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ABSTRACT 
Delivering web pages to mobile phones or personal digital 
assistants has become possible with the latest wireless 
technology. However, mobile devices have very small screen 
sizes and memory capacities. Converting web pages for delivery 
to a mobile device is an exciting new problem. In this paper, we 
propose to use a ranking algorithm similar to Google’s PageRank 
algorithm to rank the content objects within a web page. This 
allows the extraction of only important parts of web pages for 
delivery to mobile devices. Experiments show that the new 
method is effective. In experiments on pages from randomly 
selected websites, the system needed to extract and deliver only 
35.4% of the objects in a web page in order to provide 91% of a 
viewer’s desired viewing content. This provides significant 
savings in the wireless traffic and downloading time while 
providing a satisfactory reading experience on the mobile device. 
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1.  INTRODUCTION 
Web content is currently designed for the desktop personal 
computer (PC) with a big monitor and rich memory 
resources. PC users can use a convenient input device such 
as a mouse to retrieve any web page from any website. 
Downloading time is rarely a problem as the PCs are 
usually connected to the internet through high capacity 
lines and the large screen allows many irrelevant objects 
such as advertisements to be placed on the screen without 
overly distracting the user. 
 
In the past five years, many mobile devices with medium 
and small sized screen and limited memory have appeared. 
For example, it is now possible to browse the web using 
personal digital assistants (PDA) such as the Palm or 
Pocket PC.  The mobile phone, which is currently the most 
popular mobile device, has many features that make 
browsing the internet possible. However, these devices are 
not ideal platforms for surfing the web. First, the wireless 
bandwidth is quite limited and very expensive. Secondly, 
the screen size varies and can be very small, for example 
120*90. Third, some devices, such as mobile phones, have 
very limited memory capability. Normally, the content of a 

single web page will be larger than what a mobile phone 
can hold.  
 
Researchers have spent a lot effort in solving the problem 
of enabling such devices to view the web content in a 
satisfactory manner. Some of the solutions work in the 
push model, like [16], where the selected content is pushed 
to the PDA through a synchronization process. Others use 
pull model, like Opera browser, where the content is 
extracted and optimized. Normally, these methods display 
the whole web page. The disadvantage of this approach is 
the long downloading time when bandwidth is limited and 
the large amount of scrolling required in order to get to the 
relevant parts of the web page. 
 
This paper presents a system that provides automatic 
conversion of web content into a form that is optimized for 
mobile devices. Our approach is to extract and present only 
the important parts of the web page for delivery to the 
mobile device. Such a method saves not only download 
time but also the time spent scrolling on the small screen 
devices. Errors in extraction by the system can be corrected 
by allowing the user to request the whole page if they are 
not satisfied with the extracted content. If the extraction 
error can be kept at a minimal level, such a system will 
provide a more pleasant experience for surfing the web on 
a mobile device. 
 
The basic technology behind the approach is a ranking 
algorithm for elements of a web page. The idea behind the 
ranking algorithm is to first represent a web page as a 
graph model and then exploiting the graph structure to rank 
the elements. To obtain the graph, we first divide the page 
into inseparable basic elements. We assume that the user is 
entering a web page from a link. Based on the type, size, 
physical position shape and similarity to the anchor text of 
the in-link, we give each basic element an initial rank 
value. We use weighted edges to represent relationships 
between two basic elements. The weights are a function of 
attributes of the two elements, such as word similarity and 
physical proximity of the elements within the page. This 
graph representation of a web page is quite different from 
the commonly used tree-based analysis of web pages. The 
graph model of a single web page is made up of hundreds 
of basic elements that are linked to each other in a very 
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complex manner. Such structure is similar to the whole 
Internet, which is also made up of many interrelated web 
pages 
 
The most successful ranking algorithm for web pages is a 
random walk model used by the Google search engine. The 
web is treated as a graph on which surfers move randomly 
from page to page according to the links on the page. The 
ranking of the web page is then the expected number of 
surfers visiting the page at any time.  The manner in which 
a person reads a web page is similar to how a surfer surfs 
the web. The reader enters the page through a link and is 
drawn to elements that are related to the anchor text in the 
link and are located in central positions on the page. After 
reading an element, the reader moves on to a highly related 
element. By modeling the strength of connections between 
elements according to their similarity, we are using a 
simplified model of the movement of the readers’ attention 
on the web page. We then rank the elements according to 
the expected number of readers reading the particular 
element at any time. Based on the rankings, we select a 
rectangle covering all the important elements of the web 
page and transmit the content of the rectangle. 
 
The contributions of this paper include a new approach for 
enabling pleasant surfing experience on mobile devices 
and a new model for processing HTML document. Rather 
than the traditional tree model, we convert the HTML 
document into a graph which allows us to use Google’s 
successful PageRank approach for finding important 
elements in the document. 
 
We organize the paper in the following way. In section 2, 
we give an overview of the system. In section 3, we will 
give the design of the system. In section 4 we will discuss 
the dataset, and describe the evaluation of the system. 
Section 5 is about related works.  In section 6, we will give 
our conclusion and the direction for future research.  
 
2.  CONVERTING A WEB PAGE INTO A 
GRAPH 
2.1 Basic Elements 
To construct a graph from a web page, we first identify the 
nodes, which are the basic elements in the web page. Then 
we specify the edges of the graph which encode the 
relationships between pairs of basic elements. 
  
Researchers have proposed different methods to divide an 
HTML page into logic blocks. For example, [5] proposed a 
visual based method to analyze the structure of a web page, 
and [2] provides a method to automatically understand the 
semantic structure of HTML pages based on detecting 
visual similarities of content objects. In our system we are 
trying to find all the inseparable visible elements in an 
HTML page. We use the DOM interface provided by web 

browser. From bottom up we identify nodes by two simple 
rules: 
1. Image, link, text paragraph, and other visible object will 

be a basic element if their parent node doesn’t contain 
another child that is overlapping with it.  

2. For overlapping objects, the minimal container of the 
two objects will be a potential element to be checked by 
the rule 1. If one object contains the other, the bigger 
object will be chosen. Otherwise we will seek from 
bottom up to check their nearest common container.  

For example, a web page contains a list of links. The links 
are not overlapping with each other. Each of them will be 
treated as basic element. In another web page, a text 
paragraph has a name which is a link. Here we have two 
overlapping objects, the bigger one, text paragraph, will be 
chosen to checked by rule 1, if the text paragraph is not 
overlapping other element at a higher level, it will be 
chosen, other wise we will recursively search upward.    
 
As shown below. Our algorithm will convert original web 
page in to a list of basic elements.  
 

 
Figure 1. Original HTML page 

 

Figure 2. Decompose the original HTML page 
 

2.2 Graph 
Assume that we have N basic elements. We will build a 
graph such that the sum of the weights coming out of each 
node is 1. This allows us to use the weight on the edge as 
the probability of a reader going to the next element along 
that edge.   
 
We first introduce an additional node S which can be 
considered as source of visitors to the web page. This node 
also serves as the sink where readers who stop reading at 
any particular element will go to. 
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Based on the features of a basic element, we will connect it 
to the source S with a weight that represents its 
contribution to the topic of a web page.  We take the 
following features into consideration: 
 
1. Size (Ps): Element with bigger size is more important 

than a smaller one. The contribution of size to the 
importance of element i can be  calculated by 
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where size is measured by the number of pixels. 
.  
2. Text length (Pt): Element with longer visible text has 

higher importance. The length is the number of visible 
words. For example, A link with longer anchor text 
will draw more attention.  The contribution of text 
length can be calculated by: 
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3. Match (Pm): Visitors from the source S will pay more 
attention to the content that is similar to S. We 
calculate the cosine similarity between the visible text 
in the element and the anchor text of S. We also use a 
stop word list including non-informative words that 
are commonly used in the internet context such as 
“click” “next” “more” “read” and others. 

  
4. Width/height ratio (Pr): The shape of an element 

reflects its importance. For example, for an image, the 
regular image is usually more important than those 
irregular one., We use the following formula to 
calculate the value for images:  
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For different categories of elements we will use 
different formulas. For a text block we use a formula 
that favors of higher Weight/height value: 
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5. Physical offset (Pp): Physical position is calculated by 

pixels. It is actually a very important feature. Element 

closer to the center point is more important than those 
near the edge of the page. We calculate the position 
information from, first, the physical distance between 
the center of the element and the center of the screen, 
second its horizontal offset information. Let the screen 
center be (XC, YC) and the center of element i be 
(Xi,Yi). Then 
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In this formula we specially take X offset into 
consideration because normally a web designer will 
put the important content in the center of the screen, 
and both left and right sides are for irrelevant or less 
important content. However, we did not make use of 
the vertical offset, as we see that important content in a 
web page can be very long. 
 
We normalize the distance with the diagonal of the 
whole HTML page. All the constant value in the 
formula is chosen according to an ordinary web page 
layout.    

 
The weight from the source S to node i is calculated by the 
function W(S,i) where 
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The weight represents the probability that the reader’s eye 
goes to each of the element as he enters the web page; it is 
obvious that not all the elements are equally likely to be 
viewed. 
 
From each node i, we also set a weight W(i,S)=β, 0≤β≤1 to 
indicate the probability that the person stops reading at  
node i and goes back to the source node S. 
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As described earlier, the weight of the edge between any 
two basic elements is a evaluation of how likely the reader 
is to continue with the second element after reading the 
first. It is calculated using the following features:  
 
1. Distance Pd(i,j): The physical distance (in pixels) of 

two elements in the layout of an html page.  
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2. Horizontal offset (Ph): set as 1 if two element’s 
horizontal offset is the same, otherwise 0.  

3. Neighborhood (Pn):  Set as 1 if two elements are 
neighbors, otherwise 0.  

4. Match (Pm): the cosine similarity between the visible 
texts in the two elements.  

5. Width (Pw): Set as 1 if two elements have the same 
width, otherwise 0.  

 
The similarity S(i,j) between distinct elements i and j is 
calculated by the sum of the five features. For a node i, we 
have already used up a weight of β for the link back to the 
source.  Of the remaining amount (1-β), we use a fraction 
α as the loop back to itself to indicate that the user 
continues reading on the element for a period. Hence 
W(i,i)=(1-β)α. The weight from distinct nodes i to j is then 
calculated as  
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2.3 Random Walk on the Graph  
In previous section, we have described the algorithm to convert 
any web page into graph, with the nodes representing the basic 
elements, and edges representing the relationship between the 
basic elements.  In this way we convert an html web page in to a 
structure that is similar to the whole internet. 
 
The most successful search engine is Google, which proposed the 
idea of “PageRank” to describe the importance or quality of a 
single webpage.  In our paper we will borrow the idea of 
PageRank to calculate the importance and quality of each basic 
node in a web page.  PageRank can be thought of as a model of 
user behavior, where a user is given a random web page and he 
will follows the links until he get bored. The probability of a user 
visiting a web page is proportional to the PageRank, which can be 
calculated iteratively by  
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where PRt (i) is the PageRank of node i at time t, E is the set of 
edges, C(i) is the number of links going out of page i and (1-d) is 
the probability that the user will get bored and leave a certain web 

page back to the source .  Note that in PageRank all out links are 
treated equally. In contrast, we have more information based on 
the similarity between elements, hence have given different 
weights to different links. 
 
We can similarly calculate a ranking that is proportional to the 
probability of a reader being at a node by using an iterative 
algorithm that does the following updates 
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Where Rt(i) is the ranking of node i at time t. The value Rt(i) 
converges to a value that is proportional to the probability of 
being at the node (the first eigenvector of the transition matrix). 
 
3 EXTRACTING AND OPTIMIZING  
3.1 Extracting Relevant Elements. 
The task of a search engine is to return the top results that match 
the search query. Google achieves this by first gathering the 
matched web pages and then returning them in the order of its 
PageRank.  However, even though we have the ranking for each 
element in the web page, we can not simply return the elements to 
the user by its rank. In a search engine, every individual webpage 
is independent and it does not matter if one web page is returned 
before or after another web page. But in our system, there are 
semantic and logical relationship between the elements and the 
order of relevant elements has to be returned as it appeared in the 
original web page. The user will feel unhappy if he gets an article 
extracted from a web page that looks nice but has the wrong 
ordering of the elements.  
 
Our design goal is return user the most relevant content, which is 
those with the highest ranks, but still need to keep the original 
look and feel on the mobile device. We use a simple heuristic to 
retrieve complete article based on the ranking of the elements. 
Select () 
{    
     list.insert(topnode); 
     T1=rank(topnode)/3; 
     T2=average (S(topnode,j)); 
     while(node=list.getNext()!=NULL) 
     { 

d=Distance(topNode,node);   
tw=(1+m*d/10)*T1; 
for(each neighbor ni of node with weight(n, ni)>t) 
{ 
 tr=(1-n*d/10)*T2; 
     if(rank(ni)>tr) 
       { 
            list.insert(ni); 

} 
}  

} 
 } 
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As shown in the algorithm, firstly, we sort the nodes and pick the 
node with the highest rank. Then set two thresholds based on the 
rank score of the top node. T1 is a threshold on the edge weights, 
and T2 is a threshold on the ranks.  
 
We assume that the top node is the center of an article; our task is 
to walk around from the top node following certain links to reach 
all nodes that also belong to the main article.  T1 is used to set the 
minimal weight on the links that random walker should follow, 
and T2 is used to set the minimal rank that an element needs in 
order to be considered as relevant. 
 
As the random walker moves further away from the top node, 
which is calculated by d=Distance(topNode, node), which is 
number of jumps between topNode and node; we increase the 
threshold tw on the weight; otherwise it may follow a weak link 
and reach to the center of an irrelevant element. So we set the 
aggressiveness parameter m, which increases the tw on each jump, 
and decrease the threshold on rank tr to allow element with lower 
rank to join.  The rationale behind this is the assumption that the 
nodes further away from the center node, even it is relevant, will 
have lower rank because of the distance and offset, as expressed 
in section 2.  
 
After we obtain the list, we will put the elements to its original 
position in web page, and find a minimal rectangle that covers all 
the nodes. The procedure is self evident and it guarantees the 
integrity of the original content.  
 
3.1 Optimizing for Mobile Device 
In previous section we obtained a rectangle within a web page 
that encloses the true article. The target rectangle may be larger 
than most mobile device; we need optimize the content and make 
sure it looks nice on the end device.  
 
We have the following design goals:  
1. Minimize the scroll action on small screen device, 

eliminate scroll in one direction.  
2. Maximize the similarity between the layout of the 

optimized content and the original web page. 
 
We convert the HTML layout so that the width of the re-
rendered HTML page is smaller than the screen size. To 
maximize the similarity between the original page and the 
re-rendered page, we need retain the HTML hierarchy 
structure of the original page. Our algorithm can be 
described as from Figure 3 to 5.  
 

 

Figure 3. Original HTML page 

 
Figure 4. Layout tree 

 

Figure 5. Optimized result 
 
In Figure 3, the search engine indicates a larger area that 
will returns to a mobile device. In Figure 4, the system will 
put the elements in the selected rectangle in to a called 
“Layout Tree” structure. Layout Tree has the following 
features.    

1. Each element maintains hierarchical relationship in the 
original HTML tree. 

2. Each node has a rectangle data that records the area 
that it occupies in original HTML page.  

3. Children of the same parent node are at the same 
hierarchical level in the original HTML tree.  

4. The parent node’s rectangle is the minimal rectangle 
that covers all the children’s rectangles.  

 
The layout tree is built bottom-up, As seen in Fig 4, 
suppose node B, C, D is at the same hierarchical in the 
original HTML tree, so we put it under the node M and set 
the rectangle of M as the minimal rectangle that covers B 
C D, then M and A shares the same parent nodes, and so 
on.  
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The algorithm to re-render the HTML can be described as 
the following recursive algorithm 
Render(node) 
{    
    if( node.child=NULL )   return node.HTML;   
   if(node.width>Screen_Width)   

{ //if larger than the screen, recursively call each child. 
    for(each child for node) 
          result  + = render (node.nextChild);   
 }  
else 
{    //The screen is wide enough to put all child nodes   
         for( each child for node) 
          result  + = node.nextChild.HTML;   
} 

} 
 
If we call Render() with root node as parameter, it will 
returns the optimized HTML page. Suppose the root’s 
width is wider then the small screen, the algorithm 
recursively call render with to nodes N and I to process 
each sub tree. The node N’s width is still wider than the 
screen, we recursive call Render(A) and Render(M). At the 
node M, suppose it is not wider than the screen width, so 
we returns B C D’s HTML source. In case when the width 
of basic element is larger than the window, we will zoom 
in the content to fit the screen. Figure 5 shows the result. 
 
 
4. EXPERIMENT RESULT AND ANALYSIS 
We have implemented the system to test our ideas. We 
have two goals in the system. The first is to satisfy the 
user’s information need. We try to deliver all the 
information that a user wants in a web page. The second is 
to save the bandwidth and minimize scrolling in the mobile 
device. We will use the following measure to evaluate the 
effectiveness of the system.  
 
1. The recall value R: 
R=(retrieved elements that are relevant)/(all the relevant 
elements) 
(We calculate by the area it occupies in the web page) 
 
2. The percentage of returned elements of the extraction: 
Return=(number of retrieved elements)/(number of 
elements on the web page) 
 
It is preferred that the system deliver as little content as 
possible while achieving the high average recall  
 
We created the test data in the following manner.  
First, we randomly selected 309 websites from Google 
directory. From each web site we chose an average of 4 
web pages and recorded the anchor text of the links that 
lead to the pages.  
 

Second, for each web page, we allowed a user read the 
anchor text, and ask the user to use the mouse to specify 
the area that she wanted to read on mobile device. We 
recorded the web site name, the anchor text, and the area 
specified by the user.  
 
In this manner, we collected altogether 1388 web pages. 
We further divided the set for design and evaluation 
purposes. We set aside 994 sample pages to use in 
designing the system and adjusting the parameters. The 
remaining 394 samples are never seen and used only for 
evaluation. The design set and evaluation set does not 
share any page from the same web site.  
 
To extract content from each test web page, first, we will 
use the web browser’s DOM interface to and divide the 
web page into basic elements, each basic element will be 
given rank, and weight to its links, as described in section 
2, Then we will use the extraction algorithm to extract 
article from the web page and the valuation of  
 
We set a target average recall rate as the goal, and try to 
obtain a system that satisfies the recall rate using the 
design set. We then evaluate the return rate in the delivery 
on both the design and evaluation set. The return rate on 
the evaluation set should be a fair indication on future 
performance as we have never seen the pages during the 
design process. For the experiment we set the target 
average recall to be 90%. We did not use 100% because 
many of the elements selected by the user are actually 
ambiguous and hence the additional benefits of achieving 
total recall are small. We compare our system with three 
different algorithms.  
 
1. Simple Match: We calculate cosine similarity between 

the anchor texts with every basic element. We select 
all the elements where the similarity is above a 
threshold and return elements in the smallest rectangle 
surrounding the selected elements. 

 
2. Extend Match: Based on the result of the simple 

match, we do a second round calculation, calculate the 
cosine similarity between selected elements with the 
other elements. If the similarity is above certain 
threshold, we add the new element to selected list and 
return elements in the smallest rectangle surrounding 
the selected elements. 

 
3. Rank without random walking: We give each element 

an initial rank and weight as described in section 2.2, 
without our random walking algorithm, we simply set 
a threshold which can achieve the recall that is above 
0.90.  
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4. Full implementation of our algorithm, the initial 
condition is set the same as 3. We improve it with our 
random walking algorithm.   

 
Table 1: Experiment Result 
Method Recall_l Return_1 Recall_2 Return_2 

1 0.77 52.3% 0.67 55.4% 
2 0.85 77.5% 0.78 .68.1% 
3 0.91 54.6% 0.88 52.8% 
4 0.92 38.3% 0.91 35.4% 

 
In the table, “Recall_1” and “Return_1” are the experiment result 
on designing set. “Recall_2” and “Return_2” are the result on 
evaluation set. In our experiment, we set β=0.25 and α=0.85. 
The “word match” and “extend match” algorithms can only 
reach to maximum recall of 0.77 and 0.85 respectively not 
matter how we set the parameters. Both algorithm need to 
deliver above 50% of the elements in order to achieve that 
recall. For the “rank without random walking” method in 
the test set can achieve a recall of 0.91, but it need to 
deliver 54% of the element of the web page. Initial rank 
really provide valuable additional information, but it is not 
sufficient, we need the “random walking” to find out the 
top node. With our algorithm we just need to deliver 38% 
to achieve a better recall. “Random walking” algorithm 
really improves the result. In the evaluation set, we 
observed a similar pattern.  
 
On average the algorithm need to return only about 36% of all the 
elements in a web page to reach a recall above 0.90. We believe 
this result is encouraging for mobile device. First, 35% of the 
elements do not mean only 65% of traffic savings. Actually the 
saving in bandwidth is much higher because most of the elements 
that are removed are usually multimedia elements or 
advertisements.  
 
Second, 0.90 of recall does not mean that user normally get only 
90% of a full article. As we carefully study the web pages, we 
find the most of the error are caused by the ambiguity of the 
selection of the “relevant area”. For example, in the following 
web page shown in Figure 6.   
   
 

 
Figure 6. Sample Page 

The red rectangle is what user defined as relevant. It covers the 
entire article but the edge is not precise. The black rectangle is 
what the algorithm returns as positive. The algorithm is 100% 

correct. But if we calculate the recall by our definition, it is only 
0.90.  
 
The algorithm performs consistently on both the design and 
evaluation case. This shows that the algorithm is stable over 
different websites. Based on these results, we are confident that 
our system and implementation achieves the design goal.  
 
5.  RELATED WORK 
Google [1] proposed that web is a graph on which surfers 
move randomly from page to page according to the links 
on the page. We believe the manner in which a person 
reads a web page is similar to how a surfer surfs the web. 
The reader enters the page through a link and is drawn to 
elements that are related to the anchor text in the link and 
are located in central positions on the page. After reading 
an element, the reader moves on to a highly related 
element. Google returns the search result ranked by the 
page rank, while we rank the elements in a web page and 
return the top content for the mobile device.  
 
The SmartView system in [11] is based on idea of “divide 
and view”. The system performs partitioning of HTML 
document content into logical sections that can further be 
selected by the user and viewed independently from the 
rest of the document. The advantage of [11] is that it 
allows user to randomly access any website and gives the 
user full control of which content to read displayed without 
predefining a “hot area”, but [11] doesn’t handle the 
situation when a logical section is much bigger than the 
screen size of the target device, as it is always this case if 
user is surfing a web page on a mobile phone.   
 
This work is related to the research area of web page 
cleaning, which believes the useful information on the web 
is always accompanied by a large amount of noise such as 
banner, advertisement, navigation bars, copyright notices. 
etc. [14]. Usually a web cleaning system will study and 
compare a lot of samples from a single site and learn the 
rules to identify “what is noise?” However, we are solving 
the same problem from the different angle. Our system 
answer the question “what is not noise?” and our system 
doesn’t require samples from the same site, this features 
make it a very ideal solution for mobile device where we 
could not predict what web page a user may want to read.  
 
 
The web is not personalized and device independent, most 
of the commercial system creates special web content for 
the mobile devices. (For example, web Clipping [17], NTT 
i-Mode [18], AvantGo [16]) This solution has its 
limitation. The surfing experience and content is different 
the cost to maintain this service and synchronize with the 
PC web is difficult.  We believe mobile Internet is an 
extension of existing Internet and we should develop 
systems that convert the content in the Internet to a format 
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that is suitable for various small screen devices. The 
systems need to perform three functions, including scaling, 
manually authoring, transforming. The functions are 
summarized in [6]. For example, [7] and [8] use summaries 
of a single or multiple pages to present to the user. [9] and 
[16] describe the process of manually extracting only the 
useful information from existing web. [10] proposed a 
sophisticated method for performing transformation.  
 
   
6. CONCLUSION 
Our goal is to design a system that can deliver device 
independent content to mobile devices from any web page 
in order to fulfill the user’s information need on devices 
that have minimal computing power, screen and bandwidth 
available. We achieve this by ranking the importance of 
each element in a given web page and generating a 
customized “web” for mobile devices. In this paper we 
proposed three interesting ideas. First, it is possible to 
represent the HTML web page with a graph structure 
Second, based on our ranking algorithm that is similar to 
Google’s PageRank, the system can understand what is the 
most important topic of a web page in order to retrieve and 
extract the content for different devices. Third, we develop 
an algorithm to reformat and optimize the subset of the 
original web page for different mobile device. Our 
experiments show that in the vast majority of cases the 
proposed system really provides the expected results, 
making it a useful system. 
 
With the development of wireless technology and 
emergence of various mobile devices, people will not be 
limited to the desktop computer. We will access the 
Internet through all possible devices. Instead of building 
different webs for different devices, we strongly believe 
that the right direction is to convert and deliver the same 
content in different ways to different devices. 
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