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Abstract

We investigate the task of compressing an image by using different probability models for com-
pressing different regions of the image. In this task, using a larger number of regions would result in
better compression, but would also require more bits for describing the regions and the probability
models used in the regions. We discuss using quadtree methods for performing the compression.
We introduce a class of probability models for images, itkrectangular tilingsof an image, that
is formed by partitioning the image inforectangular regions and generating the coefficients within
each region by using a prohiity model selected from a finite class &f probability models. For
an image of size x n, we give a sequential probability assignment algorithm that codes the image
with a code length which is withif) (£ log £2) of the code length produced by thestprobabil-
ity model in the class. The algorithm has a computational complexity(df »®). An interesting
subclass of the class éfrectangular tilings is the class of tilings using rectangles whose widths are
powers of two. This class is far more flexible than quadtrees and yet has a sequential probability
assignment algorithm that produces a code length that is witfhrog %) of the best model in the
class with a computational complexity 6f N n? log n) (similar to the computational complexity of
sequential probability assignment using quadtrees). We also consider progressive transmission of the

coefficients of the image.
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1 Introduction

Consider the task of compressing a wavelet subband comprising: wavelet coefficients that have

been quantized using a scalar quantizer. For natural images, it is well known that the wavelet coefficients
are small in smooth areas and large in the neighbourhood of edges. Because of that, we would like
to use different probability models for coding different parts of the subband in order to obtain good
compression. We will restrict ourselves to a finite numbyeof different probability models to choose

from. For example, théV models may come from the class of Generalized Gaussian Distributions;
distributions in this class have been shown to be good models for compressing wavelet coefficients [10].

Under these conditions, the central question is how to partition the wavelet subband into different
regions, where the coefficients in each region are coded with one 6f firebability models, in order to
achieve good compression performance. A trade-off isimmediately obvious here. Increasing the number
of different regions will allow more flexibility to fit the probability models to the coefficients. However,
more regions also require a larger overhead in describing the regions and the probability neaaél in
region.

For practical compression schemes, an important additional requirement is that the computational
complexity of the method also be reasonably low. In this paper, we will discuss using quadtree methods
for performing this task. Then we will examine a new method that aims to compress as well the best
model in the class of probability models formed by partitioning the imagektiméztangular regions and
generating the coefficients within each region by using a pritibainodel from the finite class ofV
probability models. We call the class of probability models that is generated in this way the class of
k-rectangular tilingsof the image.

The class of:-rectangular tilings can be considered as a natural extension to two dimensions of the
class of piecewise-identically-distributed source for sequences studied in information theory [19, 11].
The coding methods for the class of piecewise-identically-distributed source have been applied to text
compression to obtain some of the best text compression results currently available [16]. Similar methods
have also been studied in computational learning theory [7, 17, 4]. In fact, the method described in this
paper is an extension of the specialist method in [4] to two dimensions.

In this paper, we provide a sequential probability assignment algorithm that codes the image with a
code length that is withi® (& log %) bits of the code length produced by the best model in the class of

k-rectangular tilings of the image, whetedoes not need to be known in advance. We call the algorithm



the best tilingalgorithm. The computational complexity of the algorithngN»>). If we restrict

the class of probability models to those generated using rectangular partitibhdie€trete widths, the
computational complexity can be improved®N 2 D). This means that we can have a fast algorithm

of computational complexity) (N »*W) for a probability assignment that is competitive with the best
assignment provided by the classefectangular tilings using rectangles of widths less tHanAnother
interesting class of models under the restrictiotdiscrete widths is the class éfrectangular tilings

with rectangles whose widths are powers of two. Restriction of the probability models to this class allows
us to have an algorithm with a computational complexityX4fV »? log »). This class is similar to the
class of quadtrees but is more powerful since only one dimension is restricteddg.thediscrete sizes

and arbitrary shifts are allowed.

The best tiling algorithm can also be used to provide progressive transmission of an image with the
same bound on the code length and a computational complexitylaN »*) wherel — 1 is the number
of refinement layers transmitted. Progressive transmission of an image is a property that is currently
deemed to be practically important in applications such as browsing the world wide web and providing
unequal error protection to the compressed image bitstream [13].

Many practical wavelet image compression algorithms are currently either based on trees [14, 15]
or contexts [10, 2, 20]. In tree based methods, regions in an image are associated with nodes in a tree
such that the regions associated with the children of a node partition the region associated with the parent
node. A good pruning of the tree will provide a partition of the image with a small number of regions,
where each region can be well compressed using a simple model. Some of the current wavelet image
compression methods [14, 15] use trees with regions that span more than one wavelet subband. These
trees, called zerotrees, are used in conjunction with progressive bit-plane by bit-plane transmission to
indicate whether a coefficient is larger than a certain threshold. If all the coefficients in a node are
smaller than the threshold, the children of the node can be pruned away, hence reducing the number of
regions that need to be described. Transmitting the image one bit-plane at a time allows the quality of the
image to progressively improve as more bits are received. Another advantage in progressive bit-plane
by bit-plane transmission lies in the fact that the variance of the wavelet coefficients at the same spatial
location tends to decrease as we go from a coarse subband to a fine subband along the same orientation.
By using a tree that has coarse subband coefficients located only in nodes that are near the root of the
tree, most of the nodes will be pruned away when the threshold used with the zerotree is large. The

ordering in the variance of the coefficients can thus be exploited to improve compression.



In this paper, we will only consider the simple quadtree structure, where each rectangular region is
recursively partitioned into four predefined rectangular regions. Such a simple structure is already quite
effective in practice [9]. (In fact, the results in [9] using simple quadtrees are better than the results in
Shapiro's original work [15].) We note also that the restriction of Shapiro's zerotree [15] to coefficients
from a single subband is a quadtree. The pruning of the quadtree that minimizes the total description
length can be obtained with a computational complexity)¢fi?) using dynamic programming tech-
niques. In this paper, we show how tree weighting methods [18, 6] can be used to provide sequential
probability assignment using the quadtree. The weighting method has a higher computational complex-
ity of O(n?log n). However, it can be shown to compress at least as well as (and usually better than) the
optimal pruning method if a single scalar quantizer and the same prior are used in both methods. Another
advantage of the tree weighting method, when used with a single scalar quantizer, comes from the fact
that progressive transmission obtains the same code length as that obtained by non-progressive transmis-
sion. The tree weighting method can be readily generalized from quadtrees to other tree structures.

In context based methods [10, 2, 20], the coefficients that have been already been transmitted are used
to select the current state of the encoder. A probability model associated with the state is then used to
code the coefficient. As described, the context based method is very general and covers the tiling and tree
weighting methods. One method to capture the intuition that similar coefficients tend to occur togetherin
an image is to use only transmitted coefficients in a small window around the coefficient currently being
coded to select the state of the encoder. This is done in [10], where the maximum likelihood distribution
found by using only the coefficients inside the window is used to code the coefficient. The context based
method can also exploit information from transmitted coefficients in other subbands by using them in
the mapping to the state of the encoder [2, 20]. By using clever mappings that exploit properties of the
image, coding gains can be achieved [20].

Different context based algorithms may perform well in different regions of the image. We note that
the finite set of V probability models used by the quadtree and tiling methods can contain sequential
probability assignment algorithms instead of static probability models. Hence, context based methods
can be used in conjunction with the quadtree weighting method or the best tiling method by being in-
cluded in the set oN probability models. This is analogous to the coding methods used in [16] which
switch between two coding algorithms with different properties.

The main contribution of the paper is the introduction of the class-mdctangular tilings of an

image as a useful comparison class for image compression and showing that a computationally efficient



compression method that performs almost as well as the best model in the class exists. In Section 2, we
give some definitions and describe some of the basic concepts used in this paper. The quadtree coding
methods are described in Section 3. In Section 4, we develop the probability assignment method that is

competitive with the class of k-rectangular tilings of an image and consider more restricted variants that

are computationally simpler. Progressive transmission using the method is also discussed.

2 Preliminaries

An image is a matrix of coefficients with a finite humber rows and columns. For convenience, we will
often refer to an image as a sequence of coefficients when the two dimensional characteristics of the

image is not important.

2.1 Quantization.

In vector quantization an m-dimensional vector of coefficients at time, x; =
(Ttms Ttmtts -+ o Tt 1)m—1) € R®™, is mapped to a reproduction vecton, =
(Wtms Wimt1s - -+ Upnym—1) € U, wWherel is a finite set of reproduction vectors. The mapping
from x; to u; is called avector quantizer A vector quantizer withn = 1 is called ascalar quantizer
One way to define a scalar quantizer is to use a sequence of thresholdsby < by < -+ < by < 00
and a sequence of reproduction values> < rg < r; < --- < rpr < oo. When the thresholds
bo, ..., bys are equally spaced, we call the quantizeméform quantizerIn a uniform quantizer with a
deadbandthe size of the quantization intervdls— b, _; are the same except for the interval containing
zero which is twice as large as the other intervals.

To obtain the optimal code length at a fixed distortion, it is necessary to use vector quantization.
However, the computational complexity of using vector quantization can be considerable. One method
for handling the complexity while achieving good performance is to use simple scalar quantization to-
gether with good entropy coding of the quantized coefficients. This can be shown to be within 0.255 bits
per coefficient of optimal for high rates and within 0.754 bits per coefficient of optimal at low rates (see
[5] for details). In practice, linear transforms that compact energy provide coding gain. This coding gain
can be easily exploited in the transform domain using scalar quantization. State of the art coders such
as those in [10, 2] use different scalar quantizers for different regions of the wavelet subband while the

coders in [15, 14, 20] use a single scalar quantizer with a deadband for all the coefficients.



In this paper, we will use a single scalar quantizer for all the coefficients. The range of the scalar
quantizer is a finite set of values. For simplicity, we will assume that the randé,is.,b — 1}
when the alphabet size is Let the probability assigned to a scalar quantized imggg. .., z;—1}
bep(zo,...,z:~1). Using an arithmetic coder, théeal code lengthog, 1/p(xo, ..., x;—1) can be ap-
proached very closely. Throughout this paper, ideal code lengths which can be closely approximated

using arithmetic coding will be used.

2.2 Models for Images

Let C' be a finite class of probability distributions for coefficients quantized using a scalar quantizer.
Partition the image into a number of subsets catkgyions Each regionk is assigned a probability
distribution from(’, which is then used for generating all the coefficient&inin this way,models for

imagesare generated from models for coefficients and image partitions.

2.3 Adaptation

Let I be a finite class of models forimages. We put a prior probability distribgtignon /. The class
F will serve as @enchmarkor judging how well we perform in our task of coding the image. Our aim
is to code the image in such a way that the resulting code length is close to the best that can be achieved
by using the best model iA.

Let 2! = {zo,...,7;_1} represent the image to be coded after scalar quantization with a single
quantizer. Letf,,: be a model that produces the shortest code length when used te‘cotlee ideal
code length produced b, islog, 1/p(2!| fopt). Letcs be the code length produced by the algorithm

A when itis used to code’. Theredundancyf algorithmA for codingz! with respect to the class is

ca — logy 1/p(a"] fopt)-

2.3.1 Forward Adaptation

Conceptually, the simplest method for adaptive coding is the forward adaptation method. In the for-
ward adaptation method, the modek I that minimizes théotal description lengthog, 1/p(z*|f) +
log, 1/p(f) is first found. Let the model b¢; .. The description off,

opt 1S then transmitted using

logy 1/p(f!,,) bits. This is followed by the description of the coefficients of lenigy, 1/p(z| /).

opt

Note that the modef;, is not necessarily the same g since it is the model that optimizes the total



description length and not the model that optimizes the description length of the coefficients only. From

the definition off,

logy 1/p(x'[ fip0) +10gy 1/p(fon) < 1ogy 1/p(2] fopt) + 1082 1/p(fopt)-

Hence, the redundancy of the forward adaptation method is boundegby/ p( fopt). If the uniform
prior is put onF’, the redundancy is bounded g, | F|.

2.3.2 Backward Adaptation

From the chain rule of probability, we can write

p(o, - .-, x—1) = p(xo)p(x1|20) - - plaila’) - plaeg|a'™).

This means that by coding the image sequentially using the conditional probaiility:*), we can
achieve the code lengthg, 1/p(zo, ..., z.—1). With a model clas$’ of size M and prior distribution
p(f), we have

M-1

p($07 sy xt—l) = P(fz)P(ﬂUm ce '7xt—1|fi) Z p(fcl)pt)p(x& sy xt—1|fcl)pt)'
=0

This means that backward adaptation with the conditional probability will perform at least as well as (and
most likely better than) the forward adaptation method using the same model class and prior distribution.
We call an algorithm that produceséz;|=?) for a class of model$’ and a prior distributiop(f) a
Bayesian sequential probability assignmergthod. One interesting property of the Bayesian sequential
probability assignment method is that the code length produced is invariant to the ordering of the coef-
ficients, as can be seen from the form of the chain rule of probability. Sequential updating for Bayesian
sequential probability assignment is relatively simple. We have
plede) p(x 0)20(902;(9966(()))7 - Q(C;)t 1|zt
ST p(fi)p(2o, - -y @ fi)
p(zo)p(1|xo) - - - plai—1]2'1)

_ T p()p(ro, - wiml f)p(ed fi) W
p(xo)p(zi|zo) -+ plai—i|at=1)

Assume that modelis initialized to prior probability. Leta’. = p(X = z|f;) forz =0,...,b— 1,
whereb is the alphabet size. Let = (ai, ..., a,_,) be the probability vector associated with model

The Bayesian sequential probability assignment algorithm is can now be rewritten as follows:



1. Predict with the weighted average of the predictions of the models:

a; = Z pia’.
i=0
2. Observe the outcoms.
3. Calculate the a posteriori probability:
P Pi%t
t+1 .

Backward adaptation need not be restricted to using conditional distributions derived from a function
classF' and a prior distribution orf’. Any sequential probability assignment function that produces
a conditional probability distribution(z;|2?) can be used. If the sequential probability assignment
function assigns a high probability to the image, a short code length will be produced. A good survey of

sequential probability assignment can be found in [12].

2.4 Progressive Transmission

A scalar quantizef) maps all the real-valued coefficients from an interval to one of a finite number of
values. We say that a scalar quantiggris arefinemenbf a scalar quantize); _, if for every a in
the range of;, Q' (a) C Q;'(b) for someb in the range ofy;_;. In other words, each interval
corresponding t@); is a subset of some interval corresponding)ta; .

Letz’ |, = {zo_1,..., 21,1} be atheimage produced by quantiger; andz* = {zo,...,z:_1}

be the image produced by quantiZgrwhich is a refinement of quantiz€r_,. Then

P(9007 .- -7907:—1) = P(9007 ceey L1, 20,~1y - - -7907:—1,—1)
= P(9007 .- -7$t—1|$0,—17 .- -7907:—1,—1)27(900,—17 .- -7907:—1,—1)-
This means that we can achieve the code lehgthl /p(zo, . . ., ;1) intwo steps. Firstwe quantize the

image using a coarse quantizgr; and transmit it using the Bayesian sequential probability assignment

method. Next, we quantize the image usipgwhich is a refinement af)_,, and transmit it using the

Bayesian sequential probability assignment method conditioned upon the value of the coarse version.
The Bayesian sequential probability assignment method with scalar quantization achieves the same

code length regardless of whether progressive transmission is used or not. However, it does not achieve



the optimal rate-distortiorrepresentation at each stage. That requires the rate distortion problem to be

successively refinable [3] and is unlikely to be achievable using a scalar quantizer.

3 Quadtree Methods

To specify a quadtree, we start with a rectangular image. The image is associated watht thfethe
guadtree. The image is partitioned into four subsets cadigibns In practice, the regions are usually
rectangular. These four regions are associated with four nodes that aieiltiren of the root. The
children are connected to thgiarent(the root) by edges. Each edge is labeled by a symbol from an
alphabet of four symbols. If desired, each node can be furthétipaed into four children in the same
way as the root. The process can be continued as long as each node is nonempty. Nodes that are not
partitioned further are calld@aves Nodes that are not leaves are calietbrnal nodes Each leaf can
be assigned a probability model for coefficients from a finite cldssf N probability models. The
probability model is used to code all the coefficients in the leaf. Each node can be uniquely identified
by a path from the root to the node. We call the structure defined this way a quadtree. Each quadtree
defines a set a probability models for the image wigaigh assignment of prokitity models fromC' to
the leaves of the quadtree defineguadtree modeior the image.

A templatequadtree is a quadtree that is known to both the encoder and the decqutaniig P of

a template quadtreE is a quadtree induced by replacing some internal nodéswith a leaves.

3.1 Forward Adaptation

Given a template quadtréle, we now describe how to code the description of a quadtree model from
the pruned quadtre®. Start the coding procedure with the root. If the current node is a le@f, of
transmit the description of the model associated with the leaf. If the current node is a lé&iubhot

of T', transmit the symbol zero followed by the description of the model associated with the leaf. The
additional bit is not needed if the node is a leaflotince the decoder knows that the node has to be a
leaf. If the current node is not a leaf, transmit the symbol one. Then recursively code the four children
in a fixed order using the procedure just described. Using this coding procedure, each quadtree model is
assigned a description from a prefix code. The procedure also assigns a prior probability distribution to
the class of quadtree models formed from all possible pruningsarid assignments of models to the

leaves of the prunings. The prior probability assigned to a model with a code leisgth'.



We now describe a simple dynamic programming algorithm for finding the pruned quadtree model
that minimizes the total description length of transmitting the image. Start the rautimeby using
the root as a parameter. If the current node is a leaf, the routine returns the minimum total description
length of coding the node as tlgestof the node. If the current node is an internal nodeynecalls
itself four times with the four children as the parameters. It then compares the following two sums: the
minimum total description length of coding the node plus one and the sum of the costs of all its children.
If the former is smaller, the children of the nodes are pruned away and the former becomes the cost of
the node. Otherwise, the children are retained and the latter becomes the cost of the node. One bit is kept
at the node to indicate whether or not the children are pruned away. The routine then returns the cost of
the node.

The number of leaves in the template quadtree is at mo&r ann by » image. Hence, the total
number of nodes is at most?/3. This means that the computational complexity of the algorithm is
O(Nn?).

3.2 Backward Adaptation

We want to calculate(zo, ..., z,-1) = Zf\ialp(fi)p(avo, ..., z¢—1| f;) using the Bayesian sequential
probability assignment method. THé models in the class include the models from all prunings of
the template tree. The prior probability is the probability assigned by the coding process described in
Section 3.1. Sincé/ is very large, the direct method of performing the Bayesian sequential probability
assignment method described in Section 2.3.2 is highly inefficient.

The tree weighting algorithm used here is a variant of the weighting algorithms presented in [6, 18].
The algorithm uses the whole template tfEe The models in each node ardtialized to the prior
distribution onC'. At timet, the coefficient traces a path from the root to the leaf; hence we cttigrar
the nodes iff" into those that are on the path and those that are not on the path. hesthe probability
vector produced by the algorithm for coding the coefficient at tired leta’ = (ao, ..., a,_;) be the
probability vector associated with model e C with an alphabet of size. We can rewrite equation (1)

as follows
N .
a = Z thotal(r’«7')5“7
=1

wherer is the root ofl". The functionW{otal(u, Jj) is the sum of the weights of all the models generated

by all possible prunings of the subtreebfrooted atu that havec; as the path leaves. This function is

10



calculated by

anodel(“’j) path leaf
Wi, (u7 ]) =
total LW ogef: ) u path internal node
+3W{otal($: ) echildren ofuvzs Whogd®?)  Path node child of:

where the the function’(, ) 4o(u. j) andW{  qd ) are updated by

Winodel® /) off path
t+1 o
Winodel® 1) =
WFT]Odel(u7j)a£’t/at,xt on path
and
Whodd®) off path

% Zé\f:l Wm'édeﬁu,j) + % [T, cchildren ofu Wlfl-l(—)lde(v) path internal node

All the calculations happen only along the path of the coefficient and hence the computational com-
plexity for each coefficient is proportional to the length of the path. If each nodetitiqgraed into four
(approximately) equal sized children, the height of the tre@(i®gn). Hence the total computational
complexity isO(n? log n).

We now prove that the weights given by the algorithm are correct.

Theorem 1

N M-1
_ t o g pU)p(os - e fi)p(@dl £)
a; = ]Z:; Wtotal(’}])a] = p(x0)p(z1]20) - - plai_y|zt=1)

wherer is the root of!".

Proof. If T consist of a single node, the result follows from Section 2.3.2. We now show%%l(u, 7)
is calculated correctly for nodewhenw has children.
Note that the description length of a model can be decomposed into the sum of the description length

of the tree structure and the description lengths of all the models at the leaves. Denote the description

11



length of a tree” as| P|. Let the description length of a modgbe|P|+ L ;. Hence the prior probability
of fis2-IPI=Ls. The posterior probability of is 2~ Flw(f) where

2~ Lip(zol Np(a1lf) - pri-a| f)

YU = etz - pleralet1)

(2)

assuming that the coefficients are independent gjeAny pruning P of the subtred’, rooted atu
contains either only the nodeor can be decomposed into four subtrégsP;, P, P; rooted at the four
children ofu. From the way the description length is constructed, we h&ye= 1 + |Fy| + |P1| +

| P,| + | P3). Let f7* be the functiory restricted to the subset associated with The description length
Ly can be written ad, ;r, + L, + L;r, + L;r,. We can also rewrite equation (2) as

wif)= I 270wt

i'€{0,1,2,3}

wherew(fpi) =11 plEmll) for all x,, that lie in the subset associated with Note that only one of

™ p(@m|z™)

the four children is on the path of the coefficient. Without loss of generality, let that particular subtree be

F.

If u does not have childremly o (u, j) = Wi, geft 1) Hence we have

1 . _ —1 1 .
Wiotal(®: ) = 27 Winogel: J) +

SO Y Y o GHRMERREED ] o7 (P

Fo,ffo P ff1 Py, fP2 Py fFa i'€{0,1,2,3}

1 : 1 _1P, o=l P, ,
= §anode|(“v«7)+§ 11 ST ol R (f P
i'€{0,1,2,3} p, s it

where the functiong’™® that are assigned are restricted so that all leaves in the path of the current
coefficient are restricted to have the modiel
Thetermy_p, ;r, 2717 27 1P () is justV{ (v, j) wherev is the root ofF%). The other terms
are denotedﬂ/ﬁode(v), where they takes on the value of the roots Bf, /% and’;. The calculation of
. . , s . - . .
Whoddv) is the same as the calculationidf .- (v, j), except that no restriction tg is done since all

the nodes are not in the path of the current coefficient.

Progressive transmission is done the same way as non-progressive transmission, except that during
the refinement stagep(z; ;|c, z+,-1) is used in place of(z;|c) for ¢ € C'.
The template quadtree provide$n?) rectangles which are in fixed positions. Because the rectangles

are in fixed positions, the performance of any algorithm based on the quadtree is sensitive to shifts in the

12



underlying regions of the image. Regions that are poorly placed with respect to the quadtree can only be
well described using a pruned quadtree with many leaves. Consequently the overhead cost for describing
such regions will be higher. This motivates the use of the clagsrettangular tilings of the image to

be described next.

4 Rectangular tiling of an image

In this paper, we introduce a class of probability model for images:4thectangular tilingsof an
image. This class is formed by partitioning the image ihtoectangular regions and generating the
coefficients within each region by using a probi&model from a finite clas€’ of probability models
for coefficients.

We first consider the redundancy of the Bayesian sequential probability assignment on this class.
Since there are? pixels in the image, there ar€ + n*(n — 1) + (n?(n? — 1)/2 — n*(n — 1))/2 =
n? + n?(n —1)/2 + n?(n® — 1) /4 distinct rectangular regions; the first tern¥, counts the number of
rectangles that contain a single coefficient; the second tettm,— 1), counts the number of rectangles
that have either a single row or a single column; the third tér(n? — 1)/2 — n?(n — 1))/2, counts
the number of rectangles that have more than one row and more than one column. Each region can
be assigned one of th& probability models inC'. If there arek regions in the image, the number
of probability models in the class is upper bounded¥»**. Assuming a uniform prior is used, the
Bayesian sequential probability assignment method gives a redundancy of atlmgsv + 4% log, n.

Unfortunately, unless some special structure is exploited, the Bayesian probability assignment
method suffers from computational intractability when the number of models is large. It is easy to
see that even if we fix the structure of the tiling, there Aredifferent models in the class, each of which
needs to be updated each time a coefficient is encoded.

The tree weighting method described in Section 3 exploits the tree structure to perform sequential
Bayesian probability assignment in a computationally efficient manner. When the data forms a sequence,
and not an image, computationally efficient methods also exist for performing Bayesian weighting on
models formed by segmenting the sequence into segments and using a different probability model to
generate the coefficients in each segment [7, 17]. The simpler versions of these algorithms can be con-
sidered as certain Hidden Markov models that switch from the current model to another model with a

certain probability.
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Unfortunately, we have not been able to extend the methods in [7, 17] from segmentation of a se-
guence to tiling of a plane. The lack of causality in two dimensions appears to be the main difficulty in
finding computationally efficient Hidden Markov type models. Instead, we will use a sequential probabil-
ity assignment method called SBayes (Bayes for specialists) by Freund, Schapire, Singer and Warmuth
[4]. SBayes is an adaptation of the Bayes method for models that are allowed to abstain. SBayes is
no longer strictly a Bayesian method but it retains some useful properties similar to that of Bayesian

methods on redundancy while at the same time providing some attractive computational properties.

4.1 Specialist Bayes

Thespecialist frameworkvas first proposed by Blum [1], as an extension of the online prediction by ex-
perts framework commonly studied in computational learning theory. In the online prediction by experts
framework, the cumulative loss of an online prediction algorithm is compared against the cumulative
loss of the best predictor in a class of predictors (experts). In this framework, the Bayesian sequential
probability allocation algorithm can be shown to have a redundan®ylo V) relative to a class oV

experts when the log loss is used. Similar bounds can also be given for related algorithms for other loss
functions such as the absolute loss and the squared loss.

In the specialist framework, the experts are allowed to abstain and are called specialists in analogy to
human specialists who make predictions only when the instance to be predicted falls within their area of
specialty. In this paper, we will call a specialist that predicts using a fixed probability model and abstains
outside its region of expertise specialist modelWhenever a specialist model is not abstaining we say
that it isactiveand we call the region where the specialist is activeeison of activity We call a subset
of specialists whose regions of activity partition the sequence of symbastanded modelFor an
extended model, there is always only one model that will make a prediction for every member of the
sequence. As such, the extended model forms a probability model for sequences (or for images if the
sequence consist of all the coefficients in an image). In this paper, we assume that a subset of specialists
can always be found to form at least one extended model. This avoids the problem of having instances
on which all specialist models abstain. By careful construction of the class of specialist models, we can
always ensure that this assumption is satisfied.

For this paper, we will assume a finite $evf specialists and an alphabet of skz& he aim of our al-
gorithm s to sequentially assign a probability mass functiGn ) a(z1|zo) - - -a(x;|z?) - - -a(w;_q |2 1)

to a sequence of symbals, . . ., z;_;. At iterationi, the algorithm needs to produeér;|='). We per-
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form our analysis in a deterministic setting, where the target symbchn be chosen by an adversary
with knowledge of the probability assignment algorithm we are using and the assignments that we have
made up to and including time The output:(-|z*) of a sequential probability assignment algorithmis a
probability vectora; = (a; 0, . .., a;5—1). The algorithm suffers a loss afg, 1/, ,, when the outcome
is z; at iteration:. The cumulative sum of the losses of algorithm is the code length assigned by the
algorithm to the sequence>"'Z] log, a(z;|z%).

Let I’ be a set of extended models that are formed from the the class of specialist rfiod&ks
would like to bound the redundancy of the algorithm relative to the dtass

In the SBayes algorithm, each specialist model is given a weight that summarizes the contributions
of the specialist model so far. These weights play the same role as the a posteriori probability of a
model in the normal Bayesian algorithm. Initially, the weights of the specialist models are initialized to
a “prior” probability distributionpg = (p3, . . .,p?‘l), which is usually the uniform distribution. At
each iteration, the set of active specialist modelss treated as if it were the complete set of models.
On receiving theth symbol, only the weights of active specialist models are updated while the weight
of the abstaining specialist models are untouched. Assume that the specialistjnmdpltsa’ =
(aé,...,ai_l) and the algorithm SBayes output(s-|xi) = a, = (a;0,...,a;5—1) at time¢. The

algorithm SBayes [4] is given below:

1. Predict with the weighted average of predictions of the active specialist models:
o Y ek, Pfaj
ZjeEi Pf

2. Observe the outcome.

3. Calculate the new weight:

pal .
: =2 if j e I
7 _ Ag,2;
Piy1 = . )
p! otherwise

Observe the similarity between SBayes and the Bayesian sequential probability assignment algorithm
described in Section 2.3.2. The following result from Freund, et al. [4] bounds the performance of
SBayes, with respect to a class of extended models. (The result given by Freund, et al. [4] is actually
slightly more general than the result given below.) We say that a probability veetofu®, . .., «™ 1)

over the set of specialistsof sizem is associated with an extended mod#eWwith |U| = £ if and only
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if u' = 1/k whenever specialistis in the set/ andu’ = 0 whenever specialistis not inl/. For two

probability vectorsu andv, the relative entropyRE (u||v) is 3, u' log, (u'/v?).

Theorem 2 Let u be a probabilityvector associated with an arbitrary extended modedh a class of
specialist model$. Leta(-|2*) be the output at timgof SBayes which sequentially allocates probability
mass using the class Then

t—1

—Zlogza zifa’) = (=) logy p(xile', U)) = [U|(RE(ul[po) — RE(ul|pt)),

=0
wherep; is the probabilityvector over the set of specialist mod#élst time:. If |[U| = £, |S| = m and
Po is the uniform distribution, then

t—1

- 1 i 1 ; <kl
zogzaw (= 3 log, plele. U)) < klog,

=0

Proof. First we note that ip; is a probability vector, thep, 1, is still a probability vector after an update

using SBayes. We calculate

m J
. 5
E(ullpi) - RE(u||piy1) = Zu] log, —“

= Z u’ log2

JEE; p;
1 pz—l—l
] 752
B —log2a<wi|wf> ) (—1og2p<wi|xw>)
U] U]

wherey; is the index of the active specialistinat time:.
Summing the equality from= 0 to¢ — 1 gives the first result. The second follows from the fact that

relative entropy is always nonnegative.

The result shows that the algorithm SBayes provides a probability assignment with a redundancy of
no more thark log, 7+ relative to the class of extended models that contain no moreftispecialist
models whenn is the size of the class of specialist models. Note that the bound holds folesk than
or equal tom for which an extended model exists.

One useful property of Bayesian sequential probability assignment using a class of extended models

is that if we permute the order in which the symbols are processed, the final probability assignment is
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still the same. The following example shows that this property is not always retained by the SBayes

method.

Example 3 Consider a sequence of three symhbals = 1,2, = 1,2z, = 1) over the alphabet§0, 1}.
Let the class of specialists bg = (0.2, %, %), s1 = (*,0.2,0.2), s3 = (0.8, %, %), s3 = (*,0.8,0.8),
sy = (0.2,0.2,%), 55 = (*,%,0.2), s¢ = (0.8,0.8, %) ands; = (x, , 0.8) where each number represent
the probability that the corresponding symboliand '«x' denotes that the specialist model is abstaining.
If the symbols are processed in the ordgr z-, x4, the probability assigned would be 0.170. However,

it the symbols are processed in the ordgr « 1, x2, the probability assigned is 0.172.

The example also shows that in this case, SBayes is not the Bayesian probability assignment method

operating on some extended model class.

4.2 Tiling with Rectangles

Using SBayes, we will be able to obtain a probability assignment that is close to the probability assign-
ment provided by the best model in classkafectangular tilings of the image for arbitraky For an

n x n image, the number of possible distinct tilegén*). If we haveN probability models, then the

total number of specialist models@ N n*). This gives a redundancy 6f(k log &) when compared
against the class containigr fewer tiles.

A simple algorithm that goes through each specialist model for every coefficient of the image will
require a computational complexity 6 N »°) for assigning probability to the image. We would like to
reduce the computational complexity by using careful recursive updating.

We first review the one dimensional case that was examined in [4]. (In [4], the more general case
of unknown sequence length is considered. Here, we consider the case where the sequenge length
is known in order to generalize the result to tiling of images.) For a sequence of lengtere are
n(n 4+ 1)/2 possible segments givingn(n + 1)/2 specialist models. Lef(¢y,¢2, j) be the specialist
associated with model € C' thatis active in the intervdd, , ¢;]. Assume that initially, they are all given
equal weights which can be set to 1 because of the normalization that is performed at each iteration. Let

pihtm be the weight of specialist(t,, ¢, j) at time:. Then the prediction of the algorithm at timés

a— Z Ztl OZtQ =z pt17t27]a]
— Y

Z Ztl OZtQ =1 pt17t27]
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wherea’ is the vector of prediction of the mode]. Letting

7

n—1
T 7 )
Q] - Z Z Pty 12,5

t1=0ty=1

we can rewrite the sum as NI

Zj:o Q}a]
N-1 i °

2i=o @

On observing the outcome, the weight of an active specialiStt, 2, j) is updated by multiplication

a; =

with R% = aJ. /a; »,. We can then write

7 : n—1 -1 7

Q= =N N I #=m-0Y I &

t1=0ty=1 t1=01y=1 s=1 11 =0 s5=%;
UpdatingQ’;, we obtain
i+1 n-—1 7
+1 s
Q= > > 1B
t1=0ty=1+1 s5=t1

K3

n—1 7
Y S Mmoo

t1=0ty=1+1 s5=t1

- 3 (gRéﬁRi—RéﬁRi) prmio
t1=0 \ty=1 s=t1 s=t1
. . . i i1
= @ -m Y JI#+n-i-
t1=0 s=t1
The first term updates all the current specialists. The second term subtracts all the specialist models that
will no longer be active at timé-+ 1 while the third term adds the new specialist that will become active
at time: 4 1. This can be further simplified to
Qf'=(mn-i-1) (%H).
We now consider the case of tiling anx n image with rectangles of arbitrary height but one
fixed widthw. We assume that the coefficients are processed in a raster scan order. The origin is at
the top left hand corner of the image and the coordinates increase in the direction of the scan. Let
S((a,b), (¢, d), j) be the specialist model associated with magethat is active in the rectangle with
top left hand cornefa, b) and bottom right hand cornér, d). For simplicity, we associate specialist

models with all rectangles with width that intersect the image even though part of the rectangle may
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be outside the image. All the specialist models are given equal weights initially2 ltet:) be the set
of rectangles that contains the coordin@gtez). Let
o= ¥k
meR(y,z)
be the sum of the weights of the active specialist models associated with ghaddlthe sef?(y, =)
when the(y, =) coefficient is being processed. So we have
Eih' el
a(l/vz) = N-1 ~(y:2)
>

J=0 %

Let ng’z) =al )/a(wm(w). Let M (p, q) be a subset oRk(p, q) that has bottom right hand corner

(y,2

(¢, d) with ¢ > p andd = ¢ and let

2w = Y .
meM (p,q)

Then we can upda@ﬁy’z) as follows
QU = RAQUa) _ plos) yus) () oy 4 70 (2 4w,

We now need to calculatﬁgy’z)Z](y’Z) (y,2) andZ](y’Z) (y, 2z + w).

Let ng’z)’w =Ilic_ups ng’s). Then we can derive (c.f. the one dimensional case)
Rl lztw) Zly=1z4w) (y— 1,2+ w)
AL — J j ' 1l
7 (yvz—l_w)) (n y) ( (n_y_|_1) +

We also have

(y—1,2) »(y—1,2)
R Z -1,
R(y,z)Z(y,z) (y7 Z)) _ (n . y)R(}/,Z),w ( J J (y) Z) + 1) ‘

J J J (n—y+1
Finally,
R if =0
R;y’z_l)’ngy’Z) if z<w
(y,z),w — R(y z)
&, R;y’z_l)’w oy fw<z<n-1
R i)
R(y,z—l),w J
nx Ty ifz>n-1

ng, )

The initial conditions needed a@go’o) = nw and

w—1 R(y_lvk)Z(y_lvk) (y —1 k)
(v,0) — . 7 J )
Q; Z(n y)( =y 1) +1].
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With D distinct widths, we only have to ruby distinct copies of the algorithm and sum the values
of ng’z) for each copy. A minor complication arises at the boundaries of tteordinate since multiple
rectangles of different widths that go beyond the boundaries are in fact equivalent. One simple method
of getting around this is to maodify the algorithm for all values of widthsther than the largest width
in such a way tha‘R;y’Z)Z](y’Z)(y7 z) = 0forz < w, Z](«y’z)(y7 z4+w)=0forz >n—w-—1and
QWY =o.

If we allow all possible widths, the complexity of the algorithm($/N»*). The performance of
the algorithm is then competitive against the clasg:-@éctangular tilings of the image for arbitrary
k. Restricting the widths to be no more th#n gives a complexity ofD(NWn?) and an algorithm
that is competitive against the class/ofectangular tilings using rectangles with widths no more than
W. Restricting the widths to powers of 2, gives a complexity)¢fVr* log n) and an algorithm that is

competitive against the class bfrectangular tilings using rectangles with widths of powers of 2.

4.3 Progressive Transmission

Performance of an extended model remains unchanged if progressive transmission is used, provided
that the correct conditional probability distribution is used for the refinement levels. From Theorem 2,

it follows that the bound of: log, 5+, wherek is the number of specialist models én andm is the

total number of specialist models, still holds when SBayes is used in a progressive transmission mode.
The following example shows that even though the bound holds, the code length produced is sometimes

different, unlike the case of the Bayesian probability allocation method.

Example 4 Leta = (0.0,0.0,0.0,1.0) andb = (0.8,0.0,0.1,0.1) be two probability models over the
alphabetq0, 1, 2, 3). Consider a sequence of two symbjals = 3, z; = 3). Let the class of specialists
contains; = (a,*), s; = (b,b) andss = (x, ), wherex means that the specialist is abstaining. The
algorithm SBayes assigns a probability of 0.474 to the sequence. Now consider progressive transmission,
where(zo—1 = {2,3}, 21,1 = {2, 3}) is transmitted first followed by the refineme¢ng = 3, z; = 3).

Using SBayes, the probability assigned is now 0.461.

We now outline how to implement SBayes for the class of specialist rectangles for progressive trans-
mission. First we consider the one dimensional case. The coarse resolution can be transmitted using the
algorithm considered in the previous section. We will only describe one refinement level. The algorithms

for further refinements are similar.
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Let R(7) be the class of all segments that containsitheoefficient. Let
> Pl
meR(7)

We have for each character Nt i
- J
Ym0 Qjal/ay
N—1
2 j—o U]

wherea{;’_1 is the probability of the lower resolution symbol. Let(¢) be a subset of2(¢) containing

oy =

segments that ends @aind letN (¢) be a subset of?(¢) containing segments that startsjat et
= 2 Pm,]
meM (q

and

= > Py

mEN(
Let R = af, /( L _10iz,)andR: | = a%_l/(ai%_l) Whereaih_1 anda; ., _; are the probabilities

for the lower resolution symbol. Then we can upd@@eas follows
We can obtairfz/*' X ' (i + 1) recursively by

REPX i+ 1) = RITRIT (RUXE(E) + 1),

7,—1

The values foﬁ/j(i + 1) can be calculated recursively starting from n — 1, whereYj”‘l( n) = R;_ll
and
Y70 = REAY 4+ 1) + 1),
We now consider am x n image and specialist models associated with rectangles of width
Probability for the coarse resolution can be assigned as in the previous section.
Let R(y, z) be the set of rectangles that contains the coordifiate). Let
(v,2) _ (v,2)
Q=D puy
meR(y,z)
be the sum of the weights of the active specialist models associated with ghaddlthe sef?(y, =)
when the(y, =) coefficient is being processed. So we have, for each alphabet
S QY Yag/al
poniny 5 )

a/(y7z)7u
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Lethy’Z) :aé(w)/(aj | —10(y,2) )andR( ) = g a1/ ag _l)wherea

l’(y,z ) 71’(2/ z)

(g1 and

A(y,2) 00, ,—1 Ar€ the probabilities for the lower resolutlon symbol. M(p, q) be a subset of2(p, ¢)

that has bottom right hand corner, d) with ¢ > p andd = ¢ and let

29 pgy= Y P,

meM (p,q)

As in the previous section, we can upd@t%’z) as follows

QWY = RwAQWw) _ g 702y oy 4 207 (y, 2 4 w).

J J J J J

We now need to calculatE(y’Z) ( Iy, 2)) andZ](y’Z) (y, 2 + w).
The valuesR(y’ ?) ( )(y z) and Z(y’ )(y, z + w) can be updated in a manner similar to the one

dimensional case. We have

2V (g1, 2 fw) = RGO gloste) _ glustw x et () 1y ) (y 11, 2 w)

J

where

R(y+17z+w)7wX](y+1,z+w) (y—I-L z—l—w) _ R;y-l—l,z-l—w),wR;yj-ll ztw), w(ng,Z+w),wX](y,Z+w) (y7 z—l—w)—l—l)

and
vy ) g ) = RUTEF ey @t (4 ) 4 1),

J J,—1 J

Similarly,

R(y+1,z)Z](y+1,z) (y + 17 Z) _ R;y-l—l,z),w (R(y,z),wZ(y,z) _ R(u,z),wX](y,Z) (y7 Z) + )/}(yz) (y + 17 Z))

J J J J

where

Rl x WL (4 oy = RlvtbA b glud Lo gloshw (w2 oy 4 )

7,1 J
and
YTy, ) = RES I 1,2+ ).
The complexity of the algorithm for progressive transmissiai (g D Nn?) wherel is the number

of resolutions and) is the number of discrete widths considered.
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5 Discussion

In this paper, we have concentrated on compression algorithms that use a single scalar quantizer for
quantizing all of the transform coefficients of an image. By utilizing a more sophisticated quantizer
such as a trellis-coded quantizer [8], improved compression may be possible. This is readily done with
forward adaptation methods, for example with quadtrees and optimal pruning. We do not know how
to obtainefficientforward adaptation methods with good bounds on the redundancy for the class of
rectangular tilings of an image. Such forward adaptation methods may allow the use of sophisticated

guantization methods in conjunction with this class of models.

6 Conclusions

We have introduced a class of probability models for image itihectangular tilings of an image, as

a comparison class to be used for image compression. We give a sequential probability assignment
algorithm with a redundancy @ (% log %) relative to the class of-rectangular tilings of am x n

image usingV probability models for the coefficients. The computational complexity of the algorithm

is O(Nnr?). With widths of rectangles restricted to one bfvalues, the computational complexity

of the algorithm reduces t0(DNn?). This gives an algorithm with a computational complexity of

O(W Nn?) that is competitive against the classkoefectangular tilings using rectangles of wid#h or

less. If the widths are of powers of 2, the computational complexity of the algoritingAsn? log n),

which is comparable to the complexity of sequential probability assignment using a quadtree. We also
show that progressive transmission is also possible with the same bound on the redundancy and similar

computational complexity.

7 Acknowledgment

The author would like to thank Phil Long for helpful discussions. The author would also like to thank

the anonymous reviewers whose comments helped to improve the presentation of the paper.

References

[1] Avrim Blum. Empirical support for winnow and weighted-majority based algorithms: results on a

23



calendar scheduling domaiMachine Learning26:5-23, 1997.

[2] C. Chrysafis and A. Ortega. Efficient context-based lossy wavelet image codifgodnof Data
Compression Conferenc8nowbird, Utah, 1997.

[3] W. Equitz and T. Cover. Successive refinement of informatl&EE Transactions on Information
Theory 37(2):269-275, March 1991.

[4] Yoav Freund, Robert E. Schapire, Yoram Singer, and Manfred Warmuth. Using and combining
predictors that specialize. IRroceedings of the Twenty-Ninth Annual ACM Symposium on the

Theory of Computingel Paso, Texas, 1997.
[5] Robert M. Gray.Source Coding TheorKluwer Academic Publishers, 1990.

[6] David P. Helmbold and Robert E. Schapire. Predicting nearly as well as the best pruning of a

decision treeMachine Learning27(1):51-68, 1997.
[7] M. Herbster and M. Warmuth. Tracking the best expdtaichine Learning32(2), August 1998.

[8] R. L. Joshi, H. Jafarkhani, J. H. Kasner, T. R. Fischer, N. Farvardin, M. W. Marcellin, and R. H.
Bamberger. Comparison of different methods of classification in subband coding of inagés.

Transactions on Image Processijrtgl473-1486, November 1997.

[9] Wee Sun Lee. Trees, windows and tiles for wavelet image compressiobBatin Compression

ConferenceSnowbird, Utah, 2000.

[10] S. M. LoPresto, K. Ramchandran, and M. T. Orchard. Image coding based on mixture modelling
of wavelet coefficients and a fast estimation-quantization frameworlRrdceedings of the Data

Compression Conferenggages 221-230, Snowbird, Utah, 1997.

[11] N. Merhav. On the minimum description length principle for sources with piecewise constant

parameterslEEE Transactions on Information The39(6):1962-1967, November 1993.

[12] N. Merhav and M. Feder. Universal predictionEEE Transactions on Information Theory
44(6):2124-2147, October 1999.

[13] ISO/IEC JTC/SC29/WG1 N1385. JPEG2000 requirements and profiles version 6.0, July 1999.

24



[14] A. Said and W.A. Pearlman. A new, fast, and efficient image codec based on set partitioning in

hierarchical treeslEEE Trans. on Circuit and Systems for Video Technal6¢y):243—-249, 1996.

[15] Jerome M. Shapiro. Embedded image coding using zerotrees of wavelet coeffiltt&iEsTrans-

actions on Signal Processingl1(12):3445-3462, December 1993.

[16] Paul A.J. Volfand Frans M. J. Willems. Switching between two universal source coding algorithms.

In Data Compression Conferengeages 491-500, Snowbird Utah, 1998.

[17] V. Vovk. Derandomizing stochastic prediction strategies. Pmceedings of the Tenth Annual

Conference on Computational Learning Theggges 32—43, Nashville, Tennessee, 1997.

[18] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalken. The context-tree weighting method: Basic
properties|EEE Trans. on Information Theoy$1(3):653-664, May 1995.

[19] Frans M. J. Willems. Coding for a binary independent piecewise-identically-distributed source.

IEEE Transactions on Information Theg#2(6):2210-2217, November 1996.

[20] Xiaolin Wu. Context quantization with Fisher discriminant for adaptive embedded wavelet image

coding. InProceedings Data Compression Conferemuages 102—-111, Snowbird, Utah, 1999.

25



