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Abstract There are three main approaches for reconstruct-
ing 3D models of buildings. Laser scanning is accurate but
expensive and limited by the laser’s range. Structure-from-
motion (SfM) and multi-view stereo (MVS) recover 3D
point clouds from multiple views of a building. MVS meth-
ods, especially patch-based MVS, can achieve higher den-
sity than do SfM methods. Sophisticated algorithms need
to be applied to the point clouds to construct mesh sur-
faces. The recovered point clouds can be sparse in areas
that lack features for accurate reconstruction, making recov-
ery of complete surfaces difficult. Moreover, segmentation
of the building’s surfaces from surrounding surfaces almost
always requires some form of manual inputs, diminishing
the ease of practical application of automatic 3D reconstruc-
tion algorithms. This paper presents an alternative approach
for reconstructing textured mesh surfaces from point cloud
recovered by patch-based MVS method. To a good first ap-
proximation, a building’s surfaces can be modeled by planes
or curve surfaces which are fitted to the point cloud. 3D
points are resampled on the fitted surfaces in an orderly pat-
tern, whose colors are obtained from the input images. This
approach is simple, inexpensive, and effective for recon-
structing textured mesh surfaces of large buildings. Test re-
sults show that the reconstructed 3D models are sufficiently
accurate and realistic for 3D visualization in various appli-
cations.
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1 Introduction

Reconstruction of 3D models of buildings has many applica-
tions. It can be used to create 3D models for virtual reality,
games, and digital special effects. It can also be used for
preserving heritage architectures and city planning. There
are three main approaches for reconstructing 3D models of
buildings. Laser scanning [1, 3, 7, 11] is accurate but expen-
sive and limited by the laser’s range. Structure-from-motion
(SfM) [4–6, 12, 13, 21, 22] and multi-view stereo (MVS)
[8, 10, 15, 18] recover 3D point clouds from multiple views.
In particular, patch-based MVS (PMVS) [8, 10, 15, 16] can
achieve higher density than do SfM methods. Since the point
clouds recovered by SfM and MVS are unordered, sophisti-
cated algorithms [8, 10, 15] need to be applied to the point
clouds to construct mesh surfaces. Moreover, the recovered
point clouds can be sparse in areas that lack features for ac-
curate reconstruction, making recovery of complete surfaces
difficult.

Regardless of the technology used, reconstruction of an
entire building cannot be achieved in practice by a single
laser scan or single point cloud of a building. It is always
necessary to repeat the process to reconstruct and merge var-
ious parts of the building, making laser scanning more cum-
bersome to apply. Moreover, segmentation of the building’s
surfaces from surrounding surfaces almost always requires
some form of manual inputs, diminishing the ease of practi-
cal application of automatic 3D reconstruction algorithms.

This paper presents an alternative approach for recon-
structing textured mesh surfaces from point cloud recovered
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by patch-based MVS method. It regards a building’s sur-
faces as effectively flat surfaces which can be modeled by
planes or curve surfaces. This is a good first approximation
when the scene depth is much smaller than the distance of
the building to the camera, which is true of many modern
architectural design. In this case, it is not necessary to apply
sophisticated algorithms to reconstruct detailed mesh sur-
faces from point cloud. Instead, simple surfaces are fitted
to the point cloud, and 3D points are resampled on the fit-
ted surfaces in an orderly pattern, whose colors are obtained
from the input images. In this way, complete textured mesh
of building surfaces can be reconstructed. This approach is
thus simple, inexpensive, and effective for reconstructing
textured mesh surfaces of large buildings.

2 Related work

Many methods have been proposed over the past decades for
the acquisition of 3D models of objects [19]. Among these
methods, laser scanning, structure-from-motion (SfM), and
multi-view stereo (MVS) have been successfully demon-
strated for 3D reconstruction of buildings and street scenes.
Laser scanning is very accurate and efficient, but requires
an expensive laser scanner, which is limited by the laser’s
range. In reconstructing large historic sites, laser scanning
is often used together with other data such as engineering
drawing, aerial images, ground-plane images, etc. [1, 3, 7,
11].

SfM methods recover 3D data and camera positions and
orientations from a sequence of images [4–6, 12, 13, 21,
22]. The camera parameters can be calibrated explicitly or
computed by self-calibration methods.

MVS methods apply various geometric constraints to de-
termine point correspondence for triangulation of 3D points
given known camera parameters. In particular, patch-based
MVS (PMVS) can recover denser 3D point cloud than do
SfM methods [8, 10, 15, 16]. SfM and MVS may be used
together in a pipeline with MVS serving as the refinement
stage [5, 17]. Sophisticated algorithms are required to re-
construct mesh surfaces from point cloud. For example, [10]
uses Poisson surface reconstruction method and [15] em-
ploys graph cut algorithm with geometric constraints.

3 Textured surface reconstruction algorithm

Our proposed algorithm continues from where PMVS ends.
It consists of the following main stages:

1. Recover a 3D point cloud of a building using PMVS.
2. Reconstruct main surfaces from 3D point cloud by robust

surface fitting (Sect. 3.1) and splitting (Sect. 3.2).
3. Resample 3D points to refine surfaces (Sect. 3.3).

First, the Bundler algorithm [20] is applied to the input im-
ages to extract matching feature points and camera parame-
ters. Next, the PMVS algorithm [9, 10] is applied to recover
a 3D point cloud with color information (Fig. 5, 6). Then,
robust surface splitting is performed on the 3D point cloud
to split it into multiple parts each corresponding to a single
surface, and the surfaces are reconstructed by robust surface
fitting. Next, 3D points are resampled over the entire fitted
surfaces and their colors are obtained from the input images.
Finally, a 3D mesh model that is complete with color texture
is constructed from the resampled 3D points to represent the
building surfaces.

For a large building, a single point cloud cannot cover
the full extent of the building. In this case, multiple point
clouds are recovered for different parts of the building, and
our algorithm is applied to reconstruct different parts of the
building’s surfaces, which are aligned and merged together.

3.1 Robust surface fitting

First, we consider the case of fitting a single surface to 3D
points. Without loss of generality, we assume that the sur-
face’s normal is not perpendicular to the Z-axis, a degen-
erate case of our algorithm. For a degenerate case, we can
rotate the surface to align its normal to the Z-axis, perform
the computation, and then rotate the solution back to the sur-
face’s original orientation.

A plane in 3D space can be defined by the equation

Z = S(X,Y ) = a1X + a2Y + a3. (1)

Given a set of n 3D points Xi = (Xi, Yi,Zi), the parameters
(a1, a2, a3) of the plane can be recovered as the linear least
square solution of the equation:
⎡
⎢⎣
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A curved surface can be recovered in a similar way. For ex-
ample, a quadratic surface of the form

Z = a1X
2 + a2Y

2 + a3XY + a4X + a5Y + a6 (3)

can be recovered as the linear least square solution of the
equation:
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Other forms of curved surfaces may be recovered in the
same manner. Our current implementation restricts to plan-
ner and quadratic surfaces which are sufficient for the test
cases. The type of surface is specified by the user.

The surface recovered in this way is severely affected by
the outliers in the point cloud. It is too tedious to manu-
ally identify the inliers and exclude the outliers. So, a robust
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Fig. 1 Robust surface fitting. (a) Convergence curve. (b) 3D points around a curved surface. (c) Inliers identified by the robust fitting algorithm
lie very close to the fitted surface

Fig. 2 Splitting and alignment of surfaces. (a) Splitting of point cloud. (Green) Initial splitting line. (Red) Refined splitting line. (b) Before
alignment, there is a gap (in the red box) between the two surfaces. (c) After alignment, the gap is removed

surface fitting algorithm is adopted to automatically iden-
tify the inliers. The algorithm adopts a robust error measure
E = mediani ri , where ri is the residual error of a point Xi

with respect to the fitted surface:

ri = (
Zi − S(Xi,Yi)

)2
. (5)

It iteratively identifies and excludes outliers from the point
cloud. The robust surface fitting algorithm can be summa-
rized as follows:

Robust surface fitting

1. Initialize P ← input 3D point cloud, E ← ∞.
2. Repeat while E > τs :

(a) Fit a surface S to the points in P .
(b) Compute robust error E of S on P .
(c) Remove from P the points with residual ri ≥ E.

Empirical tests show that a threshold of τs = 5×10−7 yields
good results. Figure 1 shows that the algorithm can converge
within a small number of iterations and the solution has very
small error. Although a standard robust algorithm such as
RANSAC may be used, the above algorithm is much more
efficient than RANSAC. It is stable and accurate because of

the large number of inliers available in the point cloud for
accurate fitting.

3.2 Robust surface splitting

The above algorithm fits a single surface to a 3D point cloud.
Now, we illustrate how to split the point cloud into multiple
parts for fitting different surfaces.

Two non-parallel surfaces of the form Z = S1(X,Y ) and
Z = S2(X,Y ) intersect along a line or, more generally, a
curve. Define D(X,Y ) as the absolute difference between
the two surfaces:

D(X,Y ) = ∣∣S1(X,Y ) − S2(X,Y )
∣∣. (6)

Then, the equation D(X,Y ) = 0 gives the intersection of the
surfaces, and D(X,Y ) measures the distance of a surface
point X to the intersection.

Let us project the 3D data points along the Z-axis onto
the X–Y plane, and let l(X) denote the equation of a line
manually drawn on the X–Y plane to divide the data points
into two parts (Fig. 2(a)):

l(X) = b1X + b2Y + b3 = 0. (7)
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Fig. 3 Resampling of surface points. (a) Resampling region. The lines
of the resampling region are computed such that points in the region
have positive signs. (b) PMVS point cloud is sparse in some regions.

(c) Resampled 3D points cover the surface completely. (d) Zoomed-in
view of the region in the red box

Then, points Xi not lying on the line have non-zero values
l(Xi ). So, a set of 3D points Xi can be split into two subsets
according to the sign of l(Xi ). After splitting, a surface can
be fitted to each of the two subsets using the robust surface
fitting algorithm. The intersection of these surfaces induces
a change of l(X), and the whole process can be iterated to
obtain optimal splitting. So, the robust surface splitting al-
gorithm can be summarized as follows:

Robust surface splitting

1. Let P be a 3D point cloud to be split and l be the initial
splitting line.

2. Repeat:
(a) Split P into P1 and P2 according to the sign of

l(Xi ), for all pints Xi ∈ P .
(b) Perform robust fitting of surface S1 to P1 and S2 to

P2.
(c) Compute D(Xi ) of each point Xi and select a subset

Q of points with the smallest D(Xi ), which are near
the intersection.

(d) Fit l to the points in Q using linear least square
method.

This algorithm is iterated for a fixed number of iterations to
split the input point cloud and reconstruct surfaces. In the
current implementation, the size of Q is 50, and empirical
tests show that two iterations are sufficient. The same al-
gorithm is repeatedly applied to different parts of the point
cloud to robustly split and reconstruct multiple surfaces of
a building. To define the boundaries of a quadrilateral sur-
face, four splitting lines need to be manually drawn. For a
surface with more complex boundaries, more splitting lines
are needed.

As the surfaces are fitted to their 3D points indepen-
dently, they may not join perfectly at the intersection, re-
sulting in the appearance of a gap or seam (Fig. 2(b)). This
problem is resolved by aligning the surfaces as follows. Re-
call that Q is the set of 3D points near the intersection. Then,
for each point Xi in Q, we can obtain the corresponding
points X1i and X2i on the surfaces S1 and S2 as follows:

X1i = X2i = Xi, Y1i = Y2i = Yi,

Z1i = S1(Xi, Yi), Z2i = S2(Xi, Yi).
(8)

Given the corresponding points X1i and X2i , we apply the
algorithm of [14] to compute the best similarity transforma-
tion to align the surfaces (Fig. 2(b)).

3.3 Resampling of surface points

The 3D point cloud recovered by PMVS typically does not
cover a surface completely. To obtain complete color texture
for a surface, it is necessary to resample the color informa-
tion from the input images.

First, the set P of 3D points of a surface are projected
onto the X–Y plane. Next, corner points of the desired re-
sampling region are manually marked on the X–Y plane.
A line segment l(X) is computed between two connected
corners such that l(X) is positive for points inside the sam-
pling region and negative outside (Fig. 3(a)). This prop-
erty holds for all convex regions and allows for easy deci-
sion of whether a point is in the resampling region. Finally,
3D points are sampled at regular spacing within the resam-
pling region using the equation of the surface (Eqs. (1), (3);
Fig. 3). The resampling rate is determined by the user ac-
cording to the resolution required and it is independent of
the sampling density of the point cloud.
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Fig. 4 Removal of distorted color texture. (a) Color texture with gross distortion. (b) Retrieving colors from a frontal-view image removes
distortion but induces a visible seam. (c) Color blending removes the seam

Table 1 Results of mesh
surface reconstruction.
Execution times are measured in
minutes, excluding manual
inputs

Building No. of
images

No. of point
clouds

No. of
surfaces

Bundler
run time

PMVS
run time

Our algo
run time

Total run
time

1 27 1 3 20 12 6 38

2 105 2 3 79 47 14 140

The colors of the resampled surface points are obtained
from the images. Among the multiple views of a building,
the image that corresponds to the frontal view of a building
surface is used. Let X̃ = (X,Y,Z,1)� and x̃ = (x, y,1)�
denote the homogeneous coordinates of 3D point X and im-
age point x, respectively. Then, the 3D point projects to the
image point according to the perspective projection equa-
tion:

ρx̃ = PX̃ (9)

where ρ is a scaling parameter and P is the projection matrix
computed by PMVS algorithm. Denoting each row of P as
P�

k , and rearranging Eq. (9) yields

x = P�
1 X

P�
3 X

, y = P�
2 X

P�
3 X

. (10)

So, the color of X can be obtained from the image at pixel lo-
cation x = (x, y)�. Typically, x has real-valued coordinates.
Its color should be derived from those of the four nearest
pixels around it using bilinear interpolation.

In some cases, an image may contain building surfaces at
oblique view. Retrieval of pixel colors from the oblique view
may result in gross distortion (Fig. 4a). To correct for the
distortion, the image that presents the surface at frontal view
should be used. When multiple images are used for differ-
ent parts of a surface, seams can appear at the intersections
of the images. In this case, color blending should be applied
across the seams to remove them (Fig. 4c). Finally, 3D mesh
model of the recovered surfaces is constructed by applying

ball-pivoting algorithm [2]. Ball-pivoting algorithm is ade-
quate in producing a good mesh because the 3D points are
resampled densely at regular spacing.

4 Test results and discussions

Two large buildings with curve surfaces were used as the
test cases: one with a convex curved surface, the other with
a concave curved surface. Multiple images of the buildings
were taken from various viewing angles. For each test case,
PMVS algorithm was executed to recover 3D point clouds,
and our surface reconstruction algorithm was executed to
reconstruct the surfaces.

Table 1 tabulates the results of running the algorithms.
Building 2 had an extended wall and required two sepa-
rate point clouds to capture the building’s surfaces. Bundler
and PMVS took significant amounts of time to compute
the matching feature points, camera parameters, and point
clouds.

Figure 5 and 6 show samples input images, point clouds
recovered by PMVS, and reconstructed textured mesh mod-
els of the buildings. Notice that the point clouds are sparse
in some regions of the surfaces. Nevertheless, our algorithm
can resample the color textures in those regions from the in-
put images and reconstruct complete textured mesh of the
surfaces.

In the current implementation, our algorithm does not
differentiate between the buildings and the occluders, such
as the trees, in front of the buildings. So, the occluders are
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Fig. 5 Reconstructed mesh models of building 1. (Row 1) Sample images from various views. (Row 2) Point cloud recovered by PMVS and
(Row 3) reconstructed textured mesh model at various viewing angles

Fig. 6 Reconstructed mesh models of building 2. (Row 1) Sample images from various views. (Row 2) Point clouds recovered by PMVS and
(Row 3) reconstructed textured mesh model at various viewing angles
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regarded as part of the buildings’ textures. To remove the oc-
cluders, it is necessary to capture the images with the cam-
era located in between the buildings and the occluders. With
the camera located at a close distance from the buildings,
it is necessary to construct the building’s surfaces in multi-
ple parts and then merge them together. This is technically
possible but practically tedious to perform.

5 Conclusions

This paper presented a simple, inexpensive, and effective
method for reconstructing textured mesh surfaces of large
buildings with curved surfaces. The method applies PMVS
to recover point clouds from multiple images of a building.
Then, robust surface splitting and fitting algorithms are ap-
plied to fit multiple surfaces to different parts of the point
clouds. These surfaces are then aligned, merged and color
blended to produce a single textured mesh model of the
building. The mesh model is already segmented from the
surrounding and can be used directly in various applications.
Test results show that the building models reconstructed by
our algorithm are sufficiently accurate and realistic for 3D
visualization in various applications.
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