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Abstract— Histopathological examination is a powerful
method for prognosis of major diseases such as breast cancer.
Analysis of medical images largely remains the work of human
experts. Current virtual microscope systems are mainly an
emulation of real microscopes with annotation and some image
analysis capabilities. However, the lack of effective knowledge
management prevents such systems from being computer-
aided prognosis platforms. The cognitive virtual microscopic
framework, through an extended modeling and use of medical
knowledge, has the capacity to analyse histopathological images
and to perform grading of breast cancer, providing pathologists
with a robust and traceable second opinion.

I. INTRODUCTION

In the last decade, histopathological examination has been

widely accepted as a powerful method for prognosis in

major diseases such as breast cancer. Currently, analysis of

medical images in histopathology largely remains the work

of human experts. For pathologists, this consists of hundreds

of slides examined daily. Such a tedious manual work is

time-consuming, sometimes inconsistent and subjective.

The cognitive microscope proposes a radical change in

medical practice by introducing a knowledge-driven medical

imaging environment, enabling safer decision-making for

histopathology.

In section II, we introduce breast cancer prognosis us-

ing consistent breast cancer grading through robust second

opinion. Section III presents the state of the art in virtual

microscopy and in ontologies, and our cognitive microscopic
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framework is described in section IV. Section V concludes

our study, by synthesizing the future researches.

II. PURPOSE

The cognitive microscope system integrates dynamic cap-

ture, representation and use of specific visual medical knowl-

edge, in order to setup the bases of a knowledge-driven

medical imaging. It helps at providing an effective, efficient,

reliable and traceable assistance for prognosis. All the time-

consuming and repetitive tasks are performed automatically

and a second opinion is provided to the doctor who, at last,

makes the final prognosis. Pervasive adaptation and a con-

tinuous learning of implicit medical knowledge are designed

to maintain the quality level of the analysis performed by

the system.

Apart from the use for safe and robust decision support,

the huge amount of medical information captured and rep-

resented by the cognitive microscope constitutes a source

of new knowledge for pathologists and medical researchers.

Thus, with the cognitive microscope, the pathology prognosis

accuracy is enhanced by integrating earlier stage diagnostic

modalities including mammography, breast ultrasound imag-

ing, and clinical information (such as history and physical ex-

amination) as well as a knowledge-driven prognosis support

(such as similar cases, similar virtual slides, expert procedure

and method, modeling and simulation of expert diagnosis).

Defining the outline of a generic cognitive approach for

visual exploration and analysis of histopathological images,

this general and ambitious objective focuses on the domain

of breast cancer grading.

III. STATE OF THE ART

A. Existing Virtual Microscope Platforms

Virtual slide (or Whole Slide Images, WSI) systems use

a client-server architecture. Most systems are able to work

either as standalone or as connected systems. To facilitate

access to any image sub-region at the required resolution, the

different vendors use a tiled organization, stored in a pyramid

where each level contains pre-computed images at lower

resolution (e.g. 1/4th, 1/16th. . . ) [1]. Also few systems use

JPEG2000 single file system that provides direct access to

any sub-region at the desired resolution and at the desired bit

rate/quality. Such sophisticated systems need implementation

of an additional server for delivering the needed data stream.

In compensation, these systems require less space for storing



compressed images and allow an additional benefit while

storing three-dimensional data. Finally, such format has less

compression artefacts at the tile boundaries, which is more

adequate for image analysis processes.

Some platforms are dedicated to a specific WSI format

(generally the one provided by the slide scanner vendor)

while other platforms are able to handle different formats

(tiled format or JPEG2000 format). In a survey published

in 2006 [2], a comparison of 31 digital slide commercial

systems was reported. These systems allow pathologists to

browse the images as if they were using a real microscope

(multi-scale virtual browsing) and to perform “slide con-

ferencing”, that is synchronized cooperative sessions. It is

possible to annotate images. Several systems also provide

image analysis tools (segmentation, classification) for detect-

ing regions of interest, cells, nucleus or membrane.

It exists also a few free digital slide systems designed

mainly for education purpose. They allow building micro-

scopic image libraries, providing a tool to navigate through

a virtual slide image and to annotate images manually.

The most impressive of these tools is WebMicroscope1 [3].

Images of the scanned slides are stored in a database on a

server connected to the Internet. On the client side, a plug-in

installed on standard web browser allows the user to query

the server for a slide, to browse it and to annotate it.

None of these systems are designed to be computer-

aided prognosis platforms because they lack the capacity of

effective knowledge management.

B. Cognitive Virtual Microscopy

Focusing on histopathology and dealing with microscopic

images of breast cancer tissue, the cognitive microscope

continues the efforts developed by the medical device manu-

facturers in the field of virtual microscopy for histopathology

and cyto-hemathology.

Cognitive virtual microscopy is an emerging field. Adding

knowledge to virtual slides is for instance done by the

Center for Neuroscience, University of California, USA,

for the purpose of research and teaching students the brain

structure and function [4]. Thus, their system BrainMaps.org

is an interactive high-resolution digital brain atlas and virtual

microscope that is based on scanned images of serial sections

of both primate and non-primate brains. However, different

from our cognitive microscope, their system is not intended

to support medical decision-making. Our system does not

rely only on anatomical descriptions. It also has reasoning

capability.

One of the most advanced research team in virtual micro-

scope is with Dr. Ronald S. Weinstein (Health Sciences Cen-

ter, The University of Arizona, Tucson, USA) that established

the Rapid Breast Care Service to provide a woman who has

a positive digital mammography study with the results of her

laboratory analysis the same day [5]. DMetrix company, in

connection with this research team, has developed a digital-

image archiving system called the “Arizona” system [6].

1http://www.webmicroscope.net/

Users are able to access image data and metadata through a

secure Web site. However, this highly efficient system does

not use expertise modeling for having a knowledge enhanced

virtual microscope.

C. Ontologies

Domain knowledge-based representation evolved signif-

icantly within last years, with the ontologies’ coming in

the semantic web world. Ontologies emerged from the

Artificial Intelligence field [7] into medical realm where

making explicit assumptions and sharing common under-

standing of the domain knowledge became a self-evident

issue due to consensus inconsistencies amongst experts [8],

[9]. Hence, various knowledge-modeling approaches have

been proposed, ranging from comprehensive, standardized

vocabularies such as UMLS2, SNOMED-CT3, NCI4, and

reference ontologies (e.g. Open Biomedical Ontologies), to

specific application-oriented ontologies (FMA-RadLex) [10].

An evidence-based solution to assist in establishing a

consensus in breast pathology domain is given by [11], where

SNOMED-CT terminology resource and available diagnostic

classification are used as a basis for building an ontology of

morphological abnormalities (e.g. ductal carcinoma in situ).

Semantic similarities between abnormality descriptions are

computed to help in finding agreement. For lung pathol-

ogy, [12] proposes formalised medical reports using UMLS

concepts represented in Web Ontology Language (OWL),

in order to have semantic-based retrieval for text and image

data in digital virtual microscope environment. However, due

to the limitations of OWL in expressivity, rules support for

ontology has been pursued in a more rigorous way, dating

back to Description Logics. It is a current reasearch topic in

semantic web [13].

IV. OUR METHOD

The cognitive microscope is a synergy between knowl-

edge, context, cognition and experience based on a user-

centred approach to provide visual prognosis assistance

to pathologists. The key features of the cognitive micro-

scope platform are pervasive adaptation, context-awareness,

human-computer confluence, modularity and openness.

A. Medical Knowledge Representation / Ontologies

In this section, we present a combined scientific-clinical

perspective of domain ontology-based knowledge modeling

with focus on breast cancer grading application.

Although there are some similarities in terms of using

textual description and visual data from slide analysis, or ref-

erence ontology support, what we propose is different. One

asset is the cognitive virtual microscopic framework where

knowledge-modeling plays a key role not only for semantic

annotation and retrieval, but also for semantic exploration

and compression of large microscopic images. Another novel

2http://www.nlm.nih.gov/research/umls/about_umls.html
3http://www.nlm.nih.gov/research/umls/Snomed/snomed_

main.html
4http://www.cancer.gov/cancertopics/terminologyresources



Fig. 1. Knowledge modeling procedure for Breast Cancer Grading.

direction represents the modelling of Nottingham Grading

System (NGS), since histopathological grading of breast

carcinoma has become a highly relevant assessment tool for

prognosis in modern pathology [14].

There are various ways of designing an ontology. How-

ever, no single right methodology has been acknowl-

edged. Therefore, we adjust the principles of Uschold and

Grüninger [15] to fit our specific application and we identify

a three-phase procedure: Knowledge acquisition, knowledge

translating and knowledge refining. A top-down development

process starting with the definition of the most general

concepts in the domain is subsequently followed by spe-

cialization of the concepts and properties adding. Fig. 1

illustrates the knowledge modeling procedure.

1) Knowledge acquisition: As an important prerequisite,

we define the domain as representation of Breast Cancer

Grading (BCG) and we plan to use this ontology to improve

the intra- and inter-observer agreement when it comes to

sharing and finding harmony of prognosis opinion among

pathologists. Based on the hypothesis that ontologies are

mirrors of the real world and that formal ontologies can bring

significant benefits for the development and maintenance

of application ontologies, we use National Cancer Institute

(NCI) thesaurus to feed our own application ontology with

the concepts related to the breast cancer grading. Neverthe-

less, NCI does not handle all specific concepts for grading.

Only a small subset of concepts was selected from NCI

thesaurus and transmitted to our ontology (e.g. generic con-

cepts such as Disease, Patient and some specialized concepts

DuctalCarcinomaInSitu, CancerPatient). For the concepts

related to the histopathological grading, like Assessment,

TubuleFormationScoring, we add knowledge provided by

pathologist experts to adjust the medical representation we

target at. We use Protégé ontology editor and knowledge-

based framework for our breast cancer grading modeling. In

this way, the grading of breast carcinoma could be integrated

into upper-ontologies of breast pathology.

2) Knowledge translation: This phase unfolds into two

steps, essentially defining a hybrid ontology made up of

structural and rule components: Structural modeling (struc-

tural component) using Web Ontology Language – Descrip-

tion Logics (OWL-DL)5 and rule modeling (rule compo-

nent) with Semantic Web Rules Language (SWRL)6 which

provides a high level of expressiveness and reasoning as

described in [16]. OWL-DL has its foundations in SHOIN(D)

formal language, enabling us to define concepts, relationships

between concepts and to perform reasoning. We use SWRL

for more accurate descriptions, such that reflection of reality

could be achieved.

We construct the knowledge-base (KB) by defining

the pair KB = (T, A) which contains the terminology

(TBox)and the assertions (ABox).

The TBox comprises the set of axioms that formally

describes the domain structure. Here, concepts (classes)

and relations between concepts (properties) are defined.

The main roots of the class hierarchy consist of three

main primitive classes ConceptualEntity, DescriptorEntity

and MicroscopicEntity, each of them specializing in re-

lated concepts. ConceptualEntity class contains structured

information with respect to persons (Person) that are pa-

tients (Patient) having a disease (Disease) which need to

be assessed (Assessment), using specific criteria (Criterion)

of NGS (NotttinghamGrading) by a specimen (Specimen)

analysis. MicroscopicEntity handles NGS relevant objects

identified on a specimen analyzed under the microscope,

like cell, nucleus, mitosis, tubule, lumina. DescriptorEntity

represents the formalisation of visual low-level features in

terms of spatial (TopologicDescriptor such as Inclusion) and

geometry attributes (Size, Shape, Intensity, etc).

5http://www.obitko.com/tutorials/

ontologies-semantic-web/owl-dl-semantics.html
6http://www.w3.org/Submission/SWRL/



Fig. 2. SWRL rules for nuclear pleomorphism and tubule formation scoring.

With this image analysis information representation linked

to the semantic level description, complex modeling is car-

ried out. From the structural modeling point of view, all

sibling classes are made disjoint, and is-a relationship stands

as the basis for the class hierarchy construction.

In the ABox, individuals of classes are instantiated for

example, for the Slide/Frame classes- SlideID or FrameID

can be introduced and connected through a relationship with

the PatientID.

Adding the medical definition/rules to the aforementioned

concepts is done in terms of condition specifications, which

contain property assertions in order to encapsulate a def-

inition of the reality. Properties could as well have sub-

properties specialization. For instance, hasTopologicDescrip-

tor has surroundedBy as sub-property, and its functional

inverse property isSurrounding. We focus here only on one

important characteristic, yet difficult to understand, of mod-

eling in OWL-DL: Open World Assumption with negation

restriction. The Mitosis definition provides an appropriate

example (see Fig. 1), stating that a mitosis is any nuclei

division that amongst other things is not included in some

Tubule and hasLuminance some VeryLow and has only Lumi-

nance VeryLow and also hasEccentricity hasValue MitosisEc-

centricity ranging between [0, 1]. At this point, to define

the MitosisEccentricity we interact with the SWRL and the

definition is represented according to the SWRL syntax.

Similarly, the rules for scoring and grading are defined (see

Fig. 2 for an illustration). Although hybrid modeling offers

an increase of expressivity, the trade-off is the decidability.

An excellent discussion regarding expressivity versus com-

plexity and decidability is given by [16]. However, an OWL-

DL + SWRL combination is suitable for modeling, under

certain circumstances of computational expectations.

3) Knowledge Refining: Interactivity is essential for prov-

ing an accurate formalization. Therefore, we revise and refine

the ontology, considering both computer vision and clinical

perspective. Based on the principles in [17], we use the

tableau-based algorithm of Pellet reasoner for our application

ontology, due to its powerful advantage to support high

expressivity and rules in SWRL. Although there are multiple

reasoning tasks with regard to concepts, TBox, ABox or

all KB, the tableau-based paradigm essentially reduces all

inference problems to concept subsumption which practically

verifies concept satisfiability using De Morgan rules with

Negation Normal Form (NNF). In formal logics, a concept

C is satisfiable wrt T iff there is an interpretation I of T
such that CI 6= 0. Hence, I is called a model of C.

Given the definition of Nucleus and the instantiation

Fig. 3. Concept subsumption test for Nucleus l.

of Nucleus in Nucleus 1, the question is whether we can

subsume Nucleus 1 is a MicroscopicEntity. Fig. 3 provides

the result of the subsumption test.

By testing concept subsumption for all concepts from

the ontology, the KB consistency is thus verified (satisfies

the coherence postulate). This reasoning task represents the

central element of reasoning and is involved in computing the

implicit knowledge from the explicit knowledge (the inferred

model of ontology from the asserted model) to obtain the

operational knowledge used further in the exploration from

which results the pervasive implicit knowledge. The latter is

then integrated in the operational knowledge thus providing a

complex refined ontology. OWLViz enables the visualization

of the conceptual graph, which represents the hierarchy built

in the ontology (see Fig. 4).

At this point, an intervention from medical side is also

required when axioms need to be refined / completed or

rules added. The evaluation of the ontology is however, a

complex process and depends on a lot of factors [18], thus it

is still ongoing. An ontology fragment is publicly available

at http://ipal.i2r.a-star.edu.sg/project_MICO.

htm

B. Semantic Compression

All the histopathological cases submitted to the system for

analysis are stored, together with their analysis and grading,

and be available for future information retrieval. To limit

the quantity of information to be stored to a manageable

amount, a semantic compression of histopathology images is



Fig. 4. OWLViz graph fragment of BCG asserted model.

performed. For instance, only the regions of interest denoted

by the analysis to be relevant for the pathology being studied

are stored at the highest magnification. All the other parts of

the slide are stored at a low magnification level.

C. Image Reasoning

The cognitive microscope combines visual perception,

context, cognition and experience to reinforce a visual prog-

nosis assistance following an approach centred on pathologist

behaviour. It is intended to be capable of cognitive functions

ranging from active perception to symbolic description, from

symbolic manipulation to communication, and from an ad

hoc approach to a capitalisation of previous experiences.

The cognitive microscope behaves in consistent way with

standard medical practice, following a uniform representation

of image analysis, reasoning and context elements. This

transparency throughout the whole process is exploited in

order to permit confluence between the user and the platform,

and medical validation of the results through technologies of

content-based semantic image retrieval. The platform will

be fully configurable and operable through a knowledge

explorer allowing, in an incremental way, new medical

knowledge capture, representation, use and discovery.

Multi-scale analysis and description of the slide is per-

formed automatically by the system. Visual content of the

slide is captured, analyzed and described dynamically in

an active cognitive process. Descriptions produced by the

analysis are stored and can be used at a later stage for

validation purpose.

The challenge is to provide pathologists with a pertinent

robust second opinion breast cancer grading, by detecting

scale-dependent meaningful regions of interest in the micro-

scopic biopsy images, annotating them, analyzing them and

providing a breast cancer grade and validation capabilities.

The cognitive microscope improves robustness and stability

of grading by providing the pathologist with hints of a

first automatic analysis as a second opinion from which to

establish a final prognosis. In addition, it will be a suitable

innovative working environment system with, until now, no

competitor in the e-health market.

Fig. 5 shows an example of our prototype. Ontologies for

breast cancer grading drive the image processing algorithm.

All the visual elements detected in the image are given a

name and are linked to a structural element defined in the

ontology as shown in Fig. 5(a). On the virtual slide browser

(see Fig. 5(b)), the visual elements are annotated by their

name. There is a direct link between the slide browser and

the ontologies.

The cognitive microscope is intended to be useful for

pathology research. With the cognitive microscope, virtual

slide images will be effectively using dynamic knowledge

bases, rules and medical ontologies. This combination of

images and knowledge would also enhance the information

provided by the image annotation/analysis supporting new

medical knowledge discovery from huge medical image and

related information databases.

V. CONCLUSION

A first prototype has been developed. It can perform multi-

scale image analysis using medical knowledge, breast cancer

grading, semantic indexing, and validation through CBIR

(content-based image retrieval).

We modeled a breast cancer grading application ontol-

ogy with Protégé OWL-DL + SWRL, which is a differ-

ent approach from our previous one [19]. The knowledge

base contains axioms and assertions to capture the domain

knowledge and we enriched the representation with rules.

The formalization of the knowledge is highly needed to be

able to perform reasoning. Thus, we evaluated the ontology

using Pellet reasoner and refined it according to the clinical

feedback.

Reasoning in ontologies and knowledge-bases is the cue

rationale for a domain specification to be formalised. A rea-

soner has the capability to infer facts not explicitly rep-

resented in the ontology. In this light, description logics

initiative was designed for tractable reasoning and automated

processing. Therefore, our approach enables a future inte-

gration of new knowledge discovered when mapping the

high-level representation of concepts with low-level image

processing.

We envision that knowledge modeling for visual explo-

ration of images in breast cancer grading domain using

this approach opens new avenues for scientific and clinical

applications. The idea to integrate it into a virtual microscope

platform to assist in research as well as to assess more

accurate prognosis is a significant improvement. The next

step will be the extension of such knowledge modeling to

both morphological and functional data at the cellular and

at the molecular levels which is the key for transmodality

correlation (clinical/imagery/biology/microscopy) and new

intrinsic markers discovery.



(a) Ontologies for breast cancer grading have been instantiated by visual entities
detected in the slide.

(b) Virtual slide: The detected visual elements are annotated by the
system.

Fig. 5. Virtual slide and ontologies of our cognitive microscope prototype.
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