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Textured Mesh Surface Reconstruction of Large Buildings
with Multi-View Stereo
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Abstract Reconstruction of 3D models of buildings

has many applications. It can be used for virtual real-

ity, games, digital special effects, heritage preservation,
and city planning. There are three main approaches

for reconstructing 3D models of buildings, namely laser

scanning, structure-from-motion (SfM), and multi-view
stereo (MVS). Laser scanning is accurate but expen-

sive and limited by the laser’s range. SfM and MVS

recover 3D point clouds from multiple views of a build-

ing. MVS methods, especially patch-based MVS, can
achieve higher density than do SfM methods. Sophisti-

cated algorithms need to be applied to the point clouds

to construct mesh surfaces. The recovered point clouds
can be sparse in areas that lack features for accurate re-

construction, making recovery of complete surface diffi-

cult. Moreover, segmentation of the building’s surfaces
from surrounding surfaces almost always requires some

form of manual inputs, diminishing the ease of practical

application of automatic 3D reconstruction algorithms.

This paper presents an alternative approach for re-
constructing textured mesh surfaces from point cloud

recovered by patch-based MVS method. To a good first

approximation, a building’s surfaces can be modeled by
planes or curve surfaces which are fitted to the point

cloud. 3D points are resampled on the fitted surfaces

in an orderly pattern, whose colors are obtained from
the input images. This approach is simple, inexpensive,

and effective for reconstructing textured mesh surfaces

of large buildings. Test results show that the recon-

structed 3D models are sufficiently accurate and realis-
tic for 3D visualization in various applications.
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1 Introduction

Reconstruction of 3D models of buildings has many ap-

plications. It can be used to create 3D models for vir-
tual reality, games, and digital special effects. It can

also be used for preserving heritage architectures and

city planning. There are three main approaches for re-
constructing 3D models of buildings, namely laser scan-

ning, structure-from-motion (SfM), and multi-view stereo

(MVS). Laser scanning [1,4,8,9,14,35] is accurate but
expensive and limited by the laser’s range. SfM and

MVS recover 3D point clouds from multiple views of a

building. SfM recovers both 3D data and camera mo-

tion simultaneously [2,5–7,17,18,28,29,32,33,36]. The
required camera parameters can be calibrated explicitly

or computed by self-calibration methods [16]. MVS ap-

plies various geometric constraints to determine point
correspondence for triangulation of 3D points given known

camera parameters [13,20,26]. In particular, patch-based

MVS (PMVS) [12,13,20,23] can achieve higher density
than do SfM methods.

Laser scanning typically acquires 3D points in an

ordered pattern. So, reconstructing mesh surfaces from
laser range data is relatively easy. On the other hand,

SfM and MVS recover unordered 3D point cloud. So-

phisticated algorithms [10,13,20,22] need to be applied
to the point cloud to construct mesh surfaces. More-

over, the recovered point cloud can be sparse in areas

that lack features for accurate reconstruction, making
recovery of complete surface difficult.

Regardless of the technology used, reconstruction of

an entire building cannot be achieved in practice by a



2 Chen Zhu, Wee Kheng Leow

single laser scan or single point cloud of the building’s

frontal view alone. It is always necessary to repeat the
same process to reconstruct and merge various parts

of the building, making laser scanning technology more

cumbersome to apply. Moreover, segmentation of the
building’s surfaces from surrounding surfaces almost al-

ways requires some form of manual inputs, diminishing

the ease of practical application of automatic 3D recon-
struction algorithms.

This paper presents an alternative approach for re-
constructing textured mesh surfaces from point cloud

recovered by patch-based MVS method. It regards a

building’s surfaces as effectively flat surfaces which can

be modeled by planes or curve surfaces. This is a good
first approximation when the scene depth is much smaller

than the distance of the building to the camera, which is

true of many modern architectural design. In this case,
it is not necessary to apply sophisticated algorithms

to reconstruct detailed mesh surfaces from point cloud.

Instead, simple surfaces are fitted to the point cloud,
and 3D points are resampled on the fitted surfaces in

an orderly pattern, whose colors are obtained from the

input images. In this way, complete textured mesh of

building surfaces can be reconstructed. This approach is
thus simple, inexpensive, and effective for reconstruct-

ing textured mesh surfaces of large buildings.

In the remainder of this paper, we first review exist-

ing methods for reconstructing 3D models of buildings

(Section 2). Next, we present details of our textured
mesh surface reconstruction algorithm (Section 3). Test

results (Section 4) show that the reconstructed 3D mod-

els are sufficiently accurate and realistic for 3D visual-

ization in various applications.

2 Related Work

Many methods have been proposed over the past decades

for the acquisition of 3D models of objects. They can

be broadly categorized as active methods and passive

methods. Active methods use controlled light sources to
illuminate the scene and acquire 3D data from the illu-

minated patterns. These methods include time-of-flight,

shape-from-shading, structured light, active stereo, and
photometric stereo [27]. They are computationally less

demanding than do passive methods, and laser scanning

and structured light are already adopted in commercial
products. They are applicable when the objects of in-

terests can be appropriately illuminated.

Passive methods acquire 3D data only from input
images. Methods such as shape-from-texture, shape-

from-occlusion, shape-from-defocus, and shape-from-con-

tour acquire 3D data from single view point [27]. Due

to the nature of the features used, these methods are re-

stricted to scenes that are rich in the required features,
and they tend to be less accurate than active meth-

ods. Methods such as passive stereo, multi-view stereo,

structure-from-motion, shape-from-silhouettes acquire
3D data using images captured from two or more view

points [27].

Among these methods, laser scanning, structure-
from-motion (SfM), and multi-view stereo (MVS) have

been successfully demonstrated for 3D reconstruction

of buildings and street scenes. Laser scanning is very

accurate and efficient, but requires an expensive laser
scanner and is limited by the laser’s range. In recon-

structing large historic sites, laser scanning is often used

together with other data such as engineering drawing,
aerial images, ground-plane images, etc. [1,4,8,9,14,35]

SfM methods recover 3D data as well as camera po-

sitions and orientations from a sequence of input images
[2,5–7,17,18,28,29,32,33,36]. The required camera pa-

rameters can be calibrated explicitly or computed by

self-calibration methods [16].

MVS methods apply various geometric constraints
to determine point correspondence for triangulation of

3D points given known camera parameters [13,20,26].

They can be more accurate than SfM methods [30].
In particular, patch-based MVS (PMVS) can recover

denser 3D point clouds than do SfM methods [12,13,

15,20,23,24]. SfM and MVS may be used together in
a pipeline with MVS serving as the refinement stage

[6,25]. Sophisticated algorithms are required to recon-

struct mesh surfaces from point cloud. For example,

[10,13] use Poisson surface reconstruction method [21],
and [20,22] employ graph cut algorithm with geometric

constraints.

3 Textured Surface Reconstruction Algorithm

Our proposed algorithm continues from where PMVS

ends. It consists of the following main stages:

1. Recover a 3D point cloud of a building using PMVS.

2. Reconstruct main surfaces from 3D point cloud by
robust surface fitting (Section 3.1) and splitting (Sec-

tion 3.2).

3. Resample 3D points to refine surfaces (Section 3.3).

First, the Bundler algorithm [31] is applied to the input
images to extract matching feature points and camera

parameters. Next, the PMVS algorithm [11–13] is ap-

plied to recover a 3D point cloud with color information

(Fig. 9, 10). Then, robust surface splitting is performed
on the 3D point cloud to split it into multiple parts each

corresponding to a single surface, and the surfaces are

reconstructed by robust surface fitting. Next, 3D points
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Fig. 1 Recovery of 3D point cloud. (Top) A sample input
image of a building. (Bottom) Recovered 3D point cloud.

are resampled over the entire fitted surfaces and their
colors are obtained from the input images. Finally, a

3D mesh model that is complete with color texture is

constructed from the resampled 3D points to represent
the building surfaces.

For a large building, a single point cloud cannot

cover the full extent of the building. In this case, mul-

tiple point clouds are recovered for different parts of
the building, and our algorithm is applied to recon-

struct different parts of the building’s surfaces, which

are aligned and merged together.

3.1 Robust Surface Fitting

First, we consider the case of fitting a single surface to a
set of 3D points. Without loss of generality, we assume

that the surface’s normal is not perpendicular to the

Z-axis, a degenerate case of our algorithm. For a de-
generate case, we can always rotate the surface to align

its normal to the Z-axis, perform the computation, and

then rotate the solutions back to the surface’s original

orientation.
A plane in 3D space can be defined by the equation

Z = S(X,Y ) = a1X + a2Y + a3. (1)

Given a set of n 3D points Xi = (Xi, Yi, Zi), the pa-

rameters (a1, a2, a3) of the plane can be recovered as
the linear least square solution of the matrix equation:

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A curved surface can be recovered in a similar way. For

example, a quadratic surface of the form

Z = a1X
2 + a2Y

2 + a3XY + a4X + a5Y + a6 (3)

can be recovered as the linear least square solution of
the matrix equation:
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Other forms of curved surfaces can be recovered in the

same manner. Our current implementation restricts to

planner and quadratic surfaces which are sufficient for

the test cases. The type of surface is specified by the
user.

The surface recovered in this way is severely affected

by the outliers in the point cloud. It is too tedious to
manually identify the inliers and exclude the outliers.

So, a robust surface fitting algorithm is adopted to au-

tomatically identify the inliers. The robust algorithm
adopts a robust error measure E = mediani ri, where

ri is the residual error of a point Xi with respect to the

fitted surface:

ri = (Zi − S(Xi, Yi))
2. (5)

It iteratively identifies and excludes outliers from the

point cloud. The robust surface fitting algorithm can
be summarized as follows:

Robust Surface Fitting

1. Initialize P ← input 3D point cloud, E ←∞.

2. Repeat while E > τs:
(a) Fit a surface S to the points in P .

(b) Compute robust error E of S on P .

(c) Remove from P the points with residual ri ≥ E.

Empirical tests show that a threshold of τs = 5×10−7

yields good results. Figure 2 shows that the algorithm

can converge within a small number of iterations and

the solution has very small error (Fig. 3). Although a

standard robust algorithm such as RANSAC may be
used, the above algorithm is much more efficient than

RANSAC. It is stable and accurate because of the large

number of inliers available in the point cloud for accu-
rate fitting.

3.2 Robust Surface Splitting

The above algorithm fits a single surface to 3D points.

Now, we illustrate how to split the input 3D point cloud

into multiple parts for fitting different surfaces.
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Fig. 2 Convergence curve of robust surface fitting.

(a)

(b)

Fig. 3 Robust surface fitting. (a) 3D points around a curved
surface. (b) Inliers identified by robust fitting algorithm lie
very close to the surface.

Two non-parallel surfaces of the form Z = S1(X,Y )

and Z = S2(X,Y ) intersect along a line or, more gener-
ally, a curve. Define D(X,Y ) as the absolute difference

between the two surfaces:

D(X,Y ) = |S1(X,Y )− S2(X,Y )|. (6)

Then, the equation D(X,Y ) = 0 gives the intersection

of the two surfaces, and D(X,Y ) measures the distance
of any surface point X = (X,Y, Z) to the intersection.

Let us project the 3D data points along the Z-axis

onto the X-Y plane, and let l(X) denote the equation
of a line manually drawn on the X-Y plane to divide

the data points into two parts (Fig. 4):

l(X) = b1X + b2Y + b3 = 0. (7)

Then, points Xi not lying on the line have non-zero val-

ues l(Xi). So, a set of 3D points Xi can be split into two
subsets according to the sign of l(Xi). After splitting,

a surface can be fitted to each of the two subsets using

the robust surface fitting algorithm. The intersection of

these surfaces induces a change of l(X), and the whole
process can be iterated to obtain optimal splitting. So,

the robust surface splitting algorithm can be summa-

rized as follows:

Fig. 4 Splitting of point cloud for reconstructing multiple
surfaces. (Green) Initial splitting line. (Red) Refined splitting
line.

Robust Surface Splitting

1. Let P be a 3D point cloud to be split and l be the

initial splitting line.
2. Repeat:

(a) Split P into P1 and P2 according to the sign of

l(Xi), for all pints Xi ∈ P .
(b) Perform robust fitting of surface S1 to P1 and

S2 to P2.

(c) Compute D(Xi) of each point Xi and select a

subsetQ of points with the smallestD(Xi), which
are near the intersection.

(d) Fit l to the points in Q using linear least square

method.

This algorithm is iterated for a fixed number of itera-
tions to split the input point cloud and reconstruct the

surfaces.

In the current implementation, the size of Q is set
to 50. Empirical tests show that 2 iterations are suffi-

cient to obtain good splitting. The same algorithm is

repeatedly applied to different parts of the point cloud
to robustly split and reconstruct multiple surfaces of

a building. To define the boundaries of a quadrilateral

surface, 4 splitting lines need to be manually drawn. For

a surface with more complex boundaries, more splitting
lines are needed.

As the split surfaces are fitted to their corresponding
3D points independently, they may not join perfectly at

the intersection resulting in the appearance of a gap or

seam (Fig. 5(a)). This problem is resolved by aligning
the surfaces as follows.

Recall that Q is the set of 3D points near the inter-

section. Then, for each point Xi in Q, we can obtain
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the corresponding points X1i and X2i on the surfaces

S1 and S2 as follows:

X1i = X2i = Xi,

Y1i = Y2i = Yi,

Z1i = S1(Xi, Yi),

Z2i = S2(Xi, Yi).

(8)

Given the corresponding points X1i and X2i, we can

compute the best similarity transformation to align the

surfaces using well-known algorithms such as [19,34].
Here, we present the algorithm of [19] for completeness.

Suppose we want to transform X1i to align with

X2i. Then, the similarity transformation between them
is given by

X2i = sRX1i +T (9)

where s, R, and T are the scaling, rotation, and trans-
lation. The algorithm for finding the best-fit similarity

transformation is as follows:

Similarity Transformation

1. Remove translation by moving the point clouds’ cen-

troids to the origin of the coordinate system:

r1i = X1i −X1 , r2i = X2i −X2 (10)

where

X1 =
1

n

n
∑

i=1

X1i , X2 =
1

n

n
∑

i=1

X2i . (11)

2. Determine scaling factor by comparing variance:

s2 =

n
∑

i=1

‖r2i‖2

n
∑

i=1

‖r1i‖2
(12)

3. Compute rotation matrix as follows:
Form matrix M and Q such that

M =

n
∑

i=1

r2i r
⊤

1i, Q = M⊤M. (13)

Perform eigendecomposition of Q:

Q = VΛV⊤ (14)

where Λ = diag(λ1, λ2, λ3). Next, compute

Q−1/2 = Vdiag

(

1√
λ1

,
1√
λ2

,
1√
λ3

)

V⊤. (15)

Then, the rotation matrix is given by

R = MQ−1/2. (16)

4. Compute translation:

T = X2 − sRX1. (17)

After computing the optimal scaling, rotation, and trans-

lation, the points X1i can be transformed to align with

X2i using Eq. 9 (Figure 5).

(a)

(b)

Fig. 5 Alignment of surfaces. (a) Before alignment, there is
a gap (in the red box) between the two surfaces. (b) After
alignment, the gap is removed.

3.3 Resampling of Surface Points

The 3D point cloud recovered by PMVS typically does
not cover a surface completely. To obtain complete color

texture for a surface, it is necessary to resample the

color information from the input images.

First, the set P of 3D points of a surface are pro-

jected onto the X-Y plane. Next, corner points of the
desired resampling region are manually marked on the

X-Y plane. A line segment l(X) is computed between

two connected corners such that l(X) is positive for
points inside the sampling region and negative outside

(Fig. 6). This property holds for all convex regions and

allows for easy decision of whether a point is in the

resampling region. Finally, 3D points are sampled at
regular spacing within the resampling region using the

equation of the surface (Eq. 1, 3; Fig. 7). The resam-

pling rate is determined by the user according to the
resolution required and it is independent of the sam-

pling density of the point cloud.

The colors of the resampled surface points are ob-

tained from the images. Among the multiple views of a

building, the image that corresponds to the frontal view
of a building surface is used. Let X̃ = (X,Y, Z, 1)⊤ and

x̃ = (x, y, 1)⊤ denote the homogeneous coordinates of

3D point X and image point x respectively. Then, the
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Fig. 6 Resampling region. The lines of the resampling region
are computed such that points in the region have positive
signs.

(a) (b)

(c)

Fig. 7 Resampling of surface points. (a) 3D points in PMVS
point cloud is sparse in some regions. (b) Resampled 3D
points cover the surface completely. (c) Zoomed-in view of
the region in the red box.

3D point projects to the image point according to the
perspective projection equation:

ρx̃ = PX̃ (18)

where ρ is a scaling parameter and P is the projection

matrix computed by PMVS algorithm. Denoting each
row of P as P⊤

k , Eq. 18 can be written as

ρ





x

y

1



 =









P⊤

1

P⊤

2

P⊤

3

















X

Y

Z

1









. (19)

Rearranging Eq. 19 yields the solution

x =
P⊤

1
X

P⊤

3
X
, y =

P⊤

2
X

P⊤

3
X
. (20)

So, the color of X can be obtained from the image at
pixel location x = (x, y)⊤. Typically, x has real-valued

coordinates. Its color should be derived from those of

the four nearest pixels around it using bilinear interpo-
lation.

In some cases, an image may contain building sur-

faces at oblique view. Retrieval of pixel colors from the

oblique view may result in gross distortion (Fig. 8a). To
correct for the distortion, the image that presents the

surface at frontal view should be used. When multiple

images are used for different parts of a surface, seams
can appear at the intersections of the images. In this

case, color blending should be applied across the seams

to remove them (Fig. 8c). Finally, 3D mesh model of
the recovered surfaces is constructed by applying ball-

pivoting algorithm [3]. Ball-pivoting algorithm is ade-

quate for producing a good mesh because the 3D points

are resampled densely at regular spacing.

4 Test Results and Discussions

Two large buildings with curve surfaces were used as
the test cases: one with a convex curved surface, the

other with a concave curved surface. Multiple images

of the buildings were taken from various viewing an-

gles. For each test case, PMVS algorithm was executed
on the multiple views to recover 3D point clouds, and

our textured mesh surface reconstruction algorithm was

executed to reconstruct the surfaces.
Table 1 tabulates the results of applying the al-

gorithms on the test cases. Bundler and PMVS took

significant amounts of time to compute the matching
feature points, camera parameters, and point clouds.

Building 2 had a long extended wall. So, two point

clouds were recovered from two sets of images to cover

the walls of the building. Figure 9 and 10 show sam-
ples inputs, recovered point clouds, and reconstruction

results of the buildings. Notice that the point clouds

are sparse in some parts of the surfaces. Nevertheless,
our algorithm can resample the color textures in those

areas from the input images and reconstruct complete

mesh of the surfaces.
In the current implementation, our algorithm does

not differentiate between the buildings and the occlud-

ers, such as the trees, in front of the buildings. So, the

occluders are regarded as part of the buildings’ tex-
tures. To remove the occluders, it is necessary to cap-

ture the images with the camera located in between a

building and the occluders. With the camera located
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(a) (b) (c)

Fig. 8 Removal of distorted color texture. (a) Color texture with gross distortion. (b) Retrieving colors from a frontal view
image removes distortion but induces a visible seam. (c) Color blending removes the seam.

Table 1 Results of mesh surface reconstruction. Execution times are measured in minutes, excluding manual inputs.

no. of no. of no. of Bundler PMVS our algo total
building images point clouds surfaces run time run time run time run time

1 27 1 3 20 12 6 38
2 105 2 3 79 47 14 140

at a close distance from the building, it is necessary to

construct the building’s surfaces in multiple parts and

then merge them together. This is technically possible
but practically tedious to perform.

5 Conclusions

This paper presented a simple, inexpensive, and effec-

tive method for reconstructing textured mesh surfaces

of large buildings with curved surfaces. The method ap-
plies PMVS to recover point clouds from multiple im-

ages of a building. Then, robust surface splitting and

fitting algorithms are applied to fit multiple surfaces to

different parts of the point clouds. These surfaces are
then aligned, merged, and color blended to produce a

single textured mesh model of the building. The mesh

model is already segmented from the surrounding and
can be used directly in various applications. Test re-

sults show that the building models reconstructed by

our algorithm are sufficiently accurate and realistic for
3D visualization in various applications.
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