ, which is a refinement of quantizerQ�1. Then

p(x0; : : : ; xt�1) = p(x0; : : : ; xt�1; x0;�1; : : : ; xt�1;�1)

= p(x0; : : : ; xt�1jx0;�1; : : : ; xt�1;�1)p(x0;�1; : : : ; xt�1;�1):

This means that we can achieve the code lengthlog2 1=p(x0; : : : ; xt�1) in two steps. First we quantize the

image using a coarse quantizerQ�1 and transmit it using the Bayesian sequential probability assignment

method. Next, we quantize the image usingQ, which is a refinement ofQ�1, and transmit it using the

Bayesian sequential probability assignment method conditioned upon the value of the coarse version.

The Bayesian sequential probability assignment method with scalar quantization achieves the same

code length regardless of whether progressive transmission is used or not. However, it does not achieve
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theoptimal rate-distortionrepresentation at each stage. That requires the rate distortion problem to be

successively refinable [3] and is unlikely to be achievable using a scalar quantizer.

3 Quadtree Methods

To specify a quadtree, we start with a rectangular image. The image is associated with theroot of the

quadtree. The image is partitioned into four subsets calledregions. In practice, the regions are usually

rectangular. These four regions are associated with four nodes that are thechildren of the root. The

children are connected to theirparent(the root) by edges. Each edge is labeled by a symbol from an

alphabet of four symbols. If desired, each node can be further partitioned into four children in the same

way as the root. The process can be continued as long as each node is nonempty. Nodes that are not

partitioned further are calledleaves. Nodes that are not leaves are calledinternal nodes. Each leaf can

be assigned a probability model for coefficients from a finite classC of N probability models. The

probability model is used to code all the coefficients in the leaf. Each node can be uniquely identified

by a path from the root to the node. We call the structure defined this way a quadtree. Each quadtree

defines a set a probability models for the image whereeach assignment of probability models fromC to

the leaves of the quadtree defines aquadtree modelfor the image.

A templatequadtree is a quadtree that is known to both the encoder and the decoder. ApruningP of

a template quadtreeT is a quadtree induced by replacing some internal nodes ofT with a leaves.

3.1 Forward Adaptation

Given a template quadtreeT , we now describe how to code the description of a quadtree model from

the pruned quadtreeP . Start the coding procedure with the root. If the current node is a leaf ofT ,

transmit the description of the model associated with the leaf. If the current node is a leaf ofP but not

of T , transmit the symbol zero followed by the description of the model associated with the leaf. The

additional bit is not needed if the node is a leaf ofT since the decoder knows that the node has to be a

leaf. If the current node is not a leaf, transmit the symbol one. Then recursively code the four children

in a fixed order using the procedure just described. Using this coding procedure, each quadtree model is

assigned a description from a prefix code. The procedure also assigns a prior probability distribution to

the class of quadtree models formed from all possible prunings ofT and assignments of models to the

leaves of the prunings. The prior probability assigned to a model with a code lengthl is 2�l.
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We now describe a simple dynamic programming algorithm for finding the pruned quadtree model

that minimizes the total description length of transmitting the image. Start the routinePruneby using

the root as a parameter. If the current node is a leaf, the routine returns the minimum total description

length of coding the node as thecostof the node. If the current node is an internal node,Prunecalls

itself four times with the four children as the parameters. It then compares the following two sums: the

minimum total description length of coding the node plus one and the sum of the costs of all its children.

If the former is smaller, the children of the nodes are pruned away and the former becomes the cost of

the node. Otherwise, the children are retained and the latter becomes the cost of the node. One bit is kept

at the node to indicate whether or not the children are pruned away. The routine then returns the cost of

the node.

The number of leaves in the template quadtree is at mostn2 for ann by n image. Hence, the total

number of nodes is at most4n2=3. This means that the computational complexity of the algorithm is

O(Nn2).

3.2 Backward Adaptation

We want to calculatep(x0; : : : ; xt�1) =
PM�1

i=0 p(fi)p(x0; : : : ; xt�1jfi) using the Bayesian sequential

probability assignment method. TheM models in the class include the models from all prunings of

the template tree. The prior probability is the probability assigned by the coding process described in

Section 3.1. SinceM is very large, the direct method of performing the Bayesian sequential probability

assignment method described in Section 2.3.2 is highly inefficient.

The tree weighting algorithm used here is a variant of the weighting algorithms presented in [6, 18].

The algorithm uses the whole template treeT . The models in each node are initialized to the prior

distribution onC. At time t, the coefficient traces a path from the root to the leaf; hence we can partition

the nodes inT into those that are on the path and those that are not on the path. Letat be the probability

vector produced by the algorithm for coding the coefficient at timet and letaj = (a0; : : : ; ab�1) be the

probability vector associated with modelcj 2 C with an alphabet of sizeb. We can rewrite equation (1)

as follows

at =
NX
j=1

W t

total(r; j)a
j

wherer is the root ofT . The functionW t

total(u; j) is the sum of the weights of all the models generated

by all possible prunings of the subtree ofT rooted atu that havecj as the path leaves. This function is
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calculated by

W t

total(u; j) =

8>>>>>>><
>>>>>>>:

W t

model(u; j) path leaf

1
2
W t

model(u; j) u path internal node;

+1
2W

t

total(s; j)
Q
v2children ofu;v 6=sW

t

node(v) s path node child ofu

where the the functionsW t

model(u; j) andW t

node(u) are updated by

W t+1

model(u; j) =

8>>>><
>>>>:

W t

model(u; j) off path

W t

model(u; j)a
j
xt
=at;xt on path

and

W t+1

node(u) =

8>>>>>>>>>>><
>>>>>>>>>>>:

W t

node(u) off path

PN
j=1W

t+1

model(u; j) path leaf

1
2

PN
j=1W

t+1

model(u; j) +
1
2

Q
v2children ofuW

t+1

node(v) path internal node:

All the calculations happen only along the path of the coefficient and hence the computational com-

plexity for each coefficient is proportional to the length of the path. If each node is partitioned into four

(approximately) equal sized children, the height of the tree isO(logn). Hence the total computational

complexity isO(n2 logn).

We now prove that the weights given by the algorithm are correct.

Theorem 1

at =
NX
j=1

W t

total(r; j)a
j =

PM�1
i=0 p(fi)p(x0; : : : ; xt�1jfi)p(xtjfi)

p(x0)p(x1jx0) � � �p(xt�1jxt�1)

wherer is the root ofT .

Proof. If T consist of a single node, the result follows from Section 2.3.2. We now show thatW t

total(u; j)

is calculated correctly for nodeu whenu has children.

Note that the description length of a model can be decomposed into the sum of the description length

of the tree structure and the description lengths of all the models at the leaves. Denote the description
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length of a treeP asjP j. Let the description length of a modelf bejP j+Lf . Hence the prior probability

of f is 2�jP j�Lf . The posterior probability off is 2�jP jw(f) where

w(f) =
2�Lf p(x0jf)p(x1jf) � � �p(xt�1jf)

p(x0)p(x1jx0) � � �p(xt�1jxt�1)
; (2)

assuming that the coefficients are independent givenf . Any pruningP of the subtreeTu rooted atu

contains either only the nodeu or can be decomposed into four subtreesP0; P1; P2; P3 rooted at the four

children ofu. From the way the description length is constructed, we havejP j = 1 + jP0j + jP1j +

jP2j+ jP3j. Let fPi be the functionf restricted to the subset associated withPi. The description length

Lf can be written asLfP0 + LfP1 + LfP2 + LfP3 . We can also rewrite equation (2) as

w(f) =
Y

i02f0;1;2;3g

2
�L

f
P
i0 w(fPi0 )

wherew(fPi) =
Q
m

p(xmjf)
p(xmjxm)

for all xm that lie in the subset associated withPi. Note that only one of

the four children is on the path of the coefficient. Without loss of generality, let that particular subtree be

P0.

If u does not have children,W t

total(u; j) = W t

model(u; j). Hence we have

W t

total(u; j) = 2�1W t

model(u; j) +X
P0;f

P0

X
P1;f

P1

X
P2;f

P2

X
P3;f

P3

2�(1+jP0j+jP1j+jP2j+jP3j)
Y

i02f0;1;2;3g

2
�L

f
P
i0 w(fPi0 )

=
1

2
W t

model(u; j) +
1

2

Y
i02f0;1;2;3g

X
P0;f

P
i0

2�jP
i0
j2
�L

f
P
i0 w(fPi0 )

where the functionsfP0 that are assigned are restricted so that all leaves in the path of the current

coefficient are restricted to have the modelcj .

The term
P

P0;f
P0 2

�jP0j2
�L

f
P0w(fP0) is justW t

total(v; j)wherev is the root ofP0. The other terms

are denotedW t

node(v), where thev takes on the value of the roots ofP1, P2 andP3. The calculation of

W t

node(v) is the same as the calculation ofW t

total(v; j), except that no restriction tocj is done since all

the nodes are not in the path of the current coefficient.2

Progressive transmission is done the same way as non-progressive transmission, except that during

the refinement stagei, p(xt;ijc; xt;i�1) is used in place ofp(xtjc) for c 2 C.

The template quadtree providesO(n2) rectangles which are in fixed positions. Because the rectangles

are in fixed positions, the performance of any algorithm based on the quadtree is sensitive to shifts in the
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underlying regions of the image. Regions that are poorly placed with respect to the quadtree can only be

well described using a pruned quadtree with many leaves. Consequently the overhead cost for describing

such regions will be higher. This motivates the use of the class ofk-rectangular tilings of the image to

be described next.

4 Rectangular tiling of an image

In this paper, we introduce a class of probability model for images: thek-rectangular tilingsof an

image. This class is formed by partitioning the image intok rectangular regions and generating the

coefficients within each region by using a probability model from a finite classC of probability models

for coefficients.

We first consider the redundancy of the Bayesian sequential probability assignment on this class.

Since there aren2 pixels in the image, there aren2 + n2(n � 1) + (n2(n2 � 1)=2� n2(n � 1))=2 =

n2 + n2(n� 1)=2 + n2(n2 � 1)=4 distinct rectangular regions; the first term,n2, counts the number of

rectangles that contain a single coefficient; the second term,n2(n� 1), counts the number of rectangles

that have either a single row or a single column; the third term,(n2(n2 � 1)=2� n2(n � 1))=2, counts

the number of rectangles that have more than one row and more than one column. Each region can

be assigned one of theN probability models inC. If there arek regions in the image, the number

of probability models in the class is upper bounded byNkn4k. Assuming a uniform prior is used, the

Bayesian sequential probability assignment method gives a redundancy of at mostk log2N + 4k log2 n.

Unfortunately, unless some special structure is exploited, the Bayesian probability assignment

method suffers from computational intractability when the number of models is large. It is easy to

see that even if we fix the structure of the tiling, there areNk different models in the class, each of which

needs to be updated each time a coefficient is encoded.

The tree weighting method described in Section 3 exploits the tree structure to perform sequential

Bayesian probability assignment in a computationally efficient manner. When the data forms a sequence,

and not an image, computationally efficient methods also exist for performing Bayesian weighting on

models formed by segmenting the sequence into segments and using a different probability model to

generate the coefficients in each segment [7, 17]. The simpler versions of these algorithms can be con-

sidered as certain Hidden Markov models that switch from the current model to another model with a

certain probability.

13



Unfortunately, we have not been able to extend the methods in [7, 17] from segmentation of a se-

quence to tiling of a plane. The lack of causality in two dimensions appears to be the main difficulty in

finding computationallyefficient Hidden Markov type models. Instead, we will use a sequential probabil-

ity assignment method called SBayes (Bayes for specialists) by Freund, Schapire, Singer and Warmuth

[4]. SBayes is an adaptation of the Bayes method for models that are allowed to abstain. SBayes is

no longer strictly a Bayesian method but it retains some useful properties similar to that of Bayesian

methods on redundancy while at the same time providing some attractive computational properties.

4.1 Specialist Bayes

Thespecialist frameworkwas first proposed by Blum [1], as an extension of the online prediction by ex-

perts framework commonly studied in computational learning theory. In the online prediction by experts

framework, the cumulative loss of an online prediction algorithm is compared against the cumulative

loss of the best predictor in a class of predictors (experts). In this framework, the Bayesian sequential

probability allocation algorithm can be shown to have a redundancy ofO(logN) relative to a class ofN

experts when the log loss is used. Similar bounds can also be given for related algorithms for other loss

functions such as the absolute loss and the squared loss.

In the specialist framework, the experts are allowed to abstain and are called specialists in analogy to

human specialists who make predictions only when the instance to be predicted falls within their area of

specialty. In this paper, we will call a specialist that predicts using a fixed probability model and abstains

outside its region of expertise, aspecialist model. Whenever a specialist model is not abstaining we say

that it isactiveand we call the region where the specialist is active itsregion of activity. We call a subset

of specialists whose regions of activity partition the sequence of symbols anextended model. For an

extended model, there is always only one model that will make a prediction for every member of the

sequence. As such, the extended model forms a probability model for sequences (or for images if the

sequence consist of all the coefficients in an image). In this paper, we assume that a subset of specialists

can always be found to form at least one extended model. This avoids the problem of having instances

on which all specialist models abstain. By careful construction of the class of specialist models, we can

always ensure that this assumption is satisfied.

For this paper, we will assume a finite setS of specialists and an alphabet of sizeb. The aim of our al-

gorithm is to sequentially assign a probability mass functiona(x0)a(x1jx0) � � �a(xijx
i) � � �a(xt�1jx

t�1)

to a sequence of symbolsx0; : : : ; xt�1. At iterationi, the algorithm needs to producea(xijxi). We per-
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form our analysis in a deterministic setting, where the target symbolxi can be chosen by an adversary

with knowledge of the probability assignment algorithm we are using and the assignments that we have

made up to and including timei. The outputa(�jxi) of a sequential probability assignment algorithm is a

probability vectorai = (ai;0; : : : ; ai;b�1). The algorithm suffers a loss oflog2 1=ai;xi when the outcome

is xi at iterationi. The cumulative sum of the losses of algorithm is the code length assigned by the

algorithm to the sequence�
Pt�1

i=0 log2 a(xijx
i):

Let F be a set of extended models that are formed from the the class of specialist modelsS. We

would like to bound the redundancy of the algorithm relative to the classF .

In the SBayes algorithm, each specialist model is given a weight that summarizes the contributions

of the specialist model so far. These weights play the same role as the a posteriori probability of a

model in the normal Bayesian algorithm. Initially, the weights of the specialist models are initialized to

a “prior” probability distributionp0 = (p00; : : : ; p
m�1
0 ), which is usually the uniform distribution. At

each iteration, the set of active specialist modelsEi is treated as if it were the complete set of models.

On receiving theith symbol, only the weights of active specialist models are updated while the weight

of the abstaining specialist models are untouched. Assume that the specialist modelj outputsaj =

(aj0; : : : ; a
j
b�1) and the algorithm SBayes outputsa(�jxi) = ai = (ai;0; : : : ; ai;b�1) at time i. The

algorithm SBayes [4] is given below:

1. Predict with the weighted average of predictions of the active specialist models:

ai =

P
j2Ei

p
j
ia

jP
j2Ei

p
j
i

2. Observe the outcomexi.

3. Calculate the new weight:

p
j
i+1 =

8><
>:

p
j

i
a
j

xi

ai;xi
if j 2 Ei

p
j
i otherwise:

Observe the similarity between SBayes and the Bayesian sequential probability assignment algorithm

described in Section 2.3.2. The following result from Freund, et al. [4] bounds the performance of

SBayes, with respect to a class of extended models. (The result given by Freund, et al. [4] is actually

slightly more general than the result given below.) We say that a probability vectoru = (u0; : : : ; um�1)

over the set of specialistsS of sizem is associated with an extended modelU with jU j = k if and only
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if ui = 1=k whenever specialisti is in the setU andui = 0 whenever specialisti is not inU . For two

probability vectors,u andv, the relative entropy,RE(ujjv) is
P

i u
i log2(u

i=vi).

Theorem 2 Letu be a probabilityvector associated with an arbitrary extended modelU in a class of

specialist modelsS. Leta(�jxi) be the output at timei of SBayes which sequentially allocates probability

mass using the classS. Then

�

t�1X
i=0

log2 a(xijx
i)� (�

t�1X
i=0

log2 p(xijx
i; U)) = jU j(RE(ujjp0)�RE(ujjpt));

wherepi is the probabilityvector over the set of specialist modelsS at timei. If jU j = k, jSj = m and

p0 is the uniform distribution, then

�

t�1X
i=0

log2 a(xijx
i)� (�

t�1X
i=0

log2 p(xijx
i; U)) � k log2

m

k
:

Proof. First we note that ifpi is a probability vector, thenpi+1 is still a probability vector after an update

using SBayes. We calculate

RE(ujjpi)�RE(ujjpi+1) =
mX
j=1

uj log2
p
j
i+1

p
j
i

=
X
j2Ei

uj log2
p
j
i+1

p
j
i

=
1

jU j
log2

p
ji
i+1

p
ji
i

=
� log2 a(xijx

i)

jU j
�

 
� log2 p(xijx

i; U)

jU j

!

whereji is the index of the active specialist inU at timei.

Summing the equality fromi = 0 to t� 1 gives the first result. The second follows from the fact that

relative entropy is always nonnegative.2

The result shows that the algorithm SBayes provides a probability assignment with a redundancy of

no more thank log2
m
k

relative to the class of extended models that contain no more thank specialist

models whenm is the size of the class of specialist models. Note that the bound holds for allk less than

or equal tom for which an extended model exists.

One useful property of Bayesian sequential probability assignment using a class of extended models

is that if we permute the order in which the symbols are processed, the final probability assignment is
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still the same. The following example shows that this property is not always retained by the SBayes

method.

Example 3 Consider a sequence of three symbols(x0 = 1; x1 = 1; x2 = 1) over the alphabetsf0; 1g.

Let the class of specialists bes0 = (0:2; �; �), s1 = (�; 0:2; 0:2), s2 = (0:8; �; �), s3 = (�; 0:8; 0:8),

s4 = (0:2; 0:2; �), s5 = (�; �; 0:2), s6 = (0:8; 0:8; �) ands7 = (�; �; 0:8)where each number represent

the probability that the corresponding symbol is1 and '�' denotes that the specialist model is abstaining.

If the symbols are processed in the orderx0; x2; x1, the probability assigned would be 0.170. However,

it the symbols are processed in the orderx0; x1; x2, the probability assigned is 0.172.

The example also shows that in this case, SBayes is not the Bayesian probability assignment method

operating on some extended model class.

4.2 Tiling with Rectangles

Using SBayes, we will be able to obtain a probability assignment that is close to the probability assign-

ment provided by the best model in class ofk-rectangular tilings of the image for arbitraryk. For an

n � n image, the number of possible distinct tiles isO(n4). If we haveN probability models, then the

total number of specialist models isO(Nn4). This gives a redundancy ofO(k log Nn
k
) when compared

against the class containingk or fewer tiles.

A simple algorithm that goes through each specialist model for every coefficient of the image will

require a computational complexity ofO(Nn6) for assigning probability to the image. We would like to

reduce the computational complexity by using careful recursive updating.

We first review the one dimensional case that was examined in [4]. (In [4], the more general case

of unknown sequence length is considered. Here, we consider the case where the sequence lengthn

is known in order to generalize the result to tiling of images.) For a sequence of lengthn, there are

n(n + 1)=2 possible segments givingNn(n + 1)=2 specialist models. LetS(t1; t2; j) be the specialist

associated with modelcj 2 C that is active in the interval[t1; t2]. Assume that initially, they are all given

equal weights which can be set to 1 because of the normalization that is performed at each iteration. Let

pit1;t2;j be the weight of specialistS(t1; t2; j) at timei. Then the prediction of the algorithm at timei is

ai =

PN�1
j=0

Pi
t1=0

Pn�1
t2=i

pit1;t2;ja
jPN�1

j=0

Pi
t1=0

Pn�1
t2=i

pit1;t2;j
;
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whereaj is the vector of prediction of the modelcj . Letting

Qi
j =

iX
t1=0

n�1X
t2=i

pit1;t2;j ;

we can rewrite the sum as

ai =

PN�1
j=0 Qi

ja
jPN�1

j=0 Qi
j

:

On observing the outcomexi, the weight of an active specialistS(t1; t2; j) is updated by multiplication

with Ri
j = ajxi=ai;xi. We can then write

Qi
j =

iX
t1=0

n�1X
t2=i

pit1;t2;j =
iX

t1=0

n�1X
t2=i

i�1Y
s=t1

Rs
j = (n� i)

iX
t1=0

i�1Y
s=t1

Rs
j :

UpdatingQi
j , we obtain

Qi+1
j =

i+1X
t1=0

n�1X
t2=i+1

iY
s=t1

Rs
j

=
iX

t1=0

n�1X
t2=i+1

iY
s=t1

Rs
j + n� i� 1

=
iX

t1=0

0
@n�1X
t2=i

Ri
j

i�1Y
s=t1

Rs
j �Ri

j

i�1Y
s=t1

Rs
j

1
A + n� i� 1

= Ri
jQ

i
j �Ri

j

iX
t1=0

i�1Y
s=t1

Rs
j + n � i� 1

The first term updates all the current specialists. The second term subtracts all the specialist models that

will no longer be active at timei+ 1 while the third term adds the new specialist that will become active

at timei+ 1. This can be further simplified to

Qi+1
j = (n� i� 1)

 
Ri
jQ

i
j

(n� i)
+ 1

!
:

We now consider the case of tiling ann � n image with rectangles of arbitrary height but one

fixed widthw. We assume that the coefficients are processed in a raster scan order. The origin is at

the top left hand corner of the image and the coordinates increase in the direction of the scan. Let

S((a; b); (c; d); j) be the specialist model associated with modelcj that is active in the rectangle with

top left hand corner(a; b) and bottom right hand corner(c; d). For simplicity, we associate specialist

models with all rectangles with widthw that intersect the image even though part of the rectangle may
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be outside the image. All the specialist models are given equal weights initially. LetR(y; z) be the set

of rectangles that contains the coordinate(y; z). Let

Q
(y;z)
j =

X
m2R(y;z)

p
(y;z)
m;j

be the sum of the weights of the active specialist models associated with modelj and the setR(y; z)

when the(y; z) coefficient is being processed. So we have

a(y;z) =

PN�1
j=0 Q

(y;z)
j ajPN�1

j=0 Q
(y;z)
j

:

Let R(y;z)
j = ajx(y;z)=a(y;z);x(y;z) . LetM(p; q) be a subset ofR(p; q) that has bottom right hand corner

(c; d) with c � p andd = q and let

Z
(y;z)
j (p; q) =

X
m2M(p;q)

p
(y;z)
m;j :

Then we can updateQ(y;z)
j as follows

Q
(y;z+1)
j = R

(y;z)
j Q

(y;z)
j � R

(y;z)
j Z

(y;z)
j (y; z) + Z

(y;z)
j (y; z + w):

We now need to calculateR(y;z)
j Z

(y;z)
j (y; z) andZ(y;z)

j (y; z + w).

LetR(y;z);w
j =

Qz
s=z�w+1 R

(y;s)
j . Then we can derive (c.f. the one dimensional case)

Z
(y;z)
j (y; z + w)) = (n� y)

0
@R(y�1;z+w)

j Z
(y�1;z+w)
j (y � 1; z + w)

(n� y + 1)
+ 1

1
A :

We also have

R
(y;z)
j Z

(y;z)
j (y; z)) = (n� y)R

(y;z);w
j

0
@R(y�1;z)

j Z
(y�1;z)
j (y � 1; z)

(n� y + 1)
+ 1

1
A :

Finally,

R
(y;z);w
j =

8>>>>>>>>><
>>>>>>>>>:

R
(y;z)
j if z = 0

R
(y;z�1);w
j R

(y;z)
j if z < w

R
(y;z�1);w
j

R
(y;z)

j

R
(y;z�w)

j

if w � z � n� 1

R
(y;z�1);w

j

R
(y;z�w)

j

if z > n � 1

The initial conditions needed areQ(0;0)
j = nw and

Q
(y;0)
j =

w�1X
k=0

(n� y)

0
@R(y�1;k)

j Z
(y�1;k)
j (y � 1; k)

(n� y + 1)
+ 1

1
A :
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With D distinct widths, we only have to runD distinct copies of the algorithm and sum the values

of Q(y;z)
j for each copy. A minor complication arises at the boundaries of thez coordinate since multiple

rectangles of different widths that go beyond the boundaries are in fact equivalent. One simple method

of getting around this is to modify the algorithm for all values of widthsw other than the largest width

in such a way thatR(y;z)
j Z

(y;z)
j (y; z) = 0 for z < w, Z(y;z)

j (y; z + w) = 0 for z � n � w � 1 and

Q
(y;0)
j = 0.

If we allow all possible widths, the complexity of the algorithm isO(Nn3). The performance of

the algorithm is then competitive against the class ofk-rectangular tilings of the image for arbitrary

k. Restricting the widths to be no more thanW gives a complexity ofO(NWn2) and an algorithm

that is competitive against the class ofk-rectangular tilings using rectangles with widths no more than

W . Restricting the widths to powers of 2, gives a complexity ofO(Nn2 logn) and an algorithm that is

competitive against the class ofk-rectangular tilings using rectangles with widths of powers of 2.

4.3 Progressive Transmission

Performance of an extended model remains unchanged if progressive transmission is used, provided

that the correct conditional probability distribution is used for the refinement levels. From Theorem 2,

it follows that the bound ofk log2
m
k

, wherek is the number of specialist models inU andm is the

total number of specialist models, still holds when SBayes is used in a progressive transmission mode.

The following example shows that even though the bound holds, the code length produced is sometimes

different, unlike the case of the Bayesian probability allocation method.

Example 4 Let a = (0:0; 0:0; 0:0; 1:0) andb = (0:8; 0:0; 0:1; 0:1) be two probability models over the

alphabets(0; 1; 2; 3). Consider a sequence of two symbols(x0 = 3; x1 = 3). Let the class of specialists

contains1 = (a; �), s2 = (b; b) ands3 = (�; a), where� means that the specialist is abstaining. The

algorithm SBayes assigns a probability of 0.474 to the sequence. Now consider progressive transmission,

where(x0;�1 = f2; 3g; x1;�1 = f2; 3g) is transmitted first followed by the refinement(x0 = 3; x1 = 3).

Using SBayes, the probability assigned is now 0.461.

We now outline how to implement SBayes for the class of specialist rectangles for progressive trans-

mission. First we consider the one dimensional case. The coarse resolution can be transmitted using the

algorithm considered in the previous section. We will only describe one refinement level. The algorithms

for further refinements are similar.
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LetR(i) be the class of all segments that contains theith coefficient. Let

Qi
j =

X
m2R(i)

pim;j

We have for each characteru

ai;u =

PN�1
j=0 Qi

ja
j
u=a

j
u;�1PN�1

j=0 Qi
j

whereaju;�1 is the probability of the lower resolution symbol. LetM(q) be a subset ofR(q) containing

segments that ends atq and letN(q) be a subset ofR(q) containing segments that starts atq. Let

X i
j(q) =

X
m2M(q)

pim;j

and

Y i
j (q) =

X
m2N(q)

pim;j :

LetRi
j = ajxi=(a

j
xi;�1

ai;xi) andRi
j;�1 = a

j
xi;�1

=(ai;xi;�1) whereajxi;�1 andai;xi;�1 are the probabilities

for the lower resolution symbol. Then we can updateQi
j as follows

Qi+1
j = Ri

jQ
i
j �Ri

jX
i
j(i) + Y i

j (i+ 1)

We can obtainRi+1
j X i+1

j (i+ 1) recursively by

Ri+1
j X i+1

j (i+ 1) = Ri+1
j Ri+1

j;�1(R
i
jX

i
j(i) + 1):

The values forY i
j (i+1) can be calculated recursively starting fromi = n� 1, whereY n�1

j (n) = Rn�1
j;�1

and

Y i�1
j (i) = Ri�1

j;�1(Y
i
j (i+ 1) + 1):

We now consider ann � n image and specialist models associated with rectangles of widthw.

Probability for the coarse resolution can be assigned as in the previous section.

LetR(y; z) be the set of rectangles that contains the coordinate(y; z). Let

Q
(y;z)
j =

X
m2R(y;z)

p
(y;z)
m;j

be the sum of the weights of the active specialist models associated with modelj and the setR(y; z)

when the(y; z) coefficient is being processed. So we have, for each alphabetu

a(y;z);u =

PN�1
j=0 Q

(y;z)
j aju=a

j
u;�1PN�1

j=0 Q
(y;z)
j

:
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LetR(y;z)
j = ajx(y;z)=(a

j
x(y;z);�1

a(y;z);x(y;z)) andR(y;z)
j;�1 = a

j
x(y;z);�1

=(a(y;z);x(y;z);�1) whereajx(y;z);�1 and

a(y;z);x(y;z);�1 are the probabilities for the lower resolution symbol. LetM(p; q) be a subset ofR(p; q)

that has bottom right hand corner(c; d) with c � p andd = q and let

Z
(y;z)
j (p; q) =

X
m2M(p;q)

p
(y;z)
m;j :

As in the previous section, we can updateQ
(y;z)
j as follows

Q
(y;z+1)
j = R

(y;z)
j Q

(y;z)
j � R

(y;z)
j Z

(y;z)
j (y; z) + Z

(y;z)
j (y; z + w):

We now need to calculateR(y;z)
j Z

(y;z)
j (y; z)) andZ(y;z)

j (y; z + w).

The valuesR(y;z)
j Z

(y;z)
j (y; z) andZ(y;z)

j (y; z + w) can be updated in a manner similar to the one

dimensional case. We have

Z
(y+1;z)
j (y+1; z+w) = R

(y;z+w);w
j Z

(y;z+w)
j �R

(u;z+w);w
j X

(y;z+w)
j (y; z+w)+Y

(y;z+w)
j (y+1; z+w)

where

R(y+1;z+w);wX
(y+1;z+w)
j (y+1; z+w) = R

(y+1;z+w);w
j R

(y+1;z+w);w
j;�1 (R

(y;z+w);w
j X

(y;z+w)
j (y; z+w)+1)

and

Y
(y�1;z+w)
j (y; z + w) = R

(y�1;z+w);w
j;�1 (Y

(y;z+w)
j (y + 1; z + w) + 1):

Similarly,

R
(y+1;z)
j Z

(y+1;z)
j (y + 1; z) = R

(y+1;z);w
j (R

(y;z);w
j Z

(y;z)
j � R

(u;z);w
j X

(y;z)
j (y; z) + Y

(y;z)
j (y + 1; z))

where

R(y+1;z);wX
(y+1;z)
j (y + 1; z) = R

(y+1;z);w
j R

(y+1;z);w
j;�1 (R

(y;z);w
j X

(y;z)
j (y; z) + 1)

and

Y
(y�1;z)
j (y; z) = R

(y�1;z);w
j;�1 (Y

(y;z)
j (y + 1; z) + 1):

The complexity of the algorithm for progressive transmission isO(LDNn2) whereL is the number

of resolutions andD is the number of discrete widths considered.
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5 Discussion

In this paper, we have concentrated on compression algorithms that use a single scalar quantizer for

quantizing all of the transform coefficients of an image. By utilizing a more sophisticated quantizer

such as a trellis-coded quantizer [8], improved compression may be possible. This is readily done with

forward adaptation methods, for example with quadtrees and optimal pruning. We do not know how

to obtainefficientforward adaptation methods with good bounds on the redundancy for the class ofk-

rectangular tilings of an image. Such forward adaptation methods may allow the use of sophisticated

quantization methods in conjunction with this class of models.

6 Conclusions

We have introduced a class of probability models for image, thek-rectangular tilings of an image, as

a comparison class to be used for image compression. We give a sequential probability assignment

algorithm with a redundancy ofO(k log Nn
k
) relative to the class ofk-rectangular tilings of ann � n

image usingN probability models for the coefficients. The computational complexity of the algorithm

is O(Nn3). With widths of rectangles restricted to one ofD values, the computational complexity

of the algorithm reduces toO(DNn2). This gives an algorithm with a computational complexity of

O(WNn2) that is competitive against the class ofk-rectangular tilings using rectangles of widthW or

less. If the widths are of powers of 2, the computational complexity of the algorithm isO(Nn2 logn),

which is comparable to the complexity of sequential probability assignment using a quadtree. We also

show that progressive transmission is also possible with the same bound on the redundancy and similar

computational complexity.
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