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METHOD AND SYSTEM FOR DETECTION OF
BONE FRACTURES

FIELD

[6001] This invention relates to automated screening and
detection of bone fractures in x-ray images.

BACKGROUND

[0002] Many people suffer from fractures of the bone,
particularly elderly people. According to the findings of the
International Osteoporosis Foundation, the lifetime risk for
osteoporotic fractures in women is 30% -40% worldwide,
and 13% in men. The aumber of hip fractures could rise
from 1.7 mitlion worldwide in 1990 to 6.3 miltion by 2050.
Most dramatic increase js expected to occur in Asia during
the next few decades. According to World [lealth Organi-
zation, osteoporosis is second only fo cardiovascular disease
as a leading health care problem.

[0003] In clinical practice, doctors and radiologists in
large hospitals rely mainly on x-ray images to determine the
occurrence and the precise nature of the fractures. Visual
inspection of x-rays for fractures is a tedious and time-
consuming precess. Typically, the number of images con-
taining fractures constitutes a small percentage of the total
number of images that the radiologists have to inspect. For
example, in a sample of x-ray images of fermurs collected,
only about 10% of them are fractured. After looking through
many images conlaining healthy femurs, a tired radiologist
has been found to miss a fractured case among the many
healthy ones.

[0004] Some methods of bone fracture detection utilize
non-visual techniques to detect fractures. This includes
using acoustic pulses, mechanical vibration and electrical
conductivity.

[0005] Furthermore, existing methods of bone fracture
detection mostly fail to consider that the shapes and sizes of
the bones are not identical. FEven amang healthy bones, there
are still differences in the appearance because they are
naturally-occurring abjects, Age and gender also contribute
o the difference in the appearance of the bones. One
standard method ol dealing with size varialion is 1o normai-
ize the size of the bones in the captured x-ray images for
visual inspection. This methed is, however, unsatisfactory
because it can either remove important texmre information
(il the image is shrunken) or introduce noise and artifacts (if
the image is enlarged).

SUMMARY

[0006] In accordance with a first aspect of the present
invention there is provided a method for detection of bone
fractures using image processing of a digitized x-ray image.

[0007] The image processing may comprise extracting a
contour of the bone in the digitized x-ray image.

[0008] The extracting of the contour of the bone in the
digitized x-ray image may comprise applying a Canny edge
detector to the digitized x-ray image.

[0009] TFhe extracting of the cantour of the bone in the
digitized x-ray image may comprise applying a snake algo-
rithm 1o the digitized x-ray image.
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[0030] Applying the snake algorithm to the digitized x-ray
image may comprise creating a Gradient Vector Flow
(GVF).

f0011] The image processing may comprise an adaptive
sampling scheme.

[0012] The adaptive sampling scheme may comprise iden-
tifying a bounding box around an area of interest based on
the extracted contour of the bone.

(0013} The bounding box may be divided into a predeter-
mined number of sampling points.

[0014] A sampling region around the sampling points may
be chosen to cover image pixel points between the sampling
points.

[0015] The image processing may comprise calculating,
one or more texture maps of the digitized x-ray image and
detecting a bone fracture based on respective reference
lexture maps.

[0016] The texture maps may comprise a Gabor lexiure
orientation map.

[0017] The texture maps may comprise a Intensity gradi-
ent direction map.

[0018] The texture maps may comprise a Markov Random
Fieid texture map,

[0019] The image processing may comprise caleulating
one or more difference maps between the respective textuze
maps calculated for the digitized x-ray image and the
respeclive reference texture maps.

[6020] The dilference maps may be classified using one or
more classifiers.

[#021] The difference maps may be classified vsing Baye-
sian.classifiers.

[0022] The difference maps may be classified using Sup-
port Vector Machine classifiers.

[0023] The image processing may comprise determining a
lemorai shaft axis in the digitized x-ray image; determining
a femoral neck axis in the digitized x-ray image; measuring
an obtuse angle between the femoral neck axis and the
temoral shatt axis; and detecting the bone fracture hased on
the measured obtuse angle.

{0024} The method may further comprisc caleulating lovel
lines from respective points on the contour of the bone in the
digitized x-ray image and extending normally to the contour
to respective other points on the extracted contour.

[0025] Determining the femoral shafi axis may be based
on midpoints of the level lines in a shaft portion of the
contour of the bone.

[0026] Determining the femoral neck axis may be based
on the level lines in femoral head and neck portion of the
centour of the boune.

[0027] In accordance with a second aspect of the present
invention there is provided a system for detection of bone
fractures comprising means for receiving a digitized x-ray
image; and means for processing, the digitized x-ray image
for detection of bone fracturcs.
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[0028] In accordance with a third aspect of the present
invention there is provided a system for detection of bone
fractures comprising a database for receiving and storing a
digitized x-ray image; and a processor lor processing the
digitized x-ray image for detection of bone fractures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The accompanying drawings, which are incorpo-
rated into and constitute a part of the description of the
invention, #lustrate embodiments of the invention and serve
to explain the principles of the invention. It is to be under-
stood, however, that the drawings are designed for purposes
of illustration only, and not as a definition of the limits of the
invention for which reference should be made to the claims
appearing at the end of the description.

[0030] FIG. 1a shows an x-ray image of a healthy fomur

with a normal neck-shaft angle illustrating processing of a

digitized x-ray image according to an example embodiment.

[0031] FIG. 15 shows an x-ray image of a fractured femur
with a smaller-than-normal neck-shafi angle illustrating
processing of a digitized x-ray image according 1o an
example embodiment,

{0032] FiG. 2 shows an adaplive sampling grid utilised in
an example embodiment of the present invention,

{0033] FIG. 3a shows the Gubor texture orienlation map
of a healthy femur illustrating processing of a dipitized x-ray
image according to an example embodiment.

[0034] FIG. 34 shows the Gabor texture orientation map
of a fractured femur iljustrating processing of a digitized
x-ray image according to an example embodiment.

[0035] FIG. 44 shows the intensity gradient direction at
one location of an x-ray image of a human femur illustrating
processing of a digitized x-ray image according to an
example embodiment.

[0036] FIG. 4b shows the intensity gradient direction at
another location of the x-ray image of a human femur
illustrating processing of a digitized x-ray image according
1o an example embodiment.

[0037] FIG. Sa shows the intensity gradient direction map
of a healthy femur in an X-ray image illustrating processing
of a digitized x-ray image according to an example embod;-
ment.

[6038] FIG. 5b shows the intensily gradienl direction map
of unother healy femur in an x-ray image illusirating
processing of a digitized x-ray image according to an
example embodiment.

[0039] FIG. 5¢ shows the intensity pradient direction map
a fractured human femur illustrating processing of a digi-
tized x-ray image according 10 an example embodiment.

[06040] F1G. 54 shows a shaded circle, which is the refer-
ence for infensity gradient directions illustrating processing
of a digitized x-ray image according to an example embodi-
ment.

[0041] FIG. 6 shows test results of femur fracture detec-
tion according to an example embodiment,

[0042] FIG. 7a shows subtle fractures at the femoral acck
of a human femur in an x-ray image.
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[0043} FIG. 75 shows subtle fractures at the femoral neck
of another human femur in an x-ray image.

[0844] FIG. 8a shows radius fractures near a human wrist
in an x-ray image.

[0045] FIG. 85 shows radius fraclures near another human
wrisl in an x-ray image,

[0046] FIG. 9 shows the test results of radius fracture
detection according to an example embodiment.

[0047] FIG. 10 shows the schematic diagram of a com-
puter systemn implementation according to an example
embodiment.

[0048] FIG. 11 shaws a flow chart illustrating the pro-
cesses implemented in the computer system of FIG. 10.

DETAILED DESCRIPTION

[0049] For illustration, the example embodiments of the
present invention will be described by the detection of femur
fractures, as they are the most cormmon types of fractures.
Some preliminary results on the detection of fractures of the
radius near the wrist will also be discussed.

[0050] An example embodiment of the present invention
provides a computer system and method for automated
screening and detection of bone fractures in digital x-ray
imuges. The system can analyze digital x-ray images of the
bones and perform the fotlowing tasks:

[0031] Petermine whether the bones are healthy or
fractured, and compute confidence of the assessment;

{8052] Identify cases suspected of fractures and high-
light the possible areas where fractures may have

occurred.
[0053] The steps involved are:
[0054] 1. Read digital x-ray images stored in an external

slorage device.

[0055] 2. Identify the regions of the images where the
bones of interests are located,

[0056] 3. Determine whether the bones of interests are
fractured, and measure the confidence of the assessment,

[0057] 4. Mark the locations where fractures are suspected
for images that contain possibly fractured bones.

[0058] 5. Display on an outpul device the results of the
automated analysis, including but not limited to

[0059] whether the bones of interests are fractured, and
the associated confidence;

[0060] the focations of suspected fractures; and
[6061] alerting the doctors to the suspecied fractures,
[00A2] The method uiilised in the example embodiment

will be described in detail as follow. The system utilised by
the exampie embodiment will be discussed in the later part
of this deseription.

[0063] The example embadiment of the present invention
adopts an approach in detecting fractures of the femur and
the radius by combining different detection methods. These
metheds extract different kinds of features for fracture
detection. They include neck-shaft angle, which is specifi-
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cally extracted for femur fracture detection, and Gabor
fexture, Markov Random Field texture, and intensity gradi-
ent, which are general features that can be applied to
detecting fractures of various bones. Two types of classifiers
are wtilised, namely, Bayesian classifier and Support Vector
Machine.

[0064] The method of detecting fractures in the example
embodiment can be divided into 3 stages: (1) exiraction of
approximate contour of the bone of interest in the x-ray
image, {2) extraction of features from the x-ray image, and
(3) classification of the bone based an the extracted features.

[6065] In the example embodiment, the extraction of bone
contonr in stage 1 is performed using an active shape model,
supplemented by active appearance models at distinct fea-
ture points.

[0066] Inmore detaif, the process ol identifying or extrac-
tion of the bone contour (j.e. the locations of the bones of
interests) consists of applying (1) the Active Shape Model to
determine the initial prediction of the outer contour of the
bongs, (2) the Active Appearance Model to determine accu-
rately landmark locations along the initial prediction of the
bone contour and followed by (3) refinement of the bone
contour to determine the exact contour of the bone.,

[0067] In the example embodiment of the present inven-
tion, the refinement of the bone contour is performed using
an llerative Closest Point method. Alternatively, the refine-
ment of the bone comtour can be performed using an Active
Contour {(i.e., Snake) method,

[0068] Instage 2, the process of fracture detection after the
locations of the bone of interest are identified consists of a
combination of methods. Each methed is based on the
extraction of a particular image feature and each method
examines fracture based on different aspects of the x-ray
image.

[0069] Inthe example embodiment, four different types of
image features are extracted for fracture detection: (1)
femoral neck-shaft angle, (2) Gabor texture, (3) Markov
Random Field (MRF), and (4) intensity gradient. The first
feature is specifically extracted for detecting the distortion of
shape due to severe femur fracture, The other features arc
applied to detect fractures of various bones or different types
of fractures, for example, MRF is typically utilised for
detecting radius tfractures.

[0076] The methods for extracting the four different types
of image features are described in detail as follow.

[0071] The first method is based on measuring the femoral
neck-shatt angle. With reference to FIGS. 1a and 15, the
methed comprises (1} determining the femoral neck axis
102, (2} determining the femoral shaft axis 104, and (3)
measuring the obtuse angle 106 made by the neck axis and
the shaft axis. Images with neck-shafl angle 106 smaller than
a pre-specified angle are flagged as suspecied fractured
cases. For example, assuming the pre-specified neck-shaft
angle 106 of a healthy femur is as shown in FIG. 1a, FIG,
15 shows the case of a bone fracture with neck-shaft angle
106 smaller than the pre-specified angle. The difference
between the measured angle and the pre-specified angle is
regarded as a measure of the confidence of the assessment.

[0072] The alporithm for extracting the contour of the
femur in the cxample embodiment consists of a sequence of
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processes. First a modified Canny edge detector is used 1o
compiite the edges from the input x-ray image of the hip
followed by computing a Gradient Vector Flow field for the
edges. Nexl, a snake algorithm combined with the Gradient
Vector Flow will mave the active comtour, i.e., the shake, to
the contour of the femur.

[0073] In more detail, the Canny edge detector takes as
inpul 2 gray scale image and produces as cutput an image
showing the position of the edges. The image is first
smoolhed by Gaussian convoelution. Next, a simple 2D first
derivalive operalor is applied lo the smoothed image 1o
highlight regions ol the image wilk high [irst derivatives.
Using the gradieni direction calculated, the alporithm per-
forms non-maxima suppression to eliminate pixels whose
gradient magnitude is lower than its two neighbors along the
gradient direction. Finally these thin edges are linked up
using a technigue involving double thresholding. Although
Canny edge detector works well in detecting the outline of
the femur, it may also detects a large number of spurious
edges close to the shafl, Such spurious edges may affect the
snake's convergence on the outline of the femur and are
preferably removed. Attempting to remove the spurious
edges by increasing the smoothing effect will reduce these
spurious edges but the edge information at the femur head
may alse be lost, Contributing to the problem is the fact that
the femur head overlaps with the hip bones and edge
magnitudes of the femwr head in this region are low.

[0074] The problem of preserving femur head edges and at
lhe saine time removing spuricus edges can be solved by
incorporating information from the intensity image into the
Camny edge algorithm in the example embodiment. It was
found that areas containing bones have higher intensity than
non-bone regions. Hence this information can be used to
distinguish spurious edges from femur head edges. The
Canny edge detector with a small smoothing effect is used
t detect the femur head edges while spuricus edges with
hoth lew intensity vatue and low gradienl magnitude values
are removed,

[0675] Insummary, apixel is marked as an non-edge point
in the example embodiment if

[0076]
[0077] 2) it has an infensity lower than a threshold 1', and

1} it is detected by Canny edge detector,

[0078] 3) it has an edge magnitude lower than the same
threshold 1',

[0079] The threshold I is a percentage value. In the
cxample embodiment, a non-edge pixel must have an inten-
sity and an edge magnitude lower than 90% of the total
pixels.

[0080] In cxample embodiment makes use of a snake 1o
snap onto the contour of the fomur snakes are formulated as
cnergy-minimizing contours controlled by two forees:

[0081] 1) Internal contour forces which cnforce the
smeothness constraint.

[0082] 2) Image forces which attracts the contour 1o the
desired [eatures, in his case, edges

E ko= Eins M4 o (V{51
[0083] Representing the position of the snake parametri-
cally by v(s)=(x(s), y(s)), the energy of a snake E__, . is a
sum of the intemal cnergy E;, of the snake and the image
cnergy E

image”
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[0084] A snake that minimize the energy functional B,
must satisfy the following Enler equations:

AE;,

gy + Fhess + ;::’g‘ =0
dE;

@5 + BYasss + ﬁﬁi =0

[0085) Where x,, and X, are the second and fourth
derivatives of x, similarly for v, and y___.

[0086] In the example embodiment, a gradient Vector
Flow (GVF)} was created to smprove the original active
contour formulation. GVF is computed as a diffusion of the
gradient vectors of a gray-level edge map derived from the
image.

[0087] The GVF field is defined as the vector field G(x,
y)=(q(x, ¥)r(x, y}) that minimizes the energy functional

e=] Jul g, +n, 40,7V ER G-V EP dudy

[0088] where E is an edge map BE(x, y) derived from the
image. Using calculus of variations, the GVF can be found
by solving the foilowing Euler equations

wg-g-E-Ej=0
W= (p-E2-E-0

[0089] The snake algorithm is combined with the external
force computed by the GVF to improve the performance of
snake. With the GVF snake, in the example embodiment,
only a small number of initialization points are needed to
start the snake algorithm and successive ilerations of the
algerithm will redistribute the snake points more regularly
along the conlours.

[0090] In the computation of femoral neck-shaft angle
106, lines that are normal to both sides of the shaft contour,
which are called the level lines, are computed from the
contour of the femur 108. The construction of the level lines
is based on the normals of the contour points. There are a
number of ways to compute the normal for a point on the
contour 108, In the example embodiment, finite difference to
estimate the derivative and kence derive the normal direc-
tion is used. This technique uses a small number of points in
the neighborhoed of the point of inferest to derive the
nenmal. It is sensitive to small changes in the neighbars’
positions of the points.

[0091] Tn another embudiment, with a dense sampling of
peints along the contour, a larger set of poinls can be used
to compute the nonmal at a point using Principal Component
Analysis (PCA). To compute the normal of a contour point,
choose a neiphborhood of points arcund the point of interest,
This sel of poims represents a segment of the contour and
PCA is applicd to this scgment of points. Given a set of
points in 21, PCA relums twa eigenvectors and their asso-
ciated eigenvalues. The eigenvector with the largest eigen-
value will point in the direction parallel to this segment of
points and the other eigenvector gives the normal direction
at the point of interest.

[0692] Once the nermal for each point on the contour has
been calculated, the set of level lines L can be computed.
The crientation of the femur shaft can be computed by
extracting the mid-points of the level lines on the shafi area
of the contour 108. After finding the midpeints of the shafi,
the PCA algorithm is used to estimate the orientation of the
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midpoints in the example embodiment. The cigenvector
with the largest eigenvalue computed from the PCA algo-
rithm will represent the orientation of the shaft midpoints.

[0093] The computation of femoral neck’s orientation is
more complicated because there is no obvious axis of
symmetry. The algorithm in the example embodiment con-
sists of three main steps. 1) compute an initial estimate of the
neck orientation, 2) smooth the femur contour, and 3) search
for the best axis of symmetry using the initial reck orien-
tation estimate.

[0094] The longest level lines in the upper region of the
femur-always cut through the contour of the femoral head
109. Given this cbservation, an adaptive clustering algo-
rithm is used in the example embodiment to cluster long
level lines at the femoral head 109 into bundies of closely
spaced level lines with similar orientations, The bundle with
the largest number of lines is chosen, and the average
orientation of the leve] lines in this bundle is regarded as the
initial estimate of the orentation of the femoral neck.

[0095] The adapiive clustering algorithm is useful as it
does not need 1o choose the number of clusters before hand.
The general idea is (o group the tevel lines such that in each
group, the tevel lines are similar in terms of erientation and
spatial pasition. The adaptive clustering algorithm groups a
level line into its nearest cluster if' the orientation and
midpoint of the cluster is close. If a level line is far enough
from any of the existing clusters, a new cluster will be
created for this level line. For level lines that are neither
close nor far encugh, they will be left alone and not assigned
to any cluster. With the adaptive clustering algorithm, it
ensures each cluster has a minimum similarity of R1 for the
cluster orientation and minimum similarity of R2 for the
mid-points distance. The algorithm also ensures that the
cluster differs by a similarity of at least S1 and S2 for the
orientation and mid-peints distance respectively.

[0096] Varying the values of R1, R2, St and 82 controls
the gramularity of clustering and the amount of overlapping
between clusters. The gencral idea of determining the axis of
symmetry is 1o find a line through the femoral neck 111 and
head 109 such that the contour of the head and neck
coincjdes with its own reflection about that line. Given a
point p, along the contour of the lemoral head and neck,
obtain the midpeint m; along the line joining contour point
Pi_; 2nd py,;. That is, cne obtains a midpoint for each pair
of contour points on the opposite sides of p,. Now, one can
fit a line I, through the midpoints m, to obiain a candidate
axis of symmetry. If the contour is perfectly symmetrical,
and the correet axis of symmetry is obtained, then cach
contour point iy _; is exactly the mirror reflection of p,, ;. The
best fitting axis of symmetry is a midpoint fitting line }, that
minimizes the error,

{00971 The best fitting axis of symmetry is determined 1o
obtain the best approximation of the neck axis 102, Finally,
the obtuse angle 166 between the neck and the shafi axes can
be computed. Classification of whether the bone is healthy
arnol is based o a threshold of the neck-shall angle 106 that
is leamed from training samples.

[0098] In the example embodiment, the methods for
extracting the other three image features, Gabor texture,
Markov Random Field (MRF) and intensity gradient, share
a common trait: adaptive sampling. As such, before the other
methods are discussed in detail, adaptive sampling will be
discussed.

[0099] As discussed earlier, shapes and sizes of the bones
are not identical in the x-ray images, even among healthy
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bones, The standard method of dealing with size varation in
computer vision is to normalize the size of the bones in the
images. However, normalizing may cause important texture
information 1o be removed (if the image is shrunken) and
introduce noise and artifacts (if the image is enlarged). The
example embodiment prevents this from happening by using
adaptive sampling to sample the features so that the sampled
locations in different images correspond to consistent loca-
fions in the normalized sampling grid instead of scaling the
X-ray images.

{0100] Let W and H denote the width and height of a
beunding box 202 thal contains the bone of interest, ¢.g. the
femur’s upper extremity, as shown in FIGS. 24 and . This
bounding box 202 is automatically derived from the

approximate bone contour extracled in stage | (extraction of

bone contour) of the algorithm In the example embodiment,
the upper bounding box side 202a is determined by a
horizontal line through the uppermost point 203a on the
bone contour 266. One left and right sides 2028, ¢ respec-
tively of the bounding box 202 are determined based on the
vertical lines through the Jeft- and rightmost points 2034, ¢
respectively on the bone contour 206 the lower bounding
box side 2024 is determined by a horizonta] line through the
lowest point 2034 of the lesser tronchanter 205 on the bone
contour 206,

[0101] Let n, and n, denote the number of sampling
locations along the x- ‘and y-directions, which means the
sampling method divides the whole bounding box into nxn,
regions, with n, <number of horizontal image pixels, and
n <number of vertical image pixels in the example embodi-
ment. As a result of utilizing adaptive sampling, the example
embodiment needs to extract only approximate bone con-
tours. Therefore, slight variation of shape over different
patients can be tolerated.

[0102] FIG. 2 shows a grid 212 of sampling points e.g. 214
inside the bounding box 202 which fall inside the bone
conjour 206. In the example embodiment, the features are
extracted from each sampling region arcund a sampling
peint thal is delermined using the aduplive sampling
method. The number of sampling points differ for different
feature types. For example, texture features extracted using
Gahor filtering requires a larger sampling region and thus
fewer sampling points, On the other hand, e.g, extraction of
intensity gradient requives smaller sampling region, thus
sampling can be performed at more sampling points.
Markov Randem Field (MRF) texture model extracls fea-
tures from medium-sized sampling regions compared with
the larger sampling regions for Gabor filtering and the
smaller sampling regions for intensily gradiend exiraction.

[0103] In the following, the methods of extracting image
features using Gabor filters, Markov Random Field (MRF)
and intensity gradient respectively will be described in more
detail.

[0104] Generally, in the example embodiment, cach of he
methods of extracting the three features will first generate a
feature map, which will be later used during classification to
detect whether an x-ray image shows a healthy bone or a
fractured bone. The feature map is a record of the visual
features at various locations of the femur image.

[0105] After the feature maps are generaled, a niean
feature map is computed by averaging the maps of sample
healthy femur images. ‘lo determine whether a fracture
exists, the difference between the feature map of an input
femur image and the mean feature map is performed to
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produce a difference map, Then, during classification, the
difference map is classified through Bayesian math or Sup-
port Vector Machine ($VM) to determine whether a fracture
exists. In SVM, the distance between the difference map and
the hyperplane compuied by the SVM is regarded as a
measure of the confidence of the assessment.

[0106] One principle for fracture detection is that the
trabeculae in bones are oriented al specific crientations to
support the forces acting on sthem. Therefore, a fracture of
the bone causes a disruption of the trabecular pattern, which
can be delected by extracting various lealure types.

[0107] In the example embodiment, by extraction of
Gabor textures, the result is a Gabor texture arientation map
Me=[u;;] where 1y, is a unit vector that represents the Gabor
texture orientation at 2 Dimension grid location (i,j}. The
Gabor texture orientation map records the orientalions of the
trabecular lines at various Jocations in the femur image. The
erientations are compuied by filtering the image with a set
of Gabor filters with different orientation preferences, At
each location, the orientation of the Gabor filter with the
largest response indicates the orientation of the irabecular
lines at that location. FIGS, 3a and 35 illustrate examples of
Gabor texture orientation maps generated based on Gabor
Bltering. FIG. 3a shows the textute orientation map of a
healthy femur 300 and FI1G. 35 shows the texture orientation
map of a fractured fermur 316, The short lines 302 plotted
within the bone contour regions 304 indicate the trabecular
urientalions.

[0108] Before extracting the intensity gradient feature in
the example embodiment, the x-ray images are normalized
first so that their mean intensities and contrasts are similar.
This s followed by computing the intensity gradient.

{0109] One way of computing the intensity gradient at a
point p is (o fit a curve surface on the intensity profile at and
around p. Then, the intensity gradient is computed by
applying analytical geometry.

[0110] Another way, which is utilised in the example
embodiment, is 10 apply an approximation method as fol-
lows.

[0111] Given a region R{p) centered at p, search within the
region for a point q whose intensity difference d,, is the
largest;

dulp) = max |H(p)—lig'))
7 cRip)

[0112] where I(p) and I(q") denote Intensity at p and
Intensity at arbitrary peint ¢' within R(p) respectively.

[0113]° Then, the intensity gradient direction g(p) is com-
puted as the vector difference

q4-p
= Itp) - flg))———
glpy =sgnli{p) (qnd,..(p)

[0114] where sgn() is the sign function. As shown in
FIGS. 4a and 4b, the direction of g is defined to peint from
higher intensity location (brighter region} 402 lo lower
intcnsity location (darker region) 404 as shown in two
sample zoom-in images (406 and 412) at difterent locations
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(408 and 410) of the same x-ray image 400, Next, Intensity
gradient direction can be computed at each location (i)}
within the bone contour 414 to form the intensity gradient
direction map M =[u;]. Gradient dircction outside the con-
tour 414 is defined to be the null vector.

{0115] TFIGS. 54, 56 and 5¢ illustrate examples of intensity
gradient direction maps. FIGS. 52 and 84 show two different
x-ray images of healthy femurs and FIG. 5S¢ shows a
fractured fernur. The directions of each location in the
intensity gradient direction maps is represented by different
shades of black, white and gray as depicted in the 2
Dimensional diagram of a 3 Dimensional shaded circle 502
in FIG. 54

{0116] Similar to the extraction of intensity gradient fea-
ture, intensity normalization is also performed in the
example embodiment before extracting the Markov Random
Field texture. The Markov Random Field texture model
describes the intensity of a pixel p as a linear combination
of those of its neiphbors g

gy 37 Olp gip +gr+ € igh)
qERIp)

[0117] where 8{p,q) are model parameters and €(q) rep-
resenls noise, which is usually assumed o be Gaussian noise
of zero mean and censtant variance. The model parameters
6(p.q) at locatien p is then computed by minimizing the error

2
E= Ii!p) - Z @, gllp +g)+ € (g}

acRip)

[0618F The model parameters B(p,q) are then normalized
to unit vectors u; to form the MRF texture map M,,=[u;],
where p=(i,j). As for the other feature maps, entries cutside
the bone contour are assigned the null vectors.

[0119] The three featwre maps Gabor texture crientation
map, intensity. gradient direction map and MRF texture map
discussed above are vector maps and thus not typically
convenient for classification of bones into classes of descrip-
tion such as fractured bones, healthy bones, suspected
fractwre, faulty image . . . ete. ‘Therefore, in the example
embodiment, they are first converted into difference maps,
which are scalar maps, before classification For cach feature
type, the meun leature map of all the healihy training
samples of x-ray femur images, M=[m,], is first computed,
The entry my; is the mean feature vecior at position (i,)) in M
and it is given by:

n

E Heij
my =

k=1

M -1

D g

k=]

if ey > ni2

¢ otherwise

[0120] where n is the number of training samples, Uy is
the unit feature vector of sample k at position (i,j), and c;is
the number of samples with non-null feature vectors at
position (ij).
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[0121] Furthermore, in the generation of the mean feature
map, for a particular position (i,j), if more than half of the
training samples’ feature maps have null valves at this
position, it will be considered as an insignificant position,
which. means this position does not contain significant
information for classification. Then, the corresponding entry
in the mean leature map will be assigned the null vector (.
This situation usually oceurs near the boundary contour of
the bone because of slight shape variation among different
images. By setting the map entries at these positions tc 0, the
effect of slight shape variations on classification can be
removed.

[0122} Now, the difference map V=[v;] for all the training
samples can be computed. Bach entry v, indicates the
difference between the imape’s feature map and the mean
[eature map at the same position (i,j). v;; is govemed by:

if oy =my; =0
Y Y

0
Vi =
T - lwomd otherwise

[0123] A v, value that is close to O indicates a slight
difference between the image’s feature map and the mean
feature map at the same position (i,§), and a large v;; would
indicate a large difference. As the mean feature map is
computed over a collection of different healthy training
samples, a randomly selected image of a healthy bone
should have a feature map that is very similar to the mean
feature map. Therefore, the difference map of the randomliy
selected image of a healthy bone is expected to have mostly
small,values. On the other hand, in an image of a fractured
bone, there will be some disruption of the trabecular patiem
caused by the fracture, So its feature map will be very
different from the mean feature map at some positions, thus
its difference map is expected to have some large values.

[0124] In the next stage, classification of bones for an
x-ray image will be performed based on the values of the
difference map. In the example embodiment, at the step of
classification, two classifiers are applied on the difference
maps 10 classify the test samples, 1) Bayesian and 2) Support
Vector Machine (SYM).

[0125] For the Bayesian method, the sets of healthy and
Iracture training samples’ difference maps are each modeled
by a multivariatc Gaussian function, which arc used to
cstimate the conditional probabilities P(x|healthy) and
IP(x|fraciure), where x denotes a sample’s difference map. It
was found that, in practice, the a priori probabilities
P(healthy) and P(fracture) are not identical. For example,
P(healthy) is roughly 0.88 and P(fracture) is 0.12 for the
femur images in our collection. Applying Bayes’ rule, we
obtain

Plx | class)P(class)

Alclass jx) = )

[0126] where class is either healthy or fractured. The
denominator P(x) is the same for both P(healthyx) and
P(fracturefx) and so can be ignored. Thus, sample X can be
classificd as fractured if P{healthy|x) is smaller than
P(fracturejx).
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[0127] For the second method, Support Vecter Machine is
used for classification. The objective of $YM can be stated
succinctly as follow:

[0128] Given the training set {{xi,di)};.,", where d, is
the class of feature vector x,, find the optimal hyper-
plane, in terms of weights w and bias b, that satisfies
dwix+B) 21 fori=l,.. ., 7

[0129] and minimizes ®(w)=w w/2,

[0£30] The optimal weights w are given by a set of
Lagrange multipliers o;:

w= Z a;dix;
i

{0131] The training vectors x; with non-zero «; are the
support vectors.

[#132] For practical applications, which are typicalty non-
linearly separable, the example embodiment solves the clas-
sification problem in a high-dimensional space where there
is a better chance of achieving linear separation. This is
accomplished by applying 2 nonlinear function §{x) to map
the vector X in an n-dimensional input space to an m-di-
mensional feature space, m=n. Then, the optimal hyperplane
in the m-dimensional leature space is given by:
wlgp(xy+b=0

[0133} The nonlinear function ¢(x) is a kernel function of
the form K{(x)=K(x,xi} where x; are the support vectors.
Then, the optimal hyperplane in the feature space becomes:

Z @i Kix, 53+ B = 0
i

[0134] And the decision function Fx) becomes

flxy= Zf?ﬁd;x('\: Xi)+b

[0135] For efficient computation, the kernel fimctions
must satisty the so-called Mercer’s Theorem. These kernel
functions include:

[0136] 1. polynomial:
Koa=(xTxs1)P
[0137] where p is a constant.
[0138] 2. Gaussian or Radial Basis Function:

, lx -l
Kix, xi) = exp| - —

[0139] where o is the standard deviation of the Gaus-
sian and n is the nunber of training samples.

[0140] 3. hyperbolic tangent:
Kxxi)=tan P x+(,)
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[0141] where [, and B, arc constants and noting that
Mercer’s thecrem is satisfied only for some values of
B,and B, .

[0:42] The following describes the experiments and
results of a pructical implementation ol an example embodi-
ment of the present invention for bone fracture detection, In
the practical implementation of the example embodiment,
the number of sampling locations for the adaptive sampling
method was set as shown in fable 1 below,

TABLE 1
Gabor 1G MRF (femur) MRF {rading)
n, 12 28 16 g
n, 14 32 24 15

[0143] where MRF: Markov Random Field model, IG:
intensity gradient and Gabor and 1G were extracted only
from femur images. Recall that n and n, denotes the number
of sampling locations along the x- and y-directions and there
exists n,xn, regions i the bounding box containing the bone
of interest.

[0144] For classification, optimal values of the Radial
Basis Function (RBF) parameter and weighting factors were
determined by experimentaticn on the training samples. The
RBI* with parameter o=2 was chosen as the kernel function
because RBF kemnel yieids bettor classification results. Fur-
thermore, different weighting factors were assigned to the
crrors associated with the training samples, as this was
uscful for encoding differcnt significant levels of the training
samples, and for handiing imbalanced number of positive
and negative training samples. The weighting factor of the
healthy femurs was set as 15 and that of the fractured femurs
was set as 100, The weighting factor of the fractured femurs
was purposely set to a higher value because in a typical
practical situation there were much fewer fractured samples
than healthy samples.

[0145] In one experiment, 432 femur images were
obtained from a local public hospital, and were divided
randomly intc 324 training and 108 testing images. The
percentage of fractured images in the training and testing
sets were kept approximately the same (12%). In the training
set, 3% femurs were fractured, and in the testing set, 13 were
fractured.

[0146] FIG. 6 shows the table of results derived from the
experiment above. Six different classifiers were trained:
neck-shaft angle with thresholding (NSA) 618, Gabor tex-
wre with Bayesian classiller 620 and SVM 622, Tntensity
Gradient Direction (JGI) with Bayesian classifier 602 and
SVM 624, and Markov Random Field texture with SYM
604. Alter training, they were applied on the testing samples
and three performance measures were computed:

[0147] 1) fracture detection rate 606: the number of
correctly detected fractured samples over the number of
ractured samples,

[0148] 2) false alarm rate 626: the number of wrongly

classified healthy samples over the number of healthy
samples,

[0149] 3) classification accuracy 608: the number of
correctly classified samples over the otal number of
samples.

[0150] ©IG. 6 illustrates that individual classifiers have
rather low fracture detection rate 606, particutarly 1GD with
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Bayesian classifier 602 and MRF with SVM 604. However,
due to the nature of their methods, each of them can detect
some fractures that are missed by the other classifiers. So, by
combining all the classifiers, both the fracture detection rate
606 and classification accuracy 608 can be improved sig-
nificantly. 1t was found that the follewing combinations
yield good performance:

[0351] *1-0f-5"610: A femur is classified as fractured if
any one of the five classifiers, except MRF with SVM
604, classifies it as fractured.

[0152] “1-0f-67612: A femur is classified as fractured if
any one of the six classifiers classifies it as fractured.

[0153] “2-0f-67614: A femur is classified as fractured if
any two of the six classifiers classify it as fractured.

[0154] *2-0f-4"616: A femur is classified as fractured if
any two of the following four classifiers classify it as
fractured: neck-shaft angle method 618, Gabor texture
with Bayesian classifier 620, Gabor lexture with SVM
622, and intensity gradient direction with SYM 624.

[0155} The “1-0f-5" method 610 has the highest fracture
detection rate 606 of 100%, which means cvery fracture can
be detected by at least one of the classifiers. These detected
fractures include very subtle fractures. Examples of subile
fractures in two different images of the femoral neck can be
seen marked out by white eliipses 702 and 704 in FIGS. 7a
and 75 respectively. The test results in FIG. 6 show that the
six classifiers can indeed complement each other. The “1-of-
6" method 612 also has a fracture dstection rate 60§ of 100%
but a slightly higher false alarm rate 626 of 11.4%, resulting
in a slightly lower overall classification accuracy 608 of
88.9%. This is due to the lower classification accuracy 608
of MRF with SVM 664 compared to most of the other
methods. The 2-0f-6 method 614 has the best overall per-
formance of high fracture detection rate 606 (92.2%), low
false alarm rate 626 (1.0%), and high classification accuracy
608 (98.2%). The “2-0f-4” method 616 has no false alarm at
all, at the expense of lower fracture detection rate 606
(76.9%) ard shigltly lower classification accuracy 608
(97.2%).

[0156]  Another experiment on detecting fractures of the
radius near the wrist was also performed wsing MRF texture
model together with SVM classifier (604 in FIG. 6).

[0157] 145 wrist images were obtained from the same
local public hospital, and were divided randomly intc 7:
training and 74 testing images. In the training set, 21 radius
bones were fractured whereas 23 were fractured in the
lesting sel. FIGS. 84 and 86 show examples of radius
fractures marked out in white ellipses 802 and 804.

[G158] FIG. 9 shows the performance of the classifier on
the testing samples. ‘left’902 indicates left wiist and
‘right'904 indicates right wrist and “overall’906 indicates
the average results of the left and right wrist detection. As in
FIG. 6, three performance measures, fracture detection rate
908, false alarm rate 910 and classification accuracy $12 are
gauged. Interestingly, MRF with SVM (604 in FIG. 6)
performed quite well in detecting radius fractures although
it did not pertorm as well in detecting femur fractures. The
reason could be that the fractures of the radius near the wrist
are visually more obvious than those at the femoral neck,
which can be very subtle (e.g. Fi(3. 8). 1t is expected that
other feature-classifier combinaticns are able 1o complement
MRF with SVM (604 in F1G. 6) for detecting radius
fractures as well.

Nov. 29, 2007

[0159] The example embodiment described above
describes the detection of bone fractures in x-ray images. A
suite of methods that combine different features and classi-
fication techniques have been developed and tested. Indi-
vidual classifiers in the example embodiment can comple-
ment each other in fracture detection. As a result, by
combining the individual classifiers, both fracture detection
rate and classification accuracy can be improved signifi-
cantly in preferred embodiments. BEmbodiments of the
mvention may be used in fracture detection for all kinds of
bones.

[0166] in the described embodiments, adaptive sampling
is used for the extraction of the features for classification.
Adaptive sampling can adapt to the variation of size over
different images. Another advantage of the adaplive sam-
pling method is that it requires the extraction of oaly
approximate bone conlours. Therefore, il can also wlerate
skight vanation of shape over different patients, and dees not
require very accurate exiraction of the bone contours.

[0161] Additionally, the described embodiments may be
extended 1o fracture detection in the presence of growth
plates of for example, the radius bone. Growth plates are a
feature of the natural growing process of the radius. In some
cases, growth plates can be in presence together with frac-
tures of the radius further away from the wrist,

[0162] FIG. 10 shows the system view of the compuler
system implementation of an example embodiment of the
present invention. The computer 1200 reads in digital x-ray
images from an external storage device 1202, analyses the
images, and displays the results on an output device 1204.
The analyzing of the images refers 1o the 3 stages of the
methed of detecting fractures in the example embodiment:
(1) extraction of approximate contour of the bone of interest,
(2) extraction of features from the x-ray image, and (3)
classification of the bone based on the extracted features, as
described earlier.

[0163] FIG. 11 is a flow chart illustrating the flow of
processes in the computer (1200 in FIG. 10). In step 1300,
the computer (1200 in FIG. 10) reads in an x-ray image.
Nexi, in step 1302, the computer (1200 in FIG. 10) identifies
the locations of the bones of interests. This corresponds with
lhe stage of extraction of the approximate contour of the
bone of interest, described in the example cmbodiments
above.

[6164] In step 1304, the computer (1200 in TIG, 10)
determines whether fractures exist in the bones of interests,
based on the analysis described in the example embodiments
above. If fractures exist, the areas of suspected fractures are
marked out in step 1306. Fhis is followed by measuring the
confidence of the ussessment of the suspected fraciures in
step 1308.

[0168] T fractures do not exist, the confidence of the
assessment that no fractures exist is measured in step 1308,
lor example, for a newly processed image, the features
described above are extracted and classified using Bayesian
methed and SVM. For Bayesian method, the probability
P(fracture|x) is used as a confidence measure in the example
embaodiment. For 8VM, the distance of the image’s feature
map 1o the hyperplane is used as a conlidence messure in the
example embodiment.

[0166] After the confidence of the assessment is measured,
the analysis results are displayed on, for example, a com-
puter monitor connected to the computer (1200 in FIG. 10)
in step 13190. In additien, the analysis results such as those
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relating to the suspected fracturcs are alerted to the people
examining the x-ray images (e.g. doctors) through manual
alerts by the user of the system or electronic alerts such as
email.

[0167] 1t will be appreciated by a person skilled in the art
that numerous variations and/or modifications may be made
to the present invention as shown in the specific embodi-
ments without departing from the spirit or scope of the
invention as broadly described. The present embodiments
are, therefore, to be considered in all respects to be illus-
trative and not restrictive,

1. A method for delection of bone fractures using image
processing of a digitized x-ray image; wherein the image
processing comprises an adaptive sampling scheme.

2. The method as claimed in ¢laim 1, wherein the image
processing comprises extracting a contour of the bone in the
digitized x-ray image.

3. The method as claimed in claim 2, wherein the extract-
ing of the contour of the bone in the digitized x-ray image
comprises applying a Canny edge detecter to the digitized
X-ray image.

4, The method as claimed in claims 2, wherein the
extracting of the contour of the bone in the digitized x-ray
image comprises applying a snake algorithm to the digitized
X-ray image.

5. The method as claimed in claim 4, wherein applying the
snake algorithm to the digitized x-ray image comprises
creating a Gradient Vector Flow {(GVF).

6. The method as claimed in clgim 1, wherein the adaptive
sampling scheme comprises identifving a bounding box
around an ares of interest hased on the extracted contour of
the bone.

7. The niethod as claimed in claim 6, wherein the bound-
ing box is divided into a predetermined nwmber of sampling
points.

8. The method as claimed in claim 7, wherein a sampling
region around the sampling points is chosen to cover image
pixel points between the sampling points,

9. The method as claimed in claim 1, wherein the image
processing comprises calculating one or more texture maps
of the digitized x-ray image and detecting a bone fracture
based on respective reference texture maps.

10. The method as claimed in claim 9, wherein the texture
nraps comprise a Gabor texiure orientation map.

11. The method as claimed in claims 9, wherein the
texture maps comprise an Intensity gradient direction map.

12. The method as claimed in claim 9, whetein the texture
maps comprise & Markev Random Field texture map.

13. The method as claimed in claim 9, wherein the image
processing comprises calculating one or more difference
maps hetween the respective texture maps caleulated for the
digitized x-ray image and the respective reference texture
nAps.

14. The method as claimed in claim 13, wherein the
difference maps are classified using one or more classifiers.
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15. The method as claimed in claim 14, wherein the
difference maps are classified using Bayesian classifiers.

16. The method as claimed in claim 14, wherein the
difference maps arc classified vsing Support Vector Machine
classifiers.

17. The method as claimed in claim 1, wherein the image
processing comprises:

determining a femoral shaft axis in the digitized x-ray
image;

determining a femoral neck axis in the digitized x-ray
image;

measuring an obluse angle between the femoral neck axis
and the femaral shafi axis; and

detecting the bone fracture based on the measured obtuse

angle.

18. The method as claimed in claim 17, comprising
calculating level lines from respective points on the contour
of the bone in the digitized x-ray image and extending
normally to the contour to respective ather points on the
extracled contour.

192, The method as claimed in claim 18, wherein deter-
mining the femoral shaft axis is hased on midpoints of the
level lines in a shaft portion of the contour of the bone.

20. The method as claimed in claims 18, wherein deter-
mining the femoral neck axis is based on the level lines in
{emoral head and neck portion of the contour of the bone.

21. A system for detection of bone fractures comprising;:

means for receiving a digitized x-ray image: and

means for processing 1he digitized x-ray image for detec-
tion of bone fractures;

wherein the means for processing the digitized x-ray
“image utilizes an adaptive sampling scheme.
22. A system for detection of bone fractures comprising;

a database for receiving and storing a digitized x-ray
image; and

a processor for processing the digitized x-ray image for
detection of bone fractures;

wherein the processor processes the digitized x-ray image

utilizing an adaptive sampling scheme.

23. A data storage medium having stored thereon com-
puter code means for instrucling a computer to execute a
method for detection of bone fractures, the method com-
prising:

utilizing image processing of a digitized x-ray image;

wherein the image processing comprises an adaptive
sampling scheme,



