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Abstract

Most research on automated specification-based soft-
ware testing has focused on the automated generation of
test cases. Before a software system can be tested, it must
be set up according to the input requirements of the test
cases. This setup process is usually performed manually, es-
pecially when testing complex data structures. After the sys-
tem is properly set up, a test execution tool runs the system
according to the test cases to obtain the outputs, which are
evaluated by a test evaluation tool.

Our research complements the current research on au-
tomated specification-based testing by proposing a scheme
that combines the setup process, test execution, and test val-
idation into a single test program for testing the behavior of
object-oriented classes. The test program can be generated
automatically given the the desired test cases and closed
algebraic specifications of the classes. The core of the test
program generator is a partial-order planner which plans
the sequence of instructions required in the test program.
A first-cut implementation of the planner has been pre-
sented in [9] based on simple depth-first search. This paper
presents a more efficient and effective heuristic search algo-
rithm that performs reachability tests using the Omega Cal-
culator. Test results show that heuristic search with reach-
ability tests significantly reduce the search time requiredto
generate a valid sequence of instructions.

1. Introduction

Testing is a very important but expensive and time-
consuming process in software development. It can con-
sume at least 50% of the total costs involved in developing
software [1]. It remains as the primary method for discov-
ering faults in software systems even though there is steady
advancement in formal methods for program verification.
Automation of the testing process could reduce develop-
ment costs and improve software quality.

Specification-based testing involves three stages [14]: (1)
test case generation, (2) text case execution, and (3) test re-

sult evaluation. The first stage generates test cases from a
software system’s specification. Before the system can be
tested, it must be properly set up, i.e., prepare the input vari-
ables and data used in the tests according to the require-
ments stated in the test cases. This setup process is usually
performed manually, especially when testing complex data
structures. After the system is properly set up, a test execu-
tion tool runs the system according to the test cases to ob-
tain the outputs, which are checked by a test evaluation tool.

Test execution and test result evaluation are easy to au-
tomate, and tools for these stages are already available.
There is also a lot of research on automated specification-
based software testing focusing on the automated selection
or generation of test cases [14]. Our research complements
the current trend by proposing a scheme that combines the
setup process, test execution, and test validation into asin-
gle test program for testing the behavior of object-oriented
classes. The test program can be generated automatically
given the desired test cases andclosed algebraic specifica-
tionsof the object classes (Section 3). After compiling and
linking with the object classes under test, it can be executed
to perform test case setup, test execution by invoking the
class methods, and test results verification, all in a single
program. This scheme provides great convenience in auto-
mated specification-based testing by removing the need to
perform manual system setup and invoking separate tools
for test execution and test evaluation.

The core of the test program generator is a partial-order
planner which plans the sequence of instructions required
in the test program. A first-cut implementation of the plan-
ner has been presented in [9] based on simple depth-first
search, which can spend a lot of effort searching along the
wrong paths. In this paper, we presents a more efficient and
effective heuristic search algorithm for finding a valid plan.
It performsreachability testson objects using Omega Cal-
culator library [13, 15] to determine whether the applica-
tion of a method or methods can bring the objects to the de-
sired states. Test results (Section 5) show that the heuristic
search with reachability tests significantly reduce the search
time required to generate a valid sequence of instructions.



2. Background and Related Work

Most research on automated specification-based test-
ing has focused on the automated generation of test cases
[6, 14, 18]. For example, Donat developed a technique for
generating test cases from specifications that contain quan-
tifications [4]. Offutt and Liu presented a method for gener-
ating test cases from specifications written in SOFL, which
is a kind of formal specification language [12]. Memon et
al. developed a method based on AI planner to generate test
cases for testing GUI [10]. Scheetz et al. also applied AI
planner to generate test cases from test objectives derived
from UML models [18]. Graves et al. conducted empiri-
cal study to compare the cost and benefit of several tech-
niques for selecting subsets of test cases for regression test-
ing [5]. Other recent work has focused on automated test-
ing of specific software properties such as safety violation
in telephone switching systems [8] instead of general soft-
ware testing. Chan et al. [2] classified the various integration
testing techniques for object-oriented programs into state-
based, event-based, fault-based, testing against formal spec-
ification (aka. algebraic specification and contract specifica-
tion [3]), and deterministic and reachability techniques.

In comparison, there is not much research on automated
generation of test programs that combine system setup, test
execution, and test validation into a single framework, ex-
cept for the well-known ADL (Assertion Definition Lan-
guage) system [17] and its successor, ADL2 [11].

ADL provides a framework for specifying the semantics
of a software component such as a function or a module.
Given an ADL specification, the ADL Translator can auto-
matically generate a test program that executes the function
or module under test and checks the test results. To support
the automated generation of test programs, ADL requires
the user to supplyauxiliary functionsthat define the seman-
tics of the function to be tested. We call this type of speci-
fication system anopened specification system. In addition,
the user also needs to provide implementations of thepro-
vide functionsfor constructing the required test data and the
relinquish functionsfor destroying the test data.

The strength of an opened specification system is that it
can be used to specify a single function or to partially spec-
ify a module, and test program can be generated to test the
function or partially specified module. However, an opened
specification system also has the following shortcomings:

• An opened specification is incomplete—it does not
contain enough information for generating test data
by itself. In testing complex software components, the
user cannot avoid the need to provide supporting func-
tions such as ADL’sauxiliary, provide, andrelinquish
functions. Additional programming effort is required
to implement these supporting functions, which may
not have any use other than for testing. Consequently,

test programs cannot be generated from the specifica-
tion alone, and test program generation cannot be fully
automated.

• Supporting functions for testing complex modules may
be quite complex themselves and should be subjected
to testing also. Although testing of supporting func-
tions can be accomplished by specifying them in ADL,
such a requirement is not enforced by ADL. Moreover,
testing of these supporting functions may, in turn, re-
quire other supporting functions.

Our research complements the current research on au-
tomated specification-based software testing in two ways:
(1) It proposes aclosed specification system(Section 3) that
can overcome the above shortcomings of opened specifica-
tion systems. (2) It proposes a scheme that combines auto-
mated test data generation (i.e., system setup), test execu-
tion, and test validation into asingletest program. The test
program is generated automatically given the class specifi-
cations and the test cases. When it is executed, it will per-
form system setup and test data generation, test execution,
and test validation automatically.

To fulfill these goals, the specification must be defined
for an entire object class instead of a single function. The
semantics of the class methods are specified in terms of
other methods which are, in turn, specified in their own
class specifications. In other words, all the methods used
in a class specification are defined in the same specifica-
tion or in other class specifications, and the methods can be
defined mutually recursively. So, a closed specification is
a form of algebraic specification that emphasizes the com-
pleteness of semantic information within the specification.
The target programming language is Java because it is prac-
tically useful and is simpler to handle than is C++.

Fulfilling the above requirement of the closed specifica-
tion system may, at first glance, appear to be a daunting
task for a software that involves many classes. More care-
ful thought, however, reveals that the effort required is re-
ally not much more than providing theauxiliary, provide,
andrelinquishfunctions for ADL. Once a specification has
been defined for a class, it can be readily reused in the spec-
ifications of many other classes. On the other hand, the sup-
porting functions developed for testing a particular function
or module are less readily reusable for testing other func-
tions or modules. Therefore, in the long run, it is more ben-
eficial to use a closed system than an opened system.

With closed specifications, every class method is defined
in terms of other methods which are, in turn, defined in their
class specifications. The core of our test program generator
is an AI planner that plans the sequence of instructions re-
quired in the test program (Section 4.2). The AI planner is
an appropriate tool since it is able to sequence the instruc-
tions, taking into account the constraints between them [16].
Moreover, thepartial-order plannercan plan a sequence of



instructions that are only partially ordered but not totally or-
dered [16]. As discussed above, AI planner has also been
used to generate test cases from specifications [10, 18]. So,
it is a very useful tool for automated software testing.

Our planner is implemented as a heuristic search al-
gorithm (Section 4.3). It makes function calls to the
Omega Calculator library [13, 15], which solves the con-
straints given by the test cases and obtains valid variable
instances. Furthermore, it uses the Omega Calculator to per-
form reachability tests on object states (Section 4.4). This
method greatly improves the search efficiency and effec-
tiveness of the algorithm.

3. Closed Specifications of Classes

In our system, the behavior of the classes are specified
using an ADL-like specification language. Other specifica-
tion languages can also be used, but we find the ADL syn-
tax more similar to Java, our target programming language
for software development. So, we expect Java developers to
adopt the ADL syntax more readily than other syntax. The
following example shows the specifications of three classes:
Teacher andStudent, which are atomic classes, and
Course, which is an aggregate class.

class Course {
Course()
{ true

--> #max = 1 && #size = 0
}

Course(int max)
{ max > 0

--> #max = max && #size = 0
}

void setMax(int max)
{ max >= #size

--> #max = max && #max >= #size
}

void incMax()
{ true

--> #max = @#max + 1
}

void decMax()
{ #max > #size

--> #max = @#max - 1
}

void setTeacher(Teacher t)
{ t != null

--> #teacher = t
}

void addStudent(Student s)

{ s != null && #size < #max
--> #size = @#size + 1 &&

exist(#s in Course){#s = s}
}

void deleteStudent(Student s)
{ #size > 0 &&

exist(#s in Course){#s = s}
--> #size = @#size - 1 &&

!exist(#s in Course){#s = s}
}

int max()
{ true

--> max() = #max
}

int size()
{ true

--> size() = #size
}
// Other access methods omitted.

}

class Teacher {
Teacher(String name, int id)
{ name != null && id > 0

--> #name = name && #id = id
}
// Access methods omitted.

}

class Student {
Student(String name, int id)
{ name != null && id > 0

--> #name = name && #id = id
}
// Access methods omitted.

}

In this specification, preconditions are specified before
the arrow symbol ‘-->’ while postconditions are specified
after ‘-->’. Symbols prefixed with ‘#’ such as#name and
#size refer tostate labels. They specify the information
that is contained in a class without saying how the infor-
mation is organized and stored in the class. Symbols pre-
fixed with ‘@’ refer to thepre-statesof the objects. For in-
stance,@#size refers to the value of#size at the en-
try of theadd method. Therefore,@#size has the same
value as the#size in the precondition, and the#size
in the postcondition is equal to@#size+1. A method ar-
gument must either be bound to a state label (e.g.,name
in constructorStudent) or appear in the pre- or postcon-
dition. Otherwise, it does not carry any useful information
and can be discarded. For the access methods, the postcon-
ditions are very simple: the invocation of an access method
equals some state labels of the respective class. Note that the



semantics of all the methods in the classes are completely
specified within them. That is, the specification is closed.

4. Automated Generation of Test Programs

4.1. Overview

A test program that exercises a class method according to
a test case consists of three steps: (1) constructs target object
and method arguments that satisfy the conditions in the test
case, (2) applies the method on the object with the method
arguments, (3) checks whether the actual results tally with
the expected results given in the test case.

Let us discuss the main ideas using an example. Con-
sider the following test case (specified in a format consis-
tent with IEEE Standard 829 [7]):

Input specification:

Course course1 & course1.#max = 10 &
course1.#size = 1 &
Student student1

Method Invocation:

course1.add(student1)

Output specification:

Course course1 & course1.#max = 10 &
course1.#size = 2

Then, a test program for this test case could be:

// Step 1: Object construction
Course course1 = new Course(10);
Student student2 =

new Student("Mike", 12345);
course1.addStudent(student2);

Student student1 =
new Student("Mary", 23456);

// Step 2: Method invocation
course1.addStudent(student1);

// Step 3: Test result verification
if (course1.max() == 10 &&

course1.size() == 2)
then System.out.print("Passed");
else System.out.print("Failed");

The first three instructions construct aCourse object
that satisfies the input requirement of the test case. The
fourth instruction constructs aStudent object required for
the test. The fifth instruction invokes the method under test,
and the remaining instructions perform test result verifica-
tion. Testing of exception handling can be done in a simi-
lar manner by modifying step 2 to catch a possible excep-
tion, and then checking whether the postcondition for ex-
ception handling is satisfied.

This example shows that it is straightforward to gener-
ate program codes for steps 2 and 3, especially when the
test case specification is written in computer readable for-
mat. However, automated generation of program codes for
step 1 is non-trivial:

• The method arguments of the object constructor of the
target object may be objects as well, and they are re-
quired to satisfy the conditions given in the test case.
Therefore, the object construction algorithm must be
applied recursively to construct the method arguments.

• The object constructor may not be able to create an ob-
ject that meets the test case conditions (as illustrated
in the above example). Additional modifier methods
(e.g.,addStudent) may need to be invoked to bring
the object to the required state.

Therefore, in the remainder of this paper, we will focus on
the automated generation of object construction codes.

Object construction codes consist of three parts: (1)ar-
gument creation: create argumentsu1, . . . , un of the target
constructorC; (2) object creation: create the target object
x; and (3)object modification: modify the state ofx by ap-
plying modifier methodsM1, . . . , Mm. For example,

C1 u1 = new C1(. . .); // part 1
. . .

Cn un = new Cn(. . .);

C x = new C(u1, . . . , un); // part 2

x.M1(. . .); // part 3
. . .

x.Mm(. . .);

Because an argument can also be an object, the codes for
creating an argument may also involve three parts, just like
object construction codes. Therefore,recursive planningis
needed to correctly generate the program codes.

4.2. REBID Planner

A recursive bidirectionalplanner called REBID for gen-
erating object construction codes has been developed and
presented in [9]. REBID starts the planning process by gen-
erating object creation code (part 2). This is a good strat-
egy because a class typically has far fewer constructors than
modifier methods. Many classes may even have only one
constructor. REBID worksbackwardto generate the codes
for constructing the argumentsu1, . . . , un recursivelybe-
cause the construction of the arguments may also involve
3-part codes. At the same time, REBID also worksforward,
if necessary, to generate the codes to bring the the target ob-
ject to the required state.



Details of REBID is described in [9] in the form of anon-
deterministicplanner algorithm. Here, we give a brief sum-
mary of REBID and its deterministic implementation using
heuristic search with reachability tests. This search strategy
significantly improves the search efficiency and effective-
ness of REBID compared to the simple method of depth-
first search without heuristics described in [9].

In REBID, the input conditions specified in a test case,
as well as the preconditions and postconditions of methods,
are regarded as constraints on the object’s state labels and
method arguments. REBID invokes the Omega Calculator
to perform constraint solving to determine whether the con-
ditions can be satisfied.

Nondeterministic REBID

MakePlan

1. Create initial plan with initial instruction for the target
object and the object’s constraintsR. The method for
constructing the object is not yet determined.

2. Repeat

(a) If all the methods of all the instructions have been
determined, and all constraints inR have been
satisfied, then instantiate the unbound state labels
and method arguments, and return the plan.

(b) Else, CreateObject or ModifyObject.

CreateObject

1. Choosean instructionI in the plan whose method is
not yet determined.

2. Choosean appropriate constructor method that can
satisfy at least some of the constraints inR.

3. Set the method and arguments of instructionI.
4. Record the method’s preconditions and postconditions

as the constraints involved in executingI.
5. Record variable bindings.
6. ExpandArguments of instructionI.

ModifyObject

1. Choosethe last instructionI that modifies an object
such that execution ofI still cannot fully satisfy the
object’s constraints.

2. Choosean appropriate modifier method that can sat-
isfy at least some of the constraints.

3. Create a new instructionJ with the chosen method and
arguments.

4. Include instructionJ into the planafter instructionI.
5. Record the method’s preconditions and postconditions

as the constraints involved in executingJ .
6. Record bindings of state labels and method arguments.
7. ExpandArguments of instructionJ .

ExpandArguments(I)

For each argumentu of instructionI that is not a string lit-
eral and not a constant of primitive data type:

1. Choosean unbound state label from the constraints in
R that can be bound tou.

2. Create instructionJ for argumentu and the con-
straints onu. The method for constructing argument
u is not yet determined.

3. Insert instructionJ into the planbeforeinstructionI.
4. Record bindings of state labels and method arguments.

The nondeterministicChooseselects five types of can-
didates: instructions, class methods, method arguments, un-
bound state labels, and constraints. There are finite and enu-
merable numbers of instructions, class methods, state la-
bels, and constraints. So, they can be found with a search
algorithm. Selection of method arguments is more compli-
cated because there is potentially an infinite number of pos-
sible values and they may need to satisfy some methods’
preconditions. If the value of an argument is given in the
test case (which is assumed to satisfy the preconditions),
then it can be assigned the value. Otherwise, the precondi-
tions have to be recorded as constraints and the values can
only be determined at the end of the planning process (Step
2(a) ofMakePlan) by proper instantiation of the arguments.

4.3. Heuristic Search

Below is a summary of the deterministic implementation
of REBID.

Deterministic REBID

1. Make initial plan and insert it into a search queue.
2. Repeat

(a) Remove the plan at the front of the queue.
(b) Invoke Omega Calculator to perform instantia-

tion and binding of each state label and method
argument to an appropriate value that satisfies
their constraints. These constraints may come
from the test case or the preconditions or post-
conditions of the methods in the plan.

(c) If binding fails, continue with next iteration.
(d) If binding succeeds and the plan satisfies all the

constraints inR, then terminate with the plan.
(e) Construct new plans by choosing either construc-

tor or modifier methods. Each new plan is con-
structed with one new method selected.

(f) Invoke Omega Calculator to perform reachability
tests on the chosen methods and the correspond-
ing objects.

(g) Insert new plans into search queue based on
heuristics.



The heuristics used in the insertion of new plans are:

• Reachable plans are inserted at the front of the queue,
and sorted in decreasing number of state labels in the
test case that the plans affect. Anaffectedstate label
is a state label in the test case whose state is changed
by the application of a method. In other words, a plan
is inserted nearer to the front of the queue if its most
recently included instruction affects more state labels.

• Unreachable plans are inserted at the front of the queue
behind the reachable plans, and ordered in the same
manner as reachable plans.

Note that reachability test is performed for a single
method applying on a single target object. A plan is reach-
able if the application of the method on the target object
satisfies the constraints on the object, which can be just
a subset of all the constraints in the test case. Unreach-
able plans are not discarded immediately because, in some
cases, a desired goal state is not reachable by applying only
one method. They are retained in the queue but given a
lower priority for further expansion. Therefore, the heuris-
tic search is guaranteed to find a valid plan and terminate at
Step 2(d).1

The ordering of the plans by the number of affected
state labels tells the planner to first try to expand a plan
whose most recently included method affects more state la-
bels in the test case, i.e., trying to satisfy more constraints. If
the method is found to satisfy many constraints, then there
is a very good chance that it is the correct method to in-
voke. Furthermore, after satisfying many constraints, there-
maining planning problem would be easier to solve because
there are fewer remaining constraints to satisfy. On the other
hand, a method that affects very few state labels in the test
case might be a wrong method because it is relatively easy
for many methods to satisfy few (e.g., one) state labels. If
a wrong method is chosen, then expanding the plan would
not lead to a valid final plan, and a lot of search effort would
be wasted in expanding the plan.

Different search strategies can be obtained by changing
the method of inserting new plans into the queue. For exam-
ple, if new plans are always inserted at the front of the queue
without heuristics, then the algorithm reduces to depth-first
search. On the other hand, if new plans are always inserted
at the back of the queue without heuristics, then the algo-
rithm reduces to breadth-first search.

4.4. Reachability Tests

Reachability tests play a crucial role in the determinis-
tic implementation of REBID. They determine whether the

1 It is assumed that a valid plan exists for a test case. Verifying whether
a test case is viable and testable is beyond the scope of this paper.

the preconditions of a method are satisfied, and whether the
postconditions of a method invocation imply the constraints
on an object. If the constraints are satisfied, then the goal
state of the object (represented as constraints) is reachable
after applying the method on the object in the test program.

Reachability tests are performed on one object at a time.
Single application of a method on an object involves aone-
step reachability test. Multiple, repeated application of a
method on an object involves amulti-stepreachability test.
Sequential applications of different methods on the same
object is not considered in reachability tests because deter-
mining the correct sequence of method invocation is the task
of the REBID planner.

One-Step Reachability Tests

First, let us describe one-step reachability test. Single ap-
plication of a method changes the state of an object from
the pre-state to the post-state. In order that the method
can be invoked successfully, the pre-state has to satisfy the
method’s preconditionP . The successful invocation of the
method changes the object’s state in a manner specified in
the method’s postconditionQ. So, the post-state is given by
the postconditionQ. So, the one-step reachability test can
be formulated as aconstraint satisfactionproblem:

{[a1, . . . , am, s1, . . . , sn] : P ∧ Q ∧ C} (1)

whereai are the method’s arguments,sj are the object’s
state labels, andC represents the constraints.

For example, suppose the pre-state of acourse ob-
ject is#max = 1 && #size = 0. If we want to know
whethersetMax(a) can change the state ofcourse ob-
ject to#max = 5 && #size = 0, then we can formu-
late the following constraint satisfaction problem:

{[a, max, size, newmax] :
a >= size &&
newmax = a && newmax >= size &&
max = 1 && size = 0 && newmax = 5}

In this example,#max is an affected state label. So, two
versions of the state label is automatically created by RE-
BID to represent the state label at the pre-state and the post-
state. The first line lists the set of method arguments and
state labels. The second line comes from the precondition
of setMax(a), and the third from the postcondition. The
last line comes from the pre-state and the desired post-state.

In REBID, a binding table is maintained to record the
values of bound state labels and method arguments. So, RE-
BID can simplify the above constraint satisfaction problem
by (1) including only unbound state labels and method ar-
guments in the label set, and (2) replacing the bound state
labels and method arguments by their bound values. This
method yields the following simplified constraint satisfac-
tion problem:

{[a] : a >= 0 && 5 = a && 5 >= 0}



which requires less work on Omega Calculator.
In Omega Calculator syntax, the above constraint satis-

faction problem is written as

R := {[a] : a >= 0 && 5 = a && 5 >= 0};

Evaluation of this expression in Omega Calculator yields

{[5]}

which is a set that contains the possible value. This means
the constraints can be satisfied, and in addition,a can be
bound to the value 5. If the constraints cannot be satisfied,
then Omega Calculator will returnFalse. So, Omega Cal-
culator performs not only constraint satisfaction but also
instantiation and binding of values to the state labels and
method arguments. The bound labels and their values are
recorded in REBID’s binding table. Essentially the same
procedure is performed in Step 2(b) of the deterministic RE-
BID for instantiation and binding.

Multi-Step Reachability Tests

Multi-step reachability test is performed using Omega
Calculator’sreachable function. Its syntax is

R := reachable ofgoal-state-labelin (list of state labels)
{ state-label: start-state|

state-label-> state-label: transition};

The | symbol means “or”. For example, suppose the
pre-state of a course object is #max = 10 &&
#size = 0, and we want to know whether multiple in-
vocations ofaddStudent(s) can change the state of
course object to#max = 10 && #size = 5. In this
case, according to the specification ofaddStudent,
only #size is affected by the method. So, form a state
by the namet that contains onlysize, which de-
notes the pre-state of#size. Because the state is changed
by the method, the post-state oft contains a new la-
belnewsize.

In Omega Calculator, the above multi-step reachability
test can be written as

R := reachable of t in (t) {
t : {[size, max] : size = 0 && max = 10},
t -> t: {[size, max] -> [newsize, max] :
exists([s] : s != null && size < max &&

newsize = size + 1 &&
exists([s1] : s1 = s))

}};

The second line defines the start state oft. The third line
indicates the transition that changes the state. Theexists
clause specifies the constraints on the state transition, which
has the same syntax as Eq. 1. The fourth line comes from
the method’s precondition and the last two lines from its
postcondition. The symbolnull is substituted with a hash
value that represents a known constant; otherwise, Omega
Calculator will regard it as an unknown label.

The above multi-step reachability test can also be sim-
plified by REBID using the binding table into:

R := reachable of t in (t) {
t : {[0]},
t -> t: {[size] -> [newsize] :

exists([s] : s != null && size < 10
&& newsize = size + 1)}

};

The value 0 is retained in the start state oft because the
state label#size is affected by the method. On the other
hand,#max can be removed because it is not affected. The
existential quantification in the method’s post-conditionis
also removed because it only specifies a binding of the
object’s state label with the method argument, which is
recorded in the binding table.

Evaluation of the expression in Omega Calculator yields

R := {[size] : 1 <= size <= 10}

which gives a set of possible solutions tot. To verify
whether the solutions satisfy the test case requirement, an
intersection is performed between the returned set and the
test case requirement (i.e.,#size = 5) because, in gen-
eral, two sets with non-empty intersection (i.e., can satisfy
both sets) may not contain each other as a subset:

R intersection {[5]};

which yields the answer

{[5]}

This means that the reachability test is successful. If the test
fails, Omega Calculator will return

{[size] : FALSE}

which means that the intersection is an empty set.
Note that the multi-step reachability test formulated in

this section can also be used to perform single-step reacha-
bility test. But, Omega Calculator takes more time to per-
form single-step reachability test using thereachable
function than simple constraint satisfaction. Therefore,in
REBID, single-step reachability test is solved using con-
straint satisfaction and multi-step reachability test is solved
using thereachable function.

5. Experiments and Discussions

Five variations of the REBID planner were tested:

• BFS: Breadth-first search without heuristics.
• DFS: Depth-first search without heuristics.
• 0RT: Heuristic search without reachability test (RT).

The plans are ordered by the number of affected state
labels without checking whether they are reachable.

• 1RT: Heuristic search with one-step RT only.



• MRT: Heuristic search with one-step and multi-step
RT. One-step RT is performed first. Multi-step RT is
performed only if one-step RT fails.

The performance of the algorithms were measured in terms
of (1) execution time (in a Pentium 1.6GHz PC with 256MB
RAM), (2) depth of search tree, and (3) total number of
plans generated, which reflects the space requirement.

Three test cases were performed based on the example
specifications given in Section 3. These specifications were
chosen because they are simple and straightforward, and
yet rich enough to illustrate various important aspects of
the REBID algorithm. If more complex specifications were
chosen, then it would be very difficult to really study and
understand the behavior of REBID, let alone using it in
practical applications.

5.1. Test Case 1

Test Case 1 assessed the performance of the algorithms
in constructing a simple object that contained another ob-
ject as its attribute:

Course course1
course1.#max = 10
course1.teacher = teacher1
teacher1.name = "Ms Lee"

The test performance is as follows:

BFS DFS 0RT 1RT MRT
run time (s) 0.51 > 120 0.01 0.17 0.19
depth 3 > 106 3 3 3
no. of plans 30 > 373 5 5 5

The search algorithms with heuristics were most efficient
and they found valid plans by searching only a tree of depth
3 containing 5 plans. MRT took a little longer than 0RT
and 1RT because it invoked thereachable function of
Omega Calculator, which took a little more time to solve
compared to simple constraint satisfaction. BFS could also
find a valid plan after searching through 30 plans up to a
depth of 3. Therefore, it took longer to find a valid plan.

DFS could not find a valid plan after executing for 2
minutes and was aborted. It had already searched through
373 plans with a search depth of 106. This happened be-
cause of the following reason. DFS happened to choose the
constructor that constructs aCourse object with#max =
1 first. Then, it pickedincMax to try to increase#max.
After choosingincMax, the precondition ofdecMax be-
came satisfiable, anddecMax was always tried first be-
foreincMax. So, DFS was trying alternate invocations of
incMax anddecMax, which could not produce a valid
plan no matter how long the sequence of instructions was.

If we swapped the sequence ofincMax anddecMax
in the specification so that DFS always triedincMax be-

fore decMax, then DFS could also find a valid plan. The
test results for this case are:

BFS DFS 0RT 1RT MRT
run time (s) 0.50 0.73 0.01 0.17 0.19
depth 4 12 3 3 3
no. of plans 33 61 5 5 5

Heuristic search still executed more efficiently. The plans
generated by BFS and heuristics search were:

Course course1 = new Course(10);
Teacher teacher1 = new Teacher(Ms_Lee, 1);
course1.setTeacher(teacher1);

The plan generated by DFS was:

Course course1 = new Course();
course1.setTeacher(teacher1);
course1.incMax();
... // repeat 8 times
course1.incMax();
Teacher teacher1 = new Teacher("Ms Lee", 1);

This test case shows that, without the use of heuristics and
reachability tests, DFS is very sensitive to the sequence of
method specifications. On the other hand, the heuristics al-
gorithms significantly shorten the execution time by direct-
ing the search along paths that are more likely to succeed.

5.2. Test Case 2

Test Case 2 measured the algorithms’ performance in
constructing an aggregate object that contained 2 elements.

Course course1
Course1.#max = 10
course1.#size = 2

For test Case 2, DFS again could not find a valid plan after
executing for 2 minutes and was aborted:

BFS DFS 0RT 1RT MRT
run time (s) 4.87 > 120 > 120 0.54 0.62
depth 6 > 106 > 106 5 5
no. of plans 199 > 373 > 373 9 9

This time, it was trying alternate invocations of
addStudent and deleteStudent. 0RT, with-
out reachability test, also suffered the same problem. On
the other hand, 1RT and MRT could obtain valid plans, and
they executed more efficiently than BFS did.

Same as for Test Case 1, by swapping the sequence of
addStudent anddeleteStudent in the specification,
DFS and 0RT can also generate a valid plan. In this case,
the test results are as follows:

BFS DFS 0RT 1RT MRT
run time (s) 4.86 4.08 0.26 0.50 0.61
depth 6 14 5 5 5
no. of plans 202 65 9 9 9



Figure 1. A screen-shot of the execution of the REBID planner for Test Case 2.

Figure 1 illustrates a screen-shot of the execution of RE-
BID for Test Case 2. The top-right pane shows an internal
representation of the class specification. The middle pane
shows the test case constraints that must be satisfied by the
requiredCourse object. The bottom pane shows the se-
quence of instructions generated for creating the required
Course object. The heuristic search algorithms and BFS
generated the same plan as given in Fig. 1. The plan gener-
ated by DFS was:

Course course1 = new Course();
course1.incMax();
... // repeat 8 times
course1.incMax();
Student student1 = new Student("name1", 1);
course1.addStudent(student1)
Student student2 = new Student("name2", 1);
course1.addStudent(student2)

5.3. Test Case 3

Test Case 3 was similar to Test Case 2 except that the
algorithms were to construct aggregate objects with maxi-
mum number of elements, and the maximum numbern var-
ied from 1 to 10:
Course course1

course1.#max = n

course1.#size = n

For Test Case 3, when the original method sequence was
used, DFS and 0RT could not generate a valid plan for
n > 1, 1RT failed forn > 2, and BFS failed forn > 3,

each after running for 2 minutes. DFS, 0RT, and 1RT were
stuck for the same reason discussed in Sections 5.1 and 5.2.
On the other hand, BFS tried to search through all plans to
find the valid one, and it could not complete the search in
2 minutes whenn > 3. More details about BFS’s behav-
ior is discussed below.

As for Test Cases 1 and 2, after changing the method se-
quences in the specification, DFS, 0RT, and 1RT could all
generate valid plans. Figure 2 illustrates the algorithms’per-
formance. The heuristic search algorithms were more ef-
ficient than DFS. MRT and 1RT were a little slower than
0RT due to the invocation of reachability tests. MRT in-
voked multi-step reachability tests using Omega Calcula-
tor’s reachable function, which took a little more time
than the one-step reachability tests invoked by 1RT. BFS
tried to search all possible plans for a valid plan. Its exe-
cution time and space requirement (number of plans gener-
ated) increased exponentially withn, even though its search
depth increased linearly withn. For n = 3, it required 73
sec. Forn > 3, it could not find a valid plan within 2 min-
utes and was aborted.

6. Conclusion

This paper presented a method of improving the search
efficiency and effectiveness of REBID for automated gen-
eration of test programs. Using heuristic search with multi-
step reachability tests, it can find a correct plan (i.e., instruc-
tion sequence) more efficiently than BFS and DFS. More-
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Figure 2. Performance of search algorithms with increasing n. (a) Search depth, (b) number of plans
generated, and (c) search time (sec). In (a), BFS’s search depths for n > 3 are projected values based
on its search depths for n ≤ 3.

over, it can always find a valid plan regardless of the se-
quence of methods in the class specifications because it can
direct the search along paths that are more likely to yield a
valid plan. On other the hand, heuristic search with one-step
reachability tests and no reachability tests may not be able
to find a valid plan for moderately complex test cases.

Further enhancements can be made in the following
ways. The current reachability tests return only true or false
values. They can be enhanced to returnlikelihood of suc-
cessbased on a measure of thedistancebetween the state
of the current plan and the goal state. For example, it can
compute the likelihood value from the difference between
the desired size and the current size.

Another way to enhance reachability tests is to perform
partial reachability tests. That is, if a subset of constraints
can be satisfied by the invocation of a method, then partial
reachability is obtained. This is especially useful when ap-
plication of several different modifier methods is required
to bring an object to the desired state. The cardinality of the
reachable subset can also be used a measure of the likeli-
hood of success for heuristic search.
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