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Abstract. Video background recovery is a very important task in com-
puter vision applications. Recent research offers robust principal compo-
nent analysis (RPCA) as a promising approach for solving video back-
ground recovery. RPCA works by decomposing a data matrix into a
low-rank matrix and a sparse matrix. Our previous work shows that
when the desired rank of the low-rank matrix is known, fixing the rank
in the algorithm called FrALM (fixed-rank ALM) yields more robust
and accurate results than existing RPCA algorithms. However, applica-
tion of RPCA to video background recovery requires that each frame in
the video is encoded as a column in the data matrix. This is imprac-
tical in real applications because the videos can be easily larger than
the amount of memory in a computer. This paper presents an algorithm
called iFrALM (incremental fixed-rank ALM) that computes fixed-rank
RPCA incrementally by splitting the video frames into an initial batch
and an incremental batch. Comprehensive tests show that iFrALM uses
less memory and time compared to FrALM. Moreover, the initial batch
size and batch quality can be carefully selected to ensure that iFrALM
reduces memory and time complexity without sacrificing accuracy.
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1 Introduction

Video background recovery is a very important task in applications such as
video surveillance, traffic monitoring, etc. Traditionally, various approaches have
been developed for this task. Background recovery is closely related to moving
object detection and some works [10, 12–14] attempt to simultaneously solve
these two problems within one framework. Recent research offers robust principal
component analysis (RPCA) as a promising alternative approach for solving
a wide range of problems including video background recovery [2, 16]. RPCA
utilizes the fact that the image frames in a video contain consistent information
about the common background. It constructs a data matrix from multiple video
frames and decomposes it into a low-rank matrix and a sparse matrix, such that
the low-rank matrix corresponds to the background in the images and the sparse
matrix captures the non-background components. It has been proved that exact
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solution of RPCA is available if the data matrix is composed of a sufficiently low-
rank matrix and a sufficiently sparse matrix [2, 3, 8, 15, 19]. Various algorithms
have been proposed for solving RPCA problems [6, 8, 9, 15, 16]. In [6], we show
that when the desired rank of the low-rank matrix is known, fixing the rank in
the algorithm yields more robust and accurate results than the method based on
augmented Lagrange multiplier (ALM), which is among the most efficient and
accurate methods [8]. In particular, our fixed-rank algorithm called FrALM is
less sensitive than ALM to the choice of the weighting parameter λ.

Application of RPCA to video background recovery requires that each frame
in the video is encoded as a column in the data matrix. This is impractical
in real applications because the videos can be easily larger than the amount
of memory in a computer. For online application where the video frames are
received continuously over long duration, this limitation is especially severe.

This paper presents an algorithm called iFrALM (incremental fixed-rank
ALM) that computes fixed-rank RPCA incrementally by splitting the video
frames into an initial batch and an incremental batch. Instead of reserving mem-
ory for all the video frames, iFrALM requires only enough memory to keep the
incremental batch of video frames and the fixed-rank components of the initial
batch. As new video frames arrive, iFrALM accumulates them into a fixed-size
batch and uses them to update the results, thus overcoming memory limitation.
Moreover, with prudent choices of batch size and content, iFrALM can execute
more efficiently than our previous FrALM without sacrificing accuracy.

2 Related Work

2.1 Incremental PCA and RPCA

Singular value decomposition (SVD) is a powerful tool that is used in PCA and
RPCA. Its computational cost on a m × n (m > n) matrix is O(mn2), which
limits its application to small data set. To overcome this limitation, incremental
SVD (iSVD) has been studied and many methods [1, 5, 17] are proposed. With
iSVD, both computation time and memory are greatly saved.

One successful application of iSVD is incremental PCA, which gives rise to
the eigenspace update algorithm [4] and Sequential Karhunen-Loeve method [7].
However, approximation errors of these methods cannot be estimated. To tackle
this problem, Zhao et al. [18] proposed a SVD updating based approach for
incremental PCA, which has a mathematically proven error bound.

Incremental SVD has also been used for RPCA. Rodriguez et al. [11] used
iSVD in their incremental principal component pursuit (iPCP) algorithm but
implementation details are not discussed. As iPCP updates the low-rank and
sparse components by appending only a single column to the existed data, its
accuracy cannot be guaranteed. To our best knowledge, no incremental method
for fixed-rank RPCA has been proposed. In this paper, we show that proper
application of iSVD can increase efficiency without sacrificing accuracy.
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3 Incremental Fixed-Rank RPCA

Our original fixed-rank RPCA algorithm FrALM [6] solves the problem

min
A,E

∥E∥F , subject to rank(A) = known r, D = A+E, (1)

where ∥ · ∥F is the Frobenius norm, and D,A and E ∈ ℜm×n are data matrix,
rank-r matrix and noise matrix, respectively. It uses SVD to minimize Eq. 1. SVD
factorizes a matrix A ∈ ℜm×n as USV⊤, where S ∈ ℜn×n is a diagonal matrix
whose diagonal elements are singular values, and U ∈ ℜm×n and V ∈ ℜn×n

are the left and right singular matrix, respectively. In applications such as video
background recovery, the number of pixels m is much greater than the number of
frames n, and essential information lies in a significantly low-dimensional space
defined by the first r (i.e., r ≪ n) dominant singular vectors and values. Thus,
A can be well approximated by the rank-r SVD

Ar = UrSrVr⊤, (2)

where the diagonal elements of Sr ∈ ℜr×r are the largest r singular values, and
Ur ∈ ℜm×r and Vr ∈ ℜn×r are the matrices consisting of the corresponding r
left and right singular vectors, respectively.

Given an incremental batch of data encoded in the matrix Di ∈ ℜm×l, the
rank-r SVD of the combined matrix [Ar Di] can be computed using incremental
SVD (iSVD) [17], which works on Ur, Sr, and Vr instead of Ar. Consequently,
the computation cost of iSVD is O(ml2), which is much smaller than that of
applying normal SVD on the combined matrix, which is O(m(n+ l)2).

Our incremental fixed-rank RPCA algorithm works on the data matrix that
is split into an initial batch D0 and an incremental batch D1. It applies the non-
incremental FrALM on the initial batch D0 to recover rank-r matrices U0, S0,
and V0. Then, it applies incremental fixed-rank ALM algorithm (iFrALM, Algo-
rithm 1) to compute the rank-r solutions of the combined matrix [A0 D1], where
A0 = U0S0V

⊤
0 , and produces rank-r matrices U1, S1, and V1. Consequently,

the rank-r component of [A0 D1] can be recovered as A1 = U1S1V
⊤
1 . This in-

cremental process can be repeated for additional incremental batches Di, i > 1.
In general, iFrALM takes Ui−1, Si−1, Vi−1 and Di as inputs and produces Ui,
Si and Vi as outputs, which can be used in the next incremental step.

The iFrALM algorithm has a similar structure as the non-incremental FrALM.
In line 2, sgn(·) is the sign function which computes the sign of each matrix el-
ement, and J(·) computes a scaling factor

J(X) = max(∥X∥2, λ−1∥X∥∞) (3)

as recommended in [8]. Tϵ in line 7 denotes the soft-thresholding function

Tϵ(x) =

x− ϵ, if x > ϵ,
x+ ϵ, if x < −ϵ,
0, otherwise.

(4)
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Algorithm 1: iFrALM

Input: Ui−1, Si−1, Vi−1, Di, r, and λ.
1 A = 0, E = 0.
2 Y = sgn(Di)/J(sgn(Di)), µ > 0, ρ > 1.
3 repeat
4 repeat

5 Ui,Si,V
⊤
i = iSVDr([Ai−1 Di −E+Y/µ]).

6 A = Ui Si Vi(n+ 1 : n+ l, :)⊤.
7 E = Tλ/µ(Di −A+Y/µ).

8 until convergence;

9 U′,S′,V′ = SVD(Si Vi(1 : n, :)⊤).
10 Ui−1 = UiU

′, Si−1 = S′,Vi−1 = V′.
11 Y = Y + µ(Di −A−E), µ = ρµ.

12 until convergence;
Output: Ui,Si,Vi.

In line 5, a rank-r iSVD (iSVDr) [17] is used to compute the SVD of the com-
bined matrix [Ai−1 Di−E+Y/µ]. It computes the rank-r matrices Ui, Si, and
Vi from Ui−1, Si−1, and Vi−1 instead of directly from Ai−1 = Ui−1Si−1V

⊤
i−1.

Next, lines 6 and 7 compute the low-rank matrix A and error matrix E of Di,
which are represented by the last l rows of Vi. It is not necessary to compute
the error matrix of Ai−1 because Ai−1 is already a low-rank matrix.

Lines 9 and 10 are used to update Ui−1, Si−1, and Vi−1. Without them,
the subspaces spanned by Ui will be identical to that of Ui−1, which defeats
the incremental algorithm. These matrices can be updated either in the inner
loop or the outer loop. Updating in the inner loop before it converges may
cause instability and incur additional computation cost. Therefore, we choose to
update them in the outer loop. Note that Ui Si Vi(1 : n, :)⊤ is an m×n matrix,
which is much larger than the r×n matrix Si Vi(1 : n, :)⊤. Therefore, line 9
performs SVD on the smaller matrix Si Vi(1 : n, :)⊤, whose results are used to
update Ui−1, Si−1, and Vi−1 as shown in line 10. Finally, line 11 is the standard
technique for applying augmented Lagrange multiplier (ALM) method.

The time complexity of iFrALM is dominated by the incremental SVD, which
is O(ml2). Its memory complexity is O(ml), the amount required for storing Di,
A, E, and Y. Thus, it uses less time and memory compared to FrALM on the
whole combined matrix [Ai−1 Di], which has time and memory complexity of
O(m(n+ l)2) and O(m(n+ l)), respectively.

4 Experiments and Discussions

4.1 Data Preparation

The performance of the proposed iFrALMwas tested on recovering the stationary
backgrounds of three videos: Kungfu [6], Traffic [6] and Shopping Center (avail-
able from http://perception.i2r.a-star.edu.sg/bk model/bk index.html). These
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color videos were converted to gray images. For Shopping Center video, the
gray images were downsampled to 128 × 160. The other videos had image size
of 150 × 200. Test programs were implemented in Matlab and ran in a 64-bit
Windows 7 PC with Intel Core i7-2600 CPU and 16GB RAM.

Four test scenarios were set by varying the following properties:

1. initial batch size (Section 4.2),
2. incremental batch size (Section 4.3),
3. batch quality (Section 4.4), and
4. multiple incremental batches (Section 4.5).

Both iFrALM and FrALM were executed under these four conditions. In addi-
tion, the average image of each video was computed to indicate the complexity
of a video. Compared to the ground truth, average image with small error cor-
responds to a simple problem.

Once the background is recovered, the moving objects can be easily detected
by thresholding the differences between the input image and the recovered back-
ground A. Therefore, we also compare iFrALM with some baselines of moving
object detection in Section 4.6.

As all videos were captured with stationary cameras, the fixed rank r was 1
for both FrALM and iFrALM. The parameters λ, ρ and initial µ were fixed to
1/

√
m, 1.5 and 0.5/∥Y∥2. The algorithms’ accuracy was measured in terms of

the mean squared error (MSE) between the ground truth G and the algorithm
outputs Ui, Si, and Vi:

Eg =
1

mn
∥G−UiSiVi

⊤∥2F . (5)

For Kungfu video, the background only image was available and it served as
the ground truth. For Shopping Center and Traffic videos, their ground truths
were not available. In this case, FrALM was applied to the whole video and the
recovered rank-1 matrix was regarded as the ground truth. In addition, execution
time of FrALM and iFrALM were recorded.

4.2 Initial Batch Size

In this experiment, 70 frames each of Shopping Center and Kungfu videos were
used. Their initial batch size varied from 5 to 50 consecutive frames in increments
of 5, and their incremental batch size was fixed at 20 consecutive frames. The
Traffic video had 250 frames. So, its initial batch size was set to 10, 20, 50, 100,
150, and 200, and its incremental batch size was fixed at 50 frames.

Figure 1(a) shows the results of running FrALM on all video frames in the
initial and incremental batches, FrALM on the initial batch, iFrALM on the
incremental batch, and average of all video frames. Given enough video frames,
the fixed-rank methods are much more accurate than the average frame. More-
over, the error (MSE) curves of iFrALM and FrALM on initial batch have the
same trend. As the initial batch size increases, iFrALM’s error decreases and
approaches that of FrALM on all video frames.
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Fig. 1. The results of varying initial batch size. (1) Shopping Center. (2) Kungfu. (3)
Traffic. (a) MSE. (b) Running time.

Figure 1(b) shows the algorithms’ running time of the algorithms. Note that
the results of FrALM on initial batch serve as inputs of iFrALM. So, the total ex-
ecution time is sum of the execution times of FrALM on initial batch and iFrALM
on the incremental batch. FrALM’s running time increases with increasing initial
batch size. On the other, iFrALM’s running time is not significantly affected by
the initial batch size. Moreover, it is much smaller than FrALM’s running time
on the initial batch. As a result, the total execution time is significantly smaller
than FrALM’s running time (in most cases) on all video frames.
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4.3 Incremental Batch Size

This experiment used the same data as that in Section 4.2. For both Shopping
Center and Kungfu videos, their initial batch size was fixed at 20 consecutive
frames and their incremental batch size varied from 5 to 50 consecutive frames
in increments of 5. For the Traffic video, its initial batch size was fixed at 50 and
its incremental batch size was set to 10, 20, 50, 100, 150, and 200.

Figure 2 shows that the algorithms’ performance is consistent with that in
Section 4.2. In particular, iFrALM’s error approaches that of FrALM on al-
l frames as incremental batch size increases. The errors of both iFrALM and
FrALM on all frames are small compared to that of average frame. FrALM’s er-
ror on the initial batch is constant because there is no change in the initial batch
size. iFrALM’s running time is small compared to that of FrALM on the initial
batch, and it increases more gradually with increasing incremental batch size
compared to that of FrALM on all video frames. Therefore, the total execution
time is smaller and increases more gradually than that of FrALM on all frames.

Figure 3 shows some sample results for the case where all incremental frames
are processed. For the Shopping Center video, image averaging produces an
acceptable result, indicating that this video is relatively easy to process. On
the other hand, for the Kungfu and Traffic videos, image averaging produces
visible “ghost” defects in the recovered background images, whereas FrALM
and iFrALM produce cleaner background images, which is confirmed by the
quantitative results shown in Fig. 2(a).

4.4 Batch Quality

The quality of the initial batch can affect the accuracy of iFrALM. Its quality is
bad if it contains slowly moving or temporary stationary objects, which can be
confused with the actual stationary background. On the other hand, its quality
is good if it contains only stationary background or fast moving objects. For
this test scenario, 50 frames of the Shopping Center videos and Kungfu videos
were selected for both the initial and incremental batches. Four test cases were
performed: (1) FrALM on a bad initial batch, whose results were fed to (2)
iFrALM on a good incremental batch, (3) FrALM on a good initial batch, whose
results were fed to (4) iFrALM on a bad incremental batch.

Table 1 shows that initial batch quality significantly affects result of iFrALM.
With a bad initial batch, initial results fed to iFrALM is inaccurate. Although
iFrALM can reduce error with good incremental batch, error is still large com-
pared to the 4th case. On the other hand, with good initial results from FrALM,
iFrALM working a bad incremental batch still produces a lower error compared
to the 2nd case. This result is expected because iFrALM uses iSVD to obtain
approximate solutions. So, good quality initial batch is crucial for iFrALM.

4.5 Multiple Incremental Batches

In online application, incoming video frames are accumulated into a batch and
sent to the incremental algorithm. As time progresses, more video frames are
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Fig. 2. The results of varying incremental batch size. (1) Shopping Center. (2) Kungfu.
(3) Traffic. (a) MSE. (b) Running time.

accumulated and multiple batches are sent to the algorithm iteratively. This
subsection describes a test performed under the same scenario using 1000 con-
secutive frames of the Shopping Center video. The first 50 frames formed the ini-
tial batch and was processed by FrALM to obtain the initial results for iFrALM.
Subsequently, incremental batches of video frames were processed by iFrALM
iteratively for the remaining 950 frames. The incremental batch size b varied for
various test cases, namely 10, 20, 30, 40, 50, 100, and 200, and the number of
iterations k = ⌈950/b⌉. Two incremental batch selection schemes were tested: (1)
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Fig. 3. Results of processing all image frames. (1) Shopping Center. (2) Kungfu. (3)
Traffic. (a) Sample video frame. (b) Average frame. (c) FrALM. (d) iFrALM.

Table 1. Effect of batch quality of iFrALM’s error (MSE).

Dataset
Shopping
Center

Kungfu

FrALM with bad initial batch
101.8 139.3

iFrALM with bad initial and
good incremental batch

35.1 48.5

FrALM with good initial batch
10.3 8.2

iFrALM with good initial and
bad incremental batch

17.8 18.3

consecutive selection, (2) regular sampling at regular frame intervals. In com-
parison, regular sampling requires a large buffer for storing the incoming frames
for selection at regular intervals, whereas consecutive selection requires a small
buffer to store just the b consecutive frames.

Figure 4 plots MSE vs. execution time for each test case under the two
selection schemes. Test result shows that smaller batch size b leads to lower
total running time but higher MSE. This is because the computational cost of
iFrALM is O(km(l/k)2) = O(ml2/k) = O(mlb), which is proportional to b. With
smaller sample size b, less information is available at each iteration, which leads
to higher error.

Compared to consecutive selection, regular sampling captures more global
information over the video. Therefore, it achieves a higher accuracy than con-
secutive selection at the same batch size b. Regular sampling takes more time
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Fig. 4. Plot of MSE vs. execution time. ’C’ denotes consecutive selection and ’S’ de-
notes regular sampling. The number denotes incremental batch size b.

than consecutive selection because its iFrALM takes more iterations to con-
verge. For all 1000 frames, FrALM takes 2640 seconds. Our iFrALM, though
much faster than FrALM, is still not capable of handling background recovery
problem in realtime, e.g., 30 frames per second at 1920× 1080 pixels.

Figure 5 shows some recovered background images of this test. When the
people, highlighted by the red rectangle in Fig. 5(1), remain at the same lo-
cation for extended periods, consecutive selection scheme cannot remove them
completely from the recovered background image (Fig. 5(2b–2d)). In contrast,
regular sampling scheme can recover the stationary background well when b is
at least 50 (Fig. 5(3c, 3d)).

4.6 Moving Object Detection

In this experiment, the first 100 frames of Kungfu video were used. The proposed
iFrALM was compared with average, PCA [10], mixture of Gaussian (MoG) [12]
and FrALM. For iFrALM, we split the 100 frames into 5 subsets by regular
sampling. The first subset was used as initial batch and the other were used
as multiple incremental batches. The results are shown in Figure 6. Thanks
to multimodal modeling of background, MoG outperforms average and PCA.
However, MoG cannot detect some interior pixels of the object. iFrALM and
FrALM achieve similar results, which are much better than those of the others.

5 Conclusion

This paper presented an incremental method for computing fixed-rank robust
PCA. The method works on the data matrix that is split into an initial batch
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Fig. 5. Results processing multiple incremental batches. (1–3) show sample frames
of Shopping Center video, iFrALM’s results with consecutive selection and regular
sampling, respectively. (a) Ground truth background. (b–d) show iFrALM’s results
with b = 1, 50 and 200, respectively.

Fig. 6. The detected moving objects of various methods on the 60th frame. The input
frame is in Column 1. The results of average, PCA, MoG, FrALM and iFrALM are
presented from Column 2 to 6, respectively.

and an incremental batch. It applies the non-incremental FrALM on the initial
batch to recover a rank-r solution, which is used as the input for the incremental
iFrALM to compute the rank-r solution of the incremental batch. iFrALM can be
repeated for additional incremental batches iteratively. iFrALM uses incremental
SVD to reduce computation time and SVD on a small matrix to reduce memory
cost. Comprehensive tests were performed on three videos of varying lengths.
Test results show that both iFrALM and FrALM produce more accurate results
compared to video frame averaging, which is not robust. iFrALM uses less mem-
ory and time compared to FrALM. Test results also show that the initial batch
size and batch quality can be carefully selected to ensure that iFrALM reduces
memory and time complexity without sacrificing accuracy. These promising re-
sults thus pave the way for the application of incremental fixed-rank RPCA for
online video background recovery.
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