
 1

ABSTRACT
Delivering web pages to mobile phones or personal digital
assistants has become possible with the latest wireless
technology. However, mobile devices have very small screen
sizes and memory capacities. Converting web pages for delivery
to a mobile device is an exciting new problem. In this paper, we
propose to use a ranking algorithm similar to Google’s PageRank
algorithm to rank the content objects within a web page. This
allows the extraction of only important parts of web pages for
delivery to mobile devices. Experiments show that the new
method is effective. In experiments on pages from randomly
selected websites, the system needed to extract and deliver only
35.4% of the objects in a web page in order to provide 91% of a
viewer’s desired viewing content. This provides significant
savings in the wireless traffic and downloading time while
providing a satisfactory reading experience on the mobile device.

Keywords
PDA (Personal Digital Assistant), HTML,
WWW (World Wide Web)

1. INTRODUCTION
Web content is currently designed for the desktop personal
computer (PC) with a big monitor and rich memory
resources. PC users can use a convenient input device such
as a mouse to retrieve any web page from any website.
Downloading time is rarely a problem as the PCs are
usually connected to the internet through high capacity
lines and the large screen allows many irrelevant objects
such as advertisements to be placed on the screen without
overly distracting the user.

In the past five years, many mobile devices with medium
and small sized screen and limited memory have appeared.
For example, it is now possible to browse the web using
personal digital assistants (PDA) such as the Palm or
Pocket PC. The mobile phone, which is currently the most
popular mobile device, has many features that make
browsing the internet possible. However, these devices are
not ideal platforms for surfing the web. First, the wireless
bandwidth is quite limited and very expensive. Secondly,
the screen size varies and can be very small, for example
120*90. Third, some devices, such as mobile phones, have
very limited memory capability. Normally, the content of a

single web page will be larger than what a mobile phone
can hold.

Researchers have spent a lot effort in solving the problem
of enabling such devices to view the web content in a
satisfactory manner. Some of the solutions work in the
push model, like [16], where the selected content is pushed
to the PDA through a synchronization process. Others use
pull model, like Opera browser, where the content is
extracted and optimized. Normally, these methods display
the whole web page. The disadvantage of this approach is
the long downloading time when bandwidth is limited and
the large amount of scrolling required in order to get to the
relevant parts of the web page.

This paper presents a system that provides automatic
conversion of web content into a form that is optimized for
mobile devices. Our approach is to extract and present only
the important parts of the web page for delivery to the
mobile device. Such a method saves not only download
time but also the time spent scrolling on the small screen
devices. Errors in extraction by the system can be corrected
by allowing the user to request the whole page if they are
not satisfied with the extracted content. If the extraction
error can be kept at a minimal level, such a system will
provide a more pleasant experience for surfing the web on
a mobile device.

The basic technology behind the approach is a ranking
algorithm for elements of a web page. The idea behind the
ranking algorithm is to first represent a web page as a
graph model and then exploiting the graph structure to rank
the elements. To obtain the graph, we first divide the page
into inseparable basic elements. We assume that the user is
entering a web page from a link. Based on the type, size,
physical position shape and similarity to the anchor text of
the in-link, we give each basic element an initial rank
value. We use weighted edges to represent relationships
between two basic elements. The weights are a function of
attributes of the two elements, such as word similarity and
physical proximity of the elements within the page. This
graph representation of a web page is quite different from
the commonly used tree-based analysis of web pages. The
graph model of a single web page is made up of hundreds
of basic elements that are linked to each other in a very

Optimization of web page for mobile devices

Xinyi Yin Wee Sun Lee
Department of Computer Science
National University of Singapore,

Singapore 117543.
yinxinyi@comp.nus.edu.sg

 Department of Computer Science and
Singapore-MIT Alliance,

National University of Singapore,
Singapore 117543.

leews@comp.nus.edu.sg

 2

complex manner. Such structure is similar to the whole
Internet, which is also made up of many interrelated web
pages

The most successful ranking algorithm for web pages is a
random walk model used by the Google search engine. The
web is treated as a graph on which surfers move randomly
from page to page according to the links on the page. The
ranking of the web page is then the expected number of
surfers visiting the page at any time. The manner in which
a person reads a web page is similar to how a surfer surfs
the web. The reader enters the page through a link and is
drawn to elements that are related to the anchor text in the
link and are located in central positions on the page. After
reading an element, the reader moves on to a highly related
element. By modeling the strength of connections between
elements according to their similarity, we are using a
simplified model of the movement of the readers’ attention
on the web page. We then rank the elements according to
the expected number of readers reading the particular
element at any time. Based on the rankings, we select a
rectangle covering all the important elements of the web
page and transmit the content of the rectangle.

The contributions of this paper include a new approach for
enabling pleasant surfing experience on mobile devices
and a new model for processing HTML document. Rather
than the traditional tree model, we convert the HTML
document into a graph which allows us to use Google’s
successful PageRank approach for finding important
elements in the document.

We organize the paper in the following way. In section 2,
we give an overview of the system. In section 3, we will
give the design of the system. In section 4 we will discuss
the dataset, and describe the evaluation of the system.
Section 5 is about related works. In section 6, we will give
our conclusion and the direction for future research.

2. CONVERTING A WEB PAGE INTO A
GRAPH
2.1 Basic Elements
To construct a graph from a web page, we first identify the
nodes, which are the basic elements in the web page. Then
we specify the edges of the graph which encode the
relationships between pairs of basic elements.

Researchers have proposed different methods to divide an
HTML page into logic blocks. For example, [5] proposed a
visual based method to analyze the structure of a web page,
and [2] provides a method to automatically understand the
semantic structure of HTML pages based on detecting
visual similarities of content objects. In our system we are
trying to find all the inseparable visible elements in an
HTML page. We use the DOM interface provided by web

browser. From bottom up we identify nodes by two simple
rules:
1. Image, link, text paragraph, and other visible object will

be a basic element if their parent node doesn’t contain
another child that is overlapping with it.

2. For overlapping objects, the minimal container of the
two objects will be a potential element to be checked by
the rule 1. If one object contains the other, the bigger
object will be chosen. Otherwise we will seek from
bottom up to check their nearest common container.

For example, a web page contains a list of links. The links
are not overlapping with each other. Each of them will be
treated as basic element. In another web page, a text
paragraph has a name which is a link. Here we have two
overlapping objects, the bigger one, text paragraph, will be
chosen to checked by rule 1, if the text paragraph is not
overlapping other element at a higher level, it will be
chosen, other wise we will recursively search upward.

As shown below. Our algorithm will convert original web
page in to a list of basic elements.

Figure 1. Original HTML page

Figure 2. Decompose the original HTML page

2.2 Graph
Assume that we have N basic elements. We will build a
graph such that the sum of the weights coming out of each
node is 1. This allows us to use the weight on the edge as
the probability of a reader going to the next element along
that edge.

We first introduce an additional node S which can be
considered as source of visitors to the web page. This node
also serves as the sink where readers who stop reading at
any particular element will go to.

 3

Based on the features of a basic element, we will connect it
to the source S with a weight that represents its
contribution to the topic of a web page. We take the
following features into consideration:

1. Size (Ps): Element with bigger size is more important

than a smaller one. The contribution of size to the
importance of element i can be calculated by

∑
=

=
N

j
jSizeiSizeiPs

1
)(/)()(

where size is measured by the number of pixels.
.
2. Text length (Pt): Element with longer visible text has

higher importance. The length is the number of visible
words. For example, A link with longer anchor text
will draw more attention. The contribution of text
length can be calculated by:

∑
=

=
N

j
jLengthiLengthiPt

1
)(/)()(

3. Match (Pm): Visitors from the source S will pay more
attention to the content that is similar to S. We
calculate the cosine similarity between the visible text
in the element and the anchor text of S. We also use a
stop word list including non-informative words that
are commonly used in the internet context such as
“click” “next” “more” “read” and others.

4. Width/height ratio (Pr): The shape of an element

reflects its importance. For example, for an image, the
regular image is usually more important than those
irregular one., We use the following formula to
calculate the value for images:







 <<
=

else

iHeightiWidthif
i

0

3)(/)(3.01
)Pr(

For different categories of elements we will use
different formulas. For a text block we use a formula
that favors of higher Weight/height value:







 >
=

else

iHeightiWidthif
i

5.0

4)(/)(1
)Pr(

5. Physical offset (Pp): Physical position is calculated by

pixels. It is actually a very important feature. Element

closer to the center point is more important than those
near the edge of the page. We calculate the position
information from, first, the physical distance between
the center of the element and the center of the screen,
second its horizontal offset information. Let the screen
center be (XC, YC) and the center of element i be
(Xi,Yi). Then

)(tan)()(
0

7.03.0
)(

/*2

44

)()(
1)(tan

22

22

icedisioffsetXiPp
else

offsetXifOffsetX
ioffsetX

hScreenWidtXioffsetX

YcXc

YcYiXcXi
icedis

+=







 <<
=

=

+

−+−
−=

In this formula we specially take X offset into
consideration because normally a web designer will
put the important content in the center of the screen,
and both left and right sides are for irrelevant or less
important content. However, we did not make use of
the vertical offset, as we see that important content in a
web page can be very long.

We normalize the distance with the diagonal of the
whole HTML page. All the constant value in the
formula is chosen according to an ordinary web page
layout.

The weight from the source S to node i is calculated by the
function W(S,i) where

∑
=

=
N

j
jSIiSIiSW

1
),(/),(),(and

Pp(i).*W5Pr(i)*W4
Pm(i)*W3Pt(i)*W2Ps(i)*W1i)I(S,

++
++=

The weight represents the probability that the reader’s eye
goes to each of the element as he enters the web page; it is
obvious that not all the elements are equally likely to be
viewed.

From each node i, we also set a weight W(i,S)=β, 0≤β≤1 to
indicate the probability that the person stops reading at
node i and goes back to the source node S.

 4

As described earlier, the weight of the edge between any
two basic elements is a evaluation of how likely the reader
is to continue with the second element after reading the
first. It is calculated using the following features:

1. Distance Pd(i,j): The physical distance (in pixels) of

two elements in the layout of an html page.

22

22

44

)()(
1),(

YcXc

YjYiXjXi
jiPd

+

−+−
−=

2. Horizontal offset (Ph): set as 1 if two element’s
horizontal offset is the same, otherwise 0.

3. Neighborhood (Pn): Set as 1 if two elements are
neighbors, otherwise 0.

4. Match (Pm): the cosine similarity between the visible
texts in the two elements.

5. Width (Pw): Set as 1 if two elements have the same
width, otherwise 0.

The similarity S(i,j) between distinct elements i and j is
calculated by the sum of the five features. For a node i, we
have already used up a weight of β for the link back to the
source. Of the remaining amount (1-β), we use a fraction
α as the loop back to itself to indicate that the user
continues reading on the element for a period. Hence
W(i,i)=(1-β)α. The weight from distinct nodes i to j is then
calculated as

.),(/),()1)(1(),(
1
∑
=

−−=
N

k
kiSjiSjiW αβ

2.3 Random Walk on the Graph
In previous section, we have described the algorithm to convert
any web page into graph, with the nodes representing the basic
elements, and edges representing the relationship between the
basic elements. In this way we convert an html web page in to a
structure that is similar to the whole internet.

The most successful search engine is Google, which proposed the
idea of “PageRank” to describe the importance or quality of a
single webpage. In our paper we will borrow the idea of
PageRank to calculate the importance and quality of each basic
node in a web page. PageRank can be thought of as a model of
user behavior, where a user is given a random web page and he
will follows the links until he get bored. The probability of a user
visiting a web page is proportional to the PageRank, which can be
calculated iteratively by

∑
∈

−+−=
Eij

tt iCjPRddiPR
),(

1)(/)()1()(

where PRt (i) is the PageRank of node i at time t, E is the set of
edges, C(i) is the number of links going out of page i and (1-d) is
the probability that the user will get bored and leave a certain web

page back to the source . Note that in PageRank all out links are
treated equally. In contrast, we have more information based on
the similarity between elements, hence have given different
weights to different links.

We can similarly calculate a ranking that is proportional to the
probability of a reader being at a node by using an iterative
algorithm that does the following updates

)(),()(),()(1

1

1 SRiSWjRijWiR t
N

j

tt −

=

− += ∑

and

),()(
1

1 jRSR
N

j

tt ∑
=

−= β

Where Rt(i) is the ranking of node i at time t. The value Rt(i)
converges to a value that is proportional to the probability of
being at the node (the first eigenvector of the transition matrix).

3 EXTRACTING AND OPTIMIZING
3.1 Extracting Relevant Elements.
The task of a search engine is to return the top results that match
the search query. Google achieves this by first gathering the
matched web pages and then returning them in the order of its
PageRank. However, even though we have the ranking for each
element in the web page, we can not simply return the elements to
the user by its rank. In a search engine, every individual webpage
is independent and it does not matter if one web page is returned
before or after another web page. But in our system, there are
semantic and logical relationship between the elements and the
order of relevant elements has to be returned as it appeared in the
original web page. The user will feel unhappy if he gets an article
extracted from a web page that looks nice but has the wrong
ordering of the elements.

Our design goal is return user the most relevant content, which is
those with the highest ranks, but still need to keep the original
look and feel on the mobile device. We use a simple heuristic to
retrieve complete article based on the ranking of the elements.
Select ()
{
 list.insert(topnode);
 T1=rank(topnode)/3;
 T2=average (S(topnode,j));
 while(node=list.getNext()!=NULL)
 {

d=Distance(topNode,node);
tw=(1+m*d/10)*T1;
for(each neighbor ni of node with weight(n, ni)>t)
{
 tr=(1-n*d/10)*T2;
 if(rank(ni)>tr)
 {
 list.insert(ni);

}
}

}
 }

 5

As shown in the algorithm, firstly, we sort the nodes and pick the
node with the highest rank. Then set two thresholds based on the
rank score of the top node. T1 is a threshold on the edge weights,
and T2 is a threshold on the ranks.

We assume that the top node is the center of an article; our task is
to walk around from the top node following certain links to reach
all nodes that also belong to the main article. T1 is used to set the
minimal weight on the links that random walker should follow,
and T2 is used to set the minimal rank that an element needs in
order to be considered as relevant.

As the random walker moves further away from the top node,
which is calculated by d=Distance(topNode, node), which is
number of jumps between topNode and node; we increase the
threshold tw on the weight; otherwise it may follow a weak link
and reach to the center of an irrelevant element. So we set the
aggressiveness parameter m, which increases the tw on each jump,
and decrease the threshold on rank tr to allow element with lower
rank to join. The rationale behind this is the assumption that the
nodes further away from the center node, even it is relevant, will
have lower rank because of the distance and offset, as expressed
in section 2.

After we obtain the list, we will put the elements to its original
position in web page, and find a minimal rectangle that covers all
the nodes. The procedure is self evident and it guarantees the
integrity of the original content.

3.1 Optimizing for Mobile Device
In previous section we obtained a rectangle within a web page
that encloses the true article. The target rectangle may be larger
than most mobile device; we need optimize the content and make
sure it looks nice on the end device.

We have the following design goals:
1. Minimize the scroll action on small screen device,

eliminate scroll in one direction.
2. Maximize the similarity between the layout of the

optimized content and the original web page.

We convert the HTML layout so that the width of the re-
rendered HTML page is smaller than the screen size. To
maximize the similarity between the original page and the
re-rendered page, we need retain the HTML hierarchy
structure of the original page. Our algorithm can be
described as from Figure 3 to 5.

Figure 3. Original HTML page

Figure 4. Layout tree

Figure 5. Optimized result

In Figure 3, the search engine indicates a larger area that
will returns to a mobile device. In Figure 4, the system will
put the elements in the selected rectangle in to a called
“Layout Tree” structure. Layout Tree has the following
features.

1. Each element maintains hierarchical relationship in the
original HTML tree.

2. Each node has a rectangle data that records the area
that it occupies in original HTML page.

3. Children of the same parent node are at the same
hierarchical level in the original HTML tree.

4. The parent node’s rectangle is the minimal rectangle
that covers all the children’s rectangles.

The layout tree is built bottom-up, As seen in Fig 4,
suppose node B, C, D is at the same hierarchical in the
original HTML tree, so we put it under the node M and set
the rectangle of M as the minimal rectangle that covers B
C D, then M and A shares the same parent nodes, and so
on.

 6

The algorithm to re-render the HTML can be described as
the following recursive algorithm
Render(node)
{
 if(node.child=NULL) return node.HTML;
 if(node.width>Screen_Width)

{ //if larger than the screen, recursively call each child.
 for(each child for node)
 result + = render (node.nextChild);
 }
else
{ //The screen is wide enough to put all child nodes
 for(each child for node)
 result + = node.nextChild.HTML;
}

}

If we call Render() with root node as parameter, it will
returns the optimized HTML page. Suppose the root’s
width is wider then the small screen, the algorithm
recursively call render with to nodes N and I to process
each sub tree. The node N’s width is still wider than the
screen, we recursive call Render(A) and Render(M). At the
node M, suppose it is not wider than the screen width, so
we returns B C D’s HTML source. In case when the width
of basic element is larger than the window, we will zoom
in the content to fit the screen. Figure 5 shows the result.

4. EXPERIMENT RESULT AND ANALYSIS
We have implemented the system to test our ideas. We
have two goals in the system. The first is to satisfy the
user’s information need. We try to deliver all the
information that a user wants in a web page. The second is
to save the bandwidth and minimize scrolling in the mobile
device. We will use the following measure to evaluate the
effectiveness of the system.

1. The recall value R:
R=(retrieved elements that are relevant)/(all the relevant
elements)
(We calculate by the area it occupies in the web page)

2. The percentage of returned elements of the extraction:
Return=(number of retrieved elements)/(number of
elements on the web page)

It is preferred that the system deliver as little content as
possible while achieving the high average recall

We created the test data in the following manner.
First, we randomly selected 309 websites from Google
directory. From each web site we chose an average of 4
web pages and recorded the anchor text of the links that
lead to the pages.

Second, for each web page, we allowed a user read the
anchor text, and ask the user to use the mouse to specify
the area that she wanted to read on mobile device. We
recorded the web site name, the anchor text, and the area
specified by the user.

In this manner, we collected altogether 1388 web pages.
We further divided the set for design and evaluation
purposes. We set aside 994 sample pages to use in
designing the system and adjusting the parameters. The
remaining 394 samples are never seen and used only for
evaluation. The design set and evaluation set does not
share any page from the same web site.

To extract content from each test web page, first, we will
use the web browser’s DOM interface to and divide the
web page into basic elements, each basic element will be
given rank, and weight to its links, as described in section
2, Then we will use the extraction algorithm to extract
article from the web page and the valuation of

We set a target average recall rate as the goal, and try to
obtain a system that satisfies the recall rate using the
design set. We then evaluate the return rate in the delivery
on both the design and evaluation set. The return rate on
the evaluation set should be a fair indication on future
performance as we have never seen the pages during the
design process. For the experiment we set the target
average recall to be 90%. We did not use 100% because
many of the elements selected by the user are actually
ambiguous and hence the additional benefits of achieving
total recall are small. We compare our system with three
different algorithms.

1. Simple Match: We calculate cosine similarity between

the anchor texts with every basic element. We select
all the elements where the similarity is above a
threshold and return elements in the smallest rectangle
surrounding the selected elements.

2. Extend Match: Based on the result of the simple

match, we do a second round calculation, calculate the
cosine similarity between selected elements with the
other elements. If the similarity is above certain
threshold, we add the new element to selected list and
return elements in the smallest rectangle surrounding
the selected elements.

3. Rank without random walking: We give each element

an initial rank and weight as described in section 2.2,
without our random walking algorithm, we simply set
a threshold which can achieve the recall that is above
0.90.

 7

4. Full implementation of our algorithm, the initial
condition is set the same as 3. We improve it with our
random walking algorithm.

Table 1: Experiment Result
Method Recall_l Return_1 Recall_2 Return_2

1 0.77 52.3% 0.67 55.4%
2 0.85 77.5% 0.78 .68.1%
3 0.91 54.6% 0.88 52.8%
4 0.92 38.3% 0.91 35.4%

In the table, “Recall_1” and “Return_1” are the experiment result
on designing set. “Recall_2” and “Return_2” are the result on
evaluation set. In our experiment, we set β=0.25 and α=0.85.
The “word match” and “extend match” algorithms can only
reach to maximum recall of 0.77 and 0.85 respectively not
matter how we set the parameters. Both algorithm need to
deliver above 50% of the elements in order to achieve that
recall. For the “rank without random walking” method in
the test set can achieve a recall of 0.91, but it need to
deliver 54% of the element of the web page. Initial rank
really provide valuable additional information, but it is not
sufficient, we need the “random walking” to find out the
top node. With our algorithm we just need to deliver 38%
to achieve a better recall. “Random walking” algorithm
really improves the result. In the evaluation set, we
observed a similar pattern.

On average the algorithm need to return only about 36% of all the
elements in a web page to reach a recall above 0.90. We believe
this result is encouraging for mobile device. First, 35% of the
elements do not mean only 65% of traffic savings. Actually the
saving in bandwidth is much higher because most of the elements
that are removed are usually multimedia elements or
advertisements.

Second, 0.90 of recall does not mean that user normally get only
90% of a full article. As we carefully study the web pages, we
find the most of the error are caused by the ambiguity of the
selection of the “relevant area”. For example, in the following
web page shown in Figure 6.

Figure 6. Sample Page

The red rectangle is what user defined as relevant. It covers the
entire article but the edge is not precise. The black rectangle is
what the algorithm returns as positive. The algorithm is 100%

correct. But if we calculate the recall by our definition, it is only
0.90.

The algorithm performs consistently on both the design and
evaluation case. This shows that the algorithm is stable over
different websites. Based on these results, we are confident that
our system and implementation achieves the design goal.

5. RELATED WORK
Google [1] proposed that web is a graph on which surfers
move randomly from page to page according to the links
on the page. We believe the manner in which a person
reads a web page is similar to how a surfer surfs the web.
The reader enters the page through a link and is drawn to
elements that are related to the anchor text in the link and
are located in central positions on the page. After reading
an element, the reader moves on to a highly related
element. Google returns the search result ranked by the
page rank, while we rank the elements in a web page and
return the top content for the mobile device.

The SmartView system in [11] is based on idea of “divide
and view”. The system performs partitioning of HTML
document content into logical sections that can further be
selected by the user and viewed independently from the
rest of the document. The advantage of [11] is that it
allows user to randomly access any website and gives the
user full control of which content to read displayed without
predefining a “hot area”, but [11] doesn’t handle the
situation when a logical section is much bigger than the
screen size of the target device, as it is always this case if
user is surfing a web page on a mobile phone.

This work is related to the research area of web page
cleaning, which believes the useful information on the web
is always accompanied by a large amount of noise such as
banner, advertisement, navigation bars, copyright notices.
etc. [14]. Usually a web cleaning system will study and
compare a lot of samples from a single site and learn the
rules to identify “what is noise?” However, we are solving
the same problem from the different angle. Our system
answer the question “what is not noise?” and our system
doesn’t require samples from the same site, this features
make it a very ideal solution for mobile device where we
could not predict what web page a user may want to read.

The web is not personalized and device independent, most
of the commercial system creates special web content for
the mobile devices. (For example, web Clipping [17], NTT
i-Mode [18], AvantGo [16]) This solution has its
limitation. The surfing experience and content is different
the cost to maintain this service and synchronize with the
PC web is difficult. We believe mobile Internet is an
extension of existing Internet and we should develop
systems that convert the content in the Internet to a format

 8

that is suitable for various small screen devices. The
systems need to perform three functions, including scaling,
manually authoring, transforming. The functions are
summarized in [6]. For example, [7] and [8] use summaries
of a single or multiple pages to present to the user. [9] and
[16] describe the process of manually extracting only the
useful information from existing web. [10] proposed a
sophisticated method for performing transformation.

6. CONCLUSION
Our goal is to design a system that can deliver device
independent content to mobile devices from any web page
in order to fulfill the user’s information need on devices
that have minimal computing power, screen and bandwidth
available. We achieve this by ranking the importance of
each element in a given web page and generating a
customized “web” for mobile devices. In this paper we
proposed three interesting ideas. First, it is possible to
represent the HTML web page with a graph structure
Second, based on our ranking algorithm that is similar to
Google’s PageRank, the system can understand what is the
most important topic of a web page in order to retrieve and
extract the content for different devices. Third, we develop
an algorithm to reformat and optimize the subset of the
original web page for different mobile device. Our
experiments show that in the vast majority of cases the
proposed system really provides the expected results,
making it a useful system.

With the development of wireless technology and
emergence of various mobile devices, people will not be
limited to the desktop computer. We will access the
Internet through all possible devices. Instead of building
different webs for different devices, we strongly believe
that the right direction is to convert and deliver the same
content in different ways to different devices.

7. REFERENCE
[1] Sergey Brin, Lawrence Page: The Anatomy of a

Large-Scale Hypertextual Web Search Engine.
WWW7 / Computer Networks 30(1-7): 107-117
(1998)

[2] Yudong Yang and HongJiang Zhang (2001): “HTML

Page Analysis Based on Visual Cues” In ICDAR
(2001)

[3] Shipeng Yu, Deng Cai, Ji-Rong Wen, Wei-Ying Ma:

Improving pseudo-relevance feedback in web
information retrieval using web page segmentation.
WWW 2003: 11-18

[4] Yu Chen, Wei-Ying Ma, Hong-Jiang Zhang:
Detecting web page structure for adaptive viewing on
small form factor devices. WWW 2003: 225-233

[5] Xiao-Dong Gu, Jinlin Chen, Wei YingMa, Guo-Liang

Chen Visual Based Content Understanding towards
Web Adaptation. In: Second International Conference
on Adaptive Hypermedia and Adaptive Web-based
Systems (AH2002), 29-31 May 2002, Spain.

[6] Trevor, J. Hilbert, D.M., Schilit, B.N., Koh, T.K.

(2001): “From desktop to phone top, a UI for web
interaction on very small devices”. Processings of the
14th annual ACM symposium on user interface
software and technology (UIST2001)

[7] Buyukkokten, O., Garcia-Molina, H., Paepcke, A. and

T. Winograd. Power Browser: Efficient Web
Browsing for PDAs. In Proceedings of the ACM
Conference on Computers and Human Interaction
2000 (CHI’00), 2000.

[8] Buyukkokten, O., Garcia-Molina, H., Paepcke, A.

Seeing the Whole in Parts: Text Summarization for
Web Browsing on Handheld Devices. In the
Proceedings of the Tenths International World Wide
Web Conference (WWW 10), 2001.

[9] Bickmore, T., Schilit, B. Digester: Device

Independent Access to the World Wide Web. Proc.
Sixth International World Wide Web Conference,
Santa Clara, 1997

[10] Bharadvaj, H. Joshi, Anupam, and Auephanwiriyakul,

S., “An Active transcoding Proxy to Support Mobile
Web Access”, Proc. 17 IEEE Symposium on Reliable
Distributed Systems, 1998

[11] Natasa Milic-Frayling, Ralph Sommerer: SmartView:

Flexible Viewing of Web Page Contents, The
Eleventh International World Wide Web Conference
(WWW2002), Honolulu, Hawaii, USA, 2002

[12] Corin R. Anderson and Eric Horvitz: Web Montage: A

Dynamic Personalized Start Page. In Proceedings of
the 11th World Wide Web Conference (WWW 2002).
2002.

[13] Corin R. Anderson, Pedro Domingos, and Daniel S.

Weld. Adaptive Web Navigation for Wireless Devices.
In Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI-01). 2001

[14] Lan Yi, Bing Liu. "Eliminating Noisy Information in

Web Pages for Data Mining." To appear Proceedings
of the ACM SIGKDD International Conference on

 9

Knowledge Discovery & Data Mining (KDD-2003),
Washington, DC, USA, August 24 - 27, 2003

[15] Lan Yi, Bing Liu. "Web Page Cleaning for Web

Mining through Feature Weighting" To appear in
Proceedings of Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), Aug
9-15, 2003, Acapulco, Mexico

[16] AvantGo http://www.avantgo .com

[17] MOZAT http://www.mozat.com

[18] Web Clipping

http://www.palmos.com/dev/tech/webclipping/

[19] NTT i-Mode http://www.ntt.co.jp/

